OWL 2

Web Ontology Language

Some material adapted from presentations by lan Horrocks and by Feroz Farazi

Introduction

e OWL 2 extends OWL 1.1 and is backward
compatible with it

* The new features of OWL 2 based on real
applications, use cases and user experience

* Adopted as a W3C recommendation in
December 2009

* All new features were justified by use cases
and examples

* Most OWL software supports OWL now

Features and Rationale

* Syntactic sugar

* New constructs for properties
* Extended datatypes

* Punning

* Extended annotations

* Some innovations

* Minor features

Syntactic Sugar

* OWL 2 adds features that
—Don’t change expressiveness, semantics, complexity
—Makes some patterns easier to write

—Allowing more efficient processing in reasoners

* New features include:
—DisjointClasses
—DisjointUnion
—NegativeObjectPropertyAssertion
—NegativeDataPropertyAssertion

Syntactic sugar: disJointClasses

e [t's common to want to assert that a set of
classes are pairwise disjoint

— No individual can be an instance of 2 of the classes in the set

* Faculty, staff and students are all disjoint
[a owl:allDisjointClasses;
owlmembers (:faculty :staff :students)]

° In OWL 1.1 we’d have to make three assertions

—.faculty owl:disjointWith :staff
— :faculty owl:disjointWith :student
—:staff owl:disjointWith :staff

* Will be cumbersome for large sets

Syntactic sugar: disJointUnion

* Need for disjointUnion construct

— A :CarDoor is exclusively either

e a :FrontDoor, a :RearDoor or a :TrunkDoor
 and not more than one of them

*In OWL 2

:CarDoor a owl:disjointUnionOf (:FrontDoor :RearDoor :TrunkDoor).

*InOWL1.1

:CarDoor owl:unionOf (:FrontDoor :RearDoor :TrunkDoor).
:FrontDoor owl:disjointWith :ReadDoor .
:FrontDoor owl:disjointWith :TrunkDoor .
:RearDoor owl:disjointWith :TrunkDoor .

Syntactic sugar: disJointUnion

* I[t's common for a concept to have more than
one decomposition into disjoint union sets

* E.g.: every person is either male or female (but
not both) and also either a minor or adult (but
not both)

foaf:Person
owl:disjointUnionOf (:MalePerson :FemalePerson);
owl:disjointUnionOf (:Minor :Adult) .

Syntactic sugar: negative assertions

* Asserts that a property doesn’t hold between
two instances or between an instance and a
literal

* NegativeObjectPropertyAssertion
—Barack Obama was not born in Kenya

* NegativeDataPropertyAssertion
—Barack Obama is not 60 years old

* Encoded using a “reification style”

Syntactic sugar: negative assertions

@prefix dbp: <http://dbpedia.org/resource/> .
@prefix dbpo: <http://dbpedia.org/ontology/> .

[a owl:NegativeObjectPropertyAssertion;

ow
ow
ow

:sourcelndividual dbp:Barack _Obama ;
:assertionProperty dbpo:born_in ;
:targetindividual dbp:Kenya] .

[a owl:NegativeDataPropertyAssertion;

ow
oW
oW

:sourcelndividual dbp:Barack Obama ;
:assertionProperty dbpo:age ;
:targetindividual "60"].

Syntactic sugar: negative assertions

* Note that the negative assertions are about
two individuals

* Suppose we want to say that :john has no
spouse?

* Or to define the concept of an unmarried
person?

* Can we use a negative assertion to do it?

Syntactic sugar: negative assertions

e Suppose we want to say that :john has no
spouse?

[a owl:NegativeObjectPropertyAssertion;
owl:sourcelndividual :john;
owl:assertionProperty dbpo:spouse ;
owl:targetindividual ????????].

* We can’t do this with a negative assertion ®

* It requires a variable, e.g., there is no ?X such
that (:john, dbpo:spouse, ?X) is true

Syntactic sugar: negative assertions

* The negative assertion feature is limited

* Can we define a concept :unmarriedPerson
and assert that :john is an instance of this?

