
Chapter	2
RDF	Syntax	2	



Topics
• Basic	concepts	of	RDF

• Resources,	properties,	values,	statements,	triples
• URIs	and	URIrefs
• RDF	graphs
• Literals,	qnames

• Vocabularies	and	modeling
• Vocabularies
• Blank	nodes,	data	modeling,	types,	reification
• Lists,	bags,	collections

• Serialization	of	RDF	graphs
• XML,	Turtle,	Ntriples

• Critique	of	RDF



Types



RDF	type

lRDF	has	a	type	predicate	that	links	a	resource	to	
another	that	denotes	its	type
– ex:john rdf:type foaf:Person .
– <http://example.org/john >	
<http://www.w3.org/1999/02/22-rdf-syntax-
ns#type>	
<http://xmlns.com/foaf/0.1/Person>	.

lRDFS	adds	sub-type	concept	& constraints	
between	predicates	&	types	of	their	arguments

lOWL	adds	still	more	concepts	operating	on	types



Data	Modeling



Structured	Values	in	RDF

lGiven	the	triple	like:	
ex:857 exstaff:address	"15	Grant	Ave, Bedford,	MA
01730".	

lHow	can	we	best	represent	separate	informa-
tion for	the	street,	city,	state	and	zip	code?

lTwo	possibilities:
– Use	four	predicates	(e.g.,	exstaff:street_address,	…)	to	
associate	values	with	exstaff:857

– Create	an	address	resource	to	attach	the	four	
predicates	to	and	link	that	to	exstaff:address with	the	
ex:address predicate



Structured	Values	in	RDF



Structured	Values	in	RDF

Or	in	triples	notation:

exstaff:85740	exterms:address	exaddressid:85740	.	
exaddressid:85740	exterms:street	"1501	Grant	Ave"	.	
exaddressid:85740	exterms:city	"Bedford"	.	
exaddressid:85740	exterms:state	"MD"	.	
exaddressid:85740	exterms:postalCode	"01730"	.	



Structured	Values	in	RDF

lThis	approach involves addingmany “inter-
mediate” URIrefs (e.g.,	exaddressid:85740)	for	
aggregate	concepts	like John's	address

lSuch	concepts	may	never	need	to	be	referred	
to	directly	from	outside	a	particular	graph,	and	
hence	may	not	require	“universal” identifiers

lRDF	allows	us	to	use blank	nodes	and blank	
node	identifiers	to	deal	with	this	issue
– Node	IDs	in	the	_	namespace	are	bnodes,	e.g.	_:



Knowledge	Technologies																																																													
Manolis	Koubarakis

10

Blank	