* We can do it this way:
— An unmarried person is a kind of person
— and a kind of thing with exactly O spouses

John is not married

:john a :unmarriedPerson .

:unmarriedPerson
a Person;

a [a owl:Restriction;
onProperty dbpo:spouse;

owl:cardinality “0”] .

New property Features

* Self restriction

* Qualified cardinality restriction
* Object properties

* Disjoint properties

* Property chain

* Keys

Self restriction

* Classes of objects that are related to
themselves by a given property

—E.g., the class of processes that regulate themselves

* It is also called local reflexivity
—E.g., Auto-regulating processes regulate themselves

* Narcissists are things who love themselves

:Narcissist owl:equivalentClass
[a owl:Restriction;
owl:onProperty :loves;
owl:hasSelf "true"A"xsd:boolean] .

Qualified cardinality restrictions

* Qualifies the instances to be counted
* Six varieties: {Data|Object}{Min|Exact|Max} Type
* Examples
— People with exactly 3 children who are girls
— People with at least 3 names

— Each individual has at most 1 SSN

— Pizzas with exactly four toppings all of which
are cheeses

Qualified cardinality restrictions

* Done via new properties with domain owl:Re-
striction, namely {min|max/}QualifiedCardinality
and onClass

* Example: people with exactly three children
who are girls
[a owl:restriction;
owl:onProperty :has_child;

owl:onClass [owl:subClassOf :FemalePerson;
owl:subClassOf :Minor].

QualifiedCardinality “3” .

Object properties

* ReflexiveObjectProperty
— Globally reflexive
— Everything is part of itself

* IrreflexiveObjectProperty
— Nothing can be a proper part of itself

 AsymmetricObjectProperty

— If x is proper part of y, then the opposite does not
hold

Disjoint properties

* E.g., you can’t be both the parent of and child
of the same person

* DisjointObjectProperties (for object properties)
E.g., :hasParent owl:propertyDisjointWith :hasChild

* DisjointDataProperties (for data properties)
E.g., :startTime owl:disjointWith :endTime

 AllDisjointProperties for pairwise disjointness
[a owl:AlldisjointProperties ;
owl:members (:hasSon :hasDaughter :hasParent)] .

A Dissertation Committee

* Here is a relevant real-world example.

A dissertation committee has a candidate who must
be a student and five members all of whom must be
faculty. One member must be the advisor, another
can be a co-advisor and two must be readers. The
readers can not serve as advisor or co-advisor.

e How can we model it in OWL?

A Dissertation Committee

A dissertation committee has a candidate who must be a
student and five members all of whom must be faculty. One
member must be the advisor, another can be a co-advisor and

two must be readers. The readers can not serve as advisor or
co-advisor.

e Define a DissertationCommittee class

e Define properties it can have along with
appropriate constraints

A Dissertation Committee

:DC a owl:class; [a owl:Restriction;
owl:onProperty :co-advisor; owl:maxCardinality “1”] .

:candidate a owl:FunctionalProperty;
rdfs:domain :DC; rdfs:range student.

:advisor a owl:FunctionalProperty;
rdfs:domain :DC; rdfs:range faculty.

:co-advisor owl:ObjectProperty;
rdfs:domain :DC; rdfs:range faculty,
owl:propertyDisjointWith :advisor .

Property chain inclusion

* Properties can be defined as a composition of
other properties

* The brother of your parent is your uncle
:uncle owl:propertyChainAxion (:parent :brother) .

* Your parent’s sister’s spouse is your uncle

:uncle owl:propertyChainAxion (:parent :sister :spouse) .

Keys

* Individuals can be identified uniquely
* |dentification can be done using

—A data or object property (equivalent to inverse
functional)

—A set of properties

* Examples
foaf:Person
owl:hasKey (foaf:mbox),
(:homePhone :foaf:name).

Extended datatypes

e Extra datatypes
—Examples: owl:real, owl:rational, xsd:pattern
* Datatype restrictions
—Range of datatypes
—For example, a teenager has age between 13 and 18

Extended datatypes

* Data range combinations

—Intersection of

* DatalntersectionOf(xsd:nonNegativelnteger
xsd:nonPositivelnteger)

—Union of
» DataUnionOf(xsd:string xsd:integer)

—Complement of data range

e DataComplementOf(xsd:positivelnteger)

An example

:Teenager a
[owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom _:y .]

_:y ardfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions (_:z1 :z2).
_:z1 xsd:miniInclusive "13"AAxsd:integer .

_:z2 xsd:maxInclusive "19"AAxsd:integer .

Punning

* OWL 1 DL things can’t be both a class and
Instance

—E.g., :SnowlLeopard can’t be both a subclass
of :Feline and an instance of :EndangeredSpecies

* OWL 2 DL offers better support for meta-
modeling via punning
—A URI denoting an owl thing can have two distinct
views, e.g., as a class and as an instance
—The one intended is determined by its use

—A pun is often defined as a joke that exploits the fact
that a word has two different senses or meanings

Punning Restrictions

* Classes and object properties also can have the
same name

—For example, :mother can be both a property and a
class of people

* But classes and datatype properties can not
have the same name

* Also datatype properties and object properties
can not have the same name

Punning Example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
@ prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.

foaf:Person a owl:Class.
‘Woman a owl:Class.
:Parent a owl:Class.

:mother a owl:ObjectProperty;
rdfs:domain foaf:Person;
rdfs:range foaf:Person .

:mother a owl:Class;
owl:intersectionOf (:Woman :Parent).

validate via http://owl.cs.manchester.ac.uk/validator/

Annotations

* In OWL annotations comprise information that carries
no official meaning

* Some properties in OWL 1 are annotation properties,
e.g., owl:comment, rdf:label and rdf:seeAlso

* OWL 1 allowed RDF reification as a way to say things
about triples, again w/o official meaning

[a rdf:Statement;
rdf:subject :Barack _Obama;
rdf:predicate dbpo:born_in;
rdf:object :Kenya;
.certainty “0.01”].

Annotations

* OWL 2 has native support for annotations,
including

—Annotations on owl axioms (i.e., triples)
—Annotations on entities (e.g., a Class)
—Annotations on annotations

* The mechanism is again reification

Annotations

:Man rdfs:subClassOf :Person .
_:x rdf:type owl:Axiom;
owl:subject :Man;

owl:predicate rdfs:subClassOf;

owl:object :Person;
:probability “0.99"AMxsd:integer;
rdfs:label “Every manis a person.” .

Inverse object properties

* Some object property can be inverse of
another property

* For example, partOf and hasPart

* The ObjectinverseOf(:partOf) expression
represents the inverse property of :part of

* This makes writing ontologies easier by
avoiding the need to name an inverse

OWL Sub-languages

* OWL 1 had sub-languages: OWL FULL,
OWL DL and OWL Lite

* OWL FULL is undecidable
* OWL DL is worst case highly intractable

 Even OWL Lite turned out to be not very
tractable (EXPTIME-complete)

* OWL 2 introduced three sub-languages,
called profiles, designed for different use
cases

OWL 2 Profiles

OWL 2 defines three different tractable
profiles:
—EL: polynomial time reasoning for schema and data
* Useful for ontologies with large conceptual part

—QL: fast (logspace) query answering using RDBMs
via SQL

» Useful for large datasets already stored in RDBs

—RL: fast (polynomial) query answering using rule-
extended DBs

e Useful for large datasets stored as RDF triples

OWL Profiles

* Profiles considered

—Useful computational properties, e.g., reasoning
complexity

—Implementation possibilities, e.g., using RDBs

* There are three profiles
—OWL 2 EL
—OWL 2 QL
—OWL 2 RL

OWL 2 (Full)

OWL2EL

e A (near maximal) fragment of OWL 2 such that
—Satisfiability checking is in PTime (PTime-Complete)
—Data complexity of query answering is PTime-Complete

* Based on EL family of description logics
—Existential (someValuesFrom) + conjunction

* |t does not allow disjunction and universal
restrictions

e Saturation is an efficient reasoning technique

* |t can capture the expressive power used by many
large-scale ontologies, e.g., SNOMED CT

Basic Saturation-based Technique

Normalise ontology axioms to standard form:
ACB AnBCC ACdR.B dRBLCC

e Saturate using inference rules:
ACB BLC ACB ACC BNnCcCD

ACC ACD
ACdRB BCC dJRCCD
ACD
* Extension to Horn fragment requires (many)

more rules

Saturation is a general reasoning technique in which you first compute the deductive
closure of a given set of rules and add the results to the KB. Then run your prover.

Saturation-based Technique (basics)

Exam plEZ infer that a heart transplant is a kind of organ transplant

OrganTransplant = Transplant M dsite.Organ
HeartTransplant = Transplant M dsite.Heart
Heart C Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ

OrganTransplant C Transplant
OrganTransplant C dsite.Organ

Saturation-based Technique (basics)

Example:

OrganTransplant = Transplant M dsite.Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

Saturation-based Technique (basics)

Examble:

HeartTransplant = Transplant M dsite.Heart

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

Saturation-based Technique (basics)

Examble:

HeartTransplant = Transplant M dsite.Heart

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant C Transplant

HeartTransplant C dsite.Heart
Jsite.Heart C SH

Transplant M SH C HeartTransplant

Saturation-based Technique (basics)

Examble:

Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant C Transplant

HeartTransplant C dsite.Heart
Jsite.Heart C SH

Transplant M SH C HeartTransplant

Saturation-based Technique (basics)

Examble:

Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant C Transplant

HeartTransplant C dsite.Heart
Jsite.Heart C SH

Transplant M SH C HeartTransplant

Heart C Organ

Saturation-based Technique (basics)

Examnle:

ACJdR.B BCLC JRCCD
ACD

dsite.Organ C SO

HeartTransplant C dsite.Heart

Heart C Organ

Saturation-based Technique (basics)

Examnle:

ACJdR.B BCLC JRCCD
ACD

HeartTransplant C SO

dsite.Organ C SO

HeartTransplant C dsite.Heart

Heart C Organ

Saturation-based Technique (basics)

Examnle:

ACB ACC BnNnccbD
ACD

HeartTransplant C SO

Transplant M SO C OrganTransplant
HeartTransplant C Transplant

Saturation-based Technique (basics)

Example:

ACB ACC BnNnccbD
ACD

HeartTransplant C SO
HeartTransplant C OrganTransplant

Transplant M SO C OrganTransplant
HeartTransplant C Transplant

Saturation-based Technique

Performance with large bio-medical ontologies

GO NCI | Galen v.0 | Galen v.7 | SNOMED
Concepts: | 20465 | 27652 2748 23136 | 389472
FACT++ 15.24| 6.05| 465.35 — 650.37
HERMIT 199.52 | 169.47 45.72 — —
PELLET 72.02 | 26.47 — — —
CEL 1.84| 5.76 — — | 1185.70
CB 1.17| 3.57 0.32 9.58 49.44
Speed-Up: | 1.57X| 1.61X 143X o | 13.15X

Galen and Snomed are large ontologies of medical terms; both have OWL versions. NCl is

a vocabulary of cancer-related terms. GO is the gene ontology.

OWL2 QL

* The QL acronym reflects its relation to the
standard relational Query Language

* |t does not allow existential and universal
restrictions to a class expression or a data range

* These restrictions
— enable a tight integration with RDBMSs,

— reasoners can be implemented on top of standard
relational databases

e Can answer complex queries (in particular, unions
of conjunctive queries) over the instance level
(ABox) of the DL knowledge base

OWL 2 QL

We can exploit query rewriting based
reasoning technique
—Computationally optimal

—Data storage and query evaluation can be
delegated to standard RDBMS

—Can be extended to more expressive languages
(beyond ACP) by delegating query answering to
a Datalog engine

Query Rewriting Technique (basics)

* Given ontology O and query Q, use O to
rewrite Q as Q% such that, for any set of
ground facts A:

ans(Q, O, A) = ans(Q0, ;, A)

* Resolution based query rewriting

—Clausify ontology axioms

—Saturate (clausified) ontology and query using
resolution

—Prune redundant query clauses

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant = Doctor

Q(x) « treats(z, y) A Patient(y)

Q(x) is our query: Who treats people who are patients?

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(z)) <« Doctor(x)

Doctor(z) < Consultant(z)

Translate the DL expressions into rules.

Note the use of f(x) as a Skolem individual. If you are a doctor then you treat
someone and that someone is a patient

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)

For each rule in the rules version of the KB we want to enhance the query, so that
we need not use the rule in the KB.

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)
F(z)) «— Q(z) <« Doctor(x) A Patient(f(x))

Since Doctor(X) implies treats(x, f(x)) we can replace it, but we have to also unify
f(x) with y, so we edn up with the second way of satisfying our query Q(x).

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant = Doctor

Q(z) « treats(z, y) A Patient(y)
Patient(f(z)) « Doctor(x)

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor

Q(z) « treats(z, y) A Patient(y)
Patient(f(z)) « Doctor(x)
Q(z) « treats(z, f(x)) A Doctor(z)

Applying the KB second rule to the 1°t query rule gives us another way to solve the

Q(x)

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant = Doctor
treats(z, f(z)) « Doctor(z)

Q(z) « treats(z, f(x)) A Doctor(z)

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor
treats(z, f(z)) < Doctor(z)
Q(z) « treats(z, f(x)) A Doctor(z)

Q(z) « Doctor(z)

Since Doctor(x) imples treats(x, f(x)) we can derive Q(X) if Doctor(x) and Doctor(x),
which reduces to the third query rule.

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor

Doctor(z) < Consultant(z)
Q(z) « Doctor(z)

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant = Doctor

Doctor(z) < Consultant(z)
Q(z) « Doctor(z)
Q(z) < Consultant(z)

Query Rewriting Technique (basics)

* Example:

Doctor C dtreats.Patient

Consultant C Doctor

treats(z, f(z)) « Doctor(z)
Patient(f(z)) « Doctor(x)

Doctor(z) « Consultant(z)

Q(z) « treats(z, y) A Patient(y)
Q(z) <« Doctor(x) A Patient(f(x))
Q(z) « treats(z, f(x)) A Doctor(z)
Q(z) < Doctor(z)

Q(z)

«— Consultant(z)

Query Rewriting Technique (basics)

* Example:
Doctor C dtreats.Patient

Consultant C Doctor
treats(z, f(z)) « Doctor(z)

Patient(f(z)) « Doctor(x)

Doctor(z) « Consultant(z)

Remove useless redundant query rules

Q(z) « treats(z, y) A Patient(y)
Gtri—BoctortrrRotiont A
- —treais{ar A Doctor{s)-

Q(z) « Doctor(z)

Q(z) « Consultant(z)

Query Rewriting Technique (basics)

* Example:

Doctor C dtreats.Patient

Consultant = Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)

Patient(f(z)) « Doctor(x) ~Hr—DBeetorferAPRatient e —

Doctor(z) < Consultant(z) e e
Q(z) « Doctor(z)

Q(z) <« Consultant(z)

* For DL-Lite, result is a union of conjunctive
queries (UCQ)

Query Rewriting Technique (basics)

* Data can be stored/left in RDBMS

* Relationship between ontology and DB defined

Oy mappings, e.g.:

Doctor — SELECT Name FROM Doctor
Patient +— SELECT Name FROM Patient
treats +— SELECT DName, PName FROM Treats

 UCQ translated into SQL query:

SELECT Name FROM Doctor UNION
SELECT DName FROM Treats, Patient WHERE PName=Name

OWL 2 RL

* The RL acronym reflects its relation to Rule
Languages
* OWL 2 RL is designed to accommodate

—OWL 2 applications that can trade the full expressivity of
the language for efficiency

—RDF(S) applications that need some added expressivity
from OWL 2

* Not allowed: existential quantification to a class,
union and disjoint union to class expressions

* These restrictions allow OWL 2 RL to be
implemented using rule-based technologies such

as rule extended DBMSs, Jess, Prolog, etc.

Profiles

Profile selection depends on
—Expressiveness required by the application
—Priority given to reasoning on classes or data

—Size of the datasets

2.2 Properties

o OWL 2 Web Ontology Language individual value ~ ObjectHasValue(P a) _z g?wuolsw%:ﬂm
" Quick Reference Guide - — :maf;ttns\/alu;a.
5 local reflexivity bjectHasSelff] _x rdf:type owl:Restriction.
7 http://www.w3.0rg/2007/0OWL/refcard "X ianPobay .
_x owl:hasSelf "true"*xsd:boolean.
£ exact cardinality ObjectExactCardinality x rdf:type owl:Restriction.
1 Names, Prefixes, and Notation P) X oMonP bl
Names in OWL 2 are IRIs, often written in a shorthand prefix:local_name, qoisdesa ObjectExaCardealty J; ;’?m"vjrmmm
where prefix: is a prefix name that expands to an IR, and local_name is the cardinality nPC) “x owlonProperty P.
remainder of the name. The prefix names in OWL 2 are: "x owl:qualifiedCardinality n.
X owl:onClass C.
Prefix Name Expansion 0 sardinality :; rdf.t;:a :;sRasmM
rdf: http:ffwww.w3.0rg/1999/02/22-rdf-syntax-ns# cardinality (nP) _x owl:onProperty P.
: i _x owtminCardinality n.
Ld:; :g;j’ m‘:‘g‘;‘gl’ggg%;m;mm qualified ObjectMaxCardinaiity _:x rdftype owl:Restriction.
5 5 o maximum (nPC) _x owl:onProperty P,
xsd: hitp:/fwww w3.0rg(200 /XML Schemat! inality " owlminQualifiedCardinaiity n.
:x owl:onClass C.
__We use notation conventions in the following table": inis ObjectMinCardinality :; mm;:e :;smm
Letters Meaning Letters Meaning cardinality (nP) _x owlionProperty P,
(al... RDF Jist n non-negative integer*” _x owlimaxCardinality n.
an) qualified ObjectMinCardinality _x rdfitype owl:Restriction.
_a anenymous individual ON ontology name minimum (nPC) _x owl:onProperty P,
(a blank node label) ; cardinality _x owl:maxQualifiedCardinality n.
R blank node P object property expression _:x owl:onClass C.
a individual p prefix name
A annotation property PN object property name Data Property Restrictions
aN individual name R data .
c class expression s IRI or anonymous individual universal DataAllValuesFrom _x rdftype owl:Restriction.
cN class name t IRI, anonymous individual, or (RD) X owlonProperty R.
literal _x owl:allValuesFrom D.
D data range IRI D: rom _x rdf:type owl:Restriction.
DN datalype name v literal RD) ~xowt:onPropery R,
f facet _:x owl:someValuesFrom D.
" literal value DataHasValue _x rdfitype owl:Restriction.
All of the above can have subscripts.
“Asa for "n"Mysd: (Rv) _x owl:onProperty R.
N _x owlhasValue v.
2 OWL 2 constructs and axioms exact cardinality DataExactCardinality _x rdf:type owl:Restriction.
(nR) _x owl:onProperty R.
i _ _:x owl:cardinality n.
In the following tables, the three column‘s are: iiad ead DataExactCardinality T rdftype owlReskiction:
Language Feature F Syntax RDF Syntax (nRD) - owl:onProperty R.
For an OWL 2 DL ontology, there are additional global restrictions on axioms _x owl:qualifiedCardinality n.

_x owl:onDataRange D,

2.1 Class Expressions maximum DataMaxCardinality _xrdftype uwI:Resmcﬁon.
Predefined and Named Classes cardinalty (R ZxomnPropedy R,

_x owl'maxCardinality n.
named class CN CN qualified DataMaxCardinality _x rdf:type owl:Restriction.
universal class owl:Thing owl:Thing maximum (nRD) _x owl:enProperty R.
empty class owl:Nothing owl:Nothing cardinality = m:mqudlﬁed(:;vdinamy n

5 TS _x owl:onDataRange D,
Boolean C: and of minimum DataMinCardinality _x rdftype owl:Restriction.
Obi FonOf X rdflype owl:Class. cardinality (nR) _x owl:onProperty R.
(C1...Cn) _x owintersectionOf (C1...Cn).) —x owtminCardinality n.
union ObjectUnionOf _xrdf:type owl:Class. qualified DataMinCardinality :x rdftype owl:Restriction.
(C1 ... Cn) “x owllurionOf (C1 ... Cn). LA {tRD) —xowtonProperty R
complement ObjectComplementOf ixrdftype owl:Class. cardinality _x owl: mlnmnﬁﬂed(:udmallty n.
© _:x owl:complementOf €. X o onData
enumeration ObjectOneOf(at ... an _i gd'fdlzzz (‘;r(':gaf.sé - Restrictions Using n-ary Datd Range
In the following table 'Dn'is an n-ary data range.
Object Property Restrictions n-ary universal DataAllValuesFrom _xrdftype owl:Restriction.
universal ObjectAllValuesFrom i rdflype owl:Restricton. {R1...RnDn) xowkonpraperties (R ...Rn),
(PC) X owl:onProperty P. _:x owt:allValuesFrom Dn.
" x owliallValuesFrom C n-ary DataSomeValuesFrom _:x rdf:type owl:Restriction.
ol /alue “x rdfitype owl:Restriction. existential (R1...RnDn) _'x owl:onProperties (R1 ... Rn).
From(P C) _x owl:onProperty P. :x owl:someValuesFrom Dn.

x owl:someValuesFrom C

(P1P2)

Object Property Expressions
named object PN PN
property
universal object owl:topObjectProperty owl:topObjectProperty
property —
emply object property : roperty owl: roperty
inverse propes Obj ectlnvavseo PN) X oW mverseOf PN
Data Property Expressions
named data property R R
universal data property owl:topDataProperty owi:topDataProperty
_emply data property owtbottomDataProperty _ owkbottomDataProperty
2.3 Individuals & Literals
named individual aN aN
anonymous individual _a g
literal (datatype value) "abc”MDN "abc”MDN
2.4 Data Ranges
Data Range Expressions
named datatype DN
data range DataComplementOf _x rdf:type rdfs:Datatype.
complement (D) _x owl:datatypeComplementOf D.
data range DatalntersectionOf _x rdf:type rdfs:Datatype.
intersection D1...Dn) _x owkintersectionOf (D1...Dn).
data range union DataUnionOf _x rdf:type rdfs:Datatype.
(D1...Dn) _'x owt:unionOf (D1...Dn).
literal DataOneOf _:xrdftype rdfs:Datatype.
enumeration (v1...vn) _'xowloneOf (v1...vn).
datatype DatatypeRestriction _xrdf:type rdfs:Datatype.
restriction (DN f1v1... fnvn) _:x ow:onDatatype DN.
x owh:withRestrictions (:x1 ... _:xn).
Kfivi =10
2.5 Axioms
Class Expression Axioms
subclass StbelassOf(m C2) C1 rdfs:subClassOf C2.
i classes lasses Cj owl:equi fass Cj+1.
(C1...Cn) =11
disjoint classes DisjointClasses(C1C2) C1 owldisjointWith C2.
painvise disjoint DisjointClasses _x rdf:type owl:AllDisjointClasses.
classes (C1...Cn) _ix ow:tmembers (C1...Cn).
disjoint union DisjointUnionOf CN owl:disjointUnionOf (C1 ...
{CNC1...Cn} Cn).
Object Property Axioms
subproperty SubObjectPropertyOf P1 rdfs:subPropertyOf P2.
(P1P2)
property chain SubCbjectPropertyOf P owl:propertyChainAxiom
inclusion (ObjectPropertyChain (P1...Pn).
(P1...Pn)P)
property domain ObjectPropertyDomain P rdfs:domain C.
(PC)
property range ObjectPropertyRange(P C) P rdfs:range C.
roperties P} owlequivalentProperty Pj#1.
properties (P1...Pn =lon
disjoint properties DisjointObjectProperties P1 owt:propertyDisjointWith P2.
(P1P2)
painvise disjoint DisjointObjectProperties _x rdftype
properties (P1...Pn} owl:AllDisjointProperties.
_x owl:members { P1...Pn).
inverse properties InverseObjectProperties P1 owkinverseOf P2.

Part

10

1

12

13

Type
For Users

Core
Specification

Core
Specification

Core
Specification

Core
Specification

Core
Specification

Specification

For Users
For Users
For Users
Specification

Specification

Specification

Key OWL 2 Documents

Document

Document Overview. A quick overview of the OWL 2 specification that includes a description of its relationship to OWL 1. This
it the starting point and primary reference point for OWL 2.

Structural Specification and Functional-Style Syntax defines the constructs of OWL 2 ontologies in terms of both their structure
and a functional-style syntax, and defines OWL 2 DL ontologies in terms of global restrictions on OWL 2 ontologies.

Mapping to RDF Graphs defines a mapping of the OWL 2 constructs into RDF graphs, and thus defines the primary means of
exchanging OWL 2 ontologies in the Semantic Web.

Direct Semantics defines the meaning of OWL 2 ontologies in terms of a model-theoretic semantics.

RDF-Based Semantics defines the meaning of OWL 2 ontologies via an extension of the RDF Semantics.

Conformance provides requirements for OWL 2 tools and a set of test cases to help determine conformance.

Profiles defines three sub-languages of OWL 2 that offer important advantages in particular applications scenarios.
OWL 2 Primer provides an approachable introduction to OWL 2, including orientation for those coming from other disciplines.

OWL 2 New Features and Rationale provides an overview of the main new features of OWL 2 and motivates their inclusion in
the language.

OWL 2 Quick Reference Guide provides a brief guide to the constructs of OWL 2, noting the changes from OWL 1.

XML Serialization defines an XML syntax for exchanging OWL 2 ontologies, suitable for use with XML tools like schema-based
editors and XQuery/XPath.

Manchester Syntax (WG Note) defines an easy-to-read, but less formal, syntax for OWL 2 that is used in some OWL 2 user
interface tools and is also used in the Primer.

Data Range Extension: Linear Equations (WG Note) specifies an optional extension to OWL 2 which supports advanced
constraints on the values of properties.

http://w3.org/TR/2009/WD-owl2-overview-20090421/

Conclusion

* Most of the new features of OWL 2 in
comparing with the initial version of OWL have
been discussed

e Rationale behind the inclusion of the new
features have also been discussed

* Three profiles — EL, QL and RL — are provided
that fit different use cases and implementation
strategies

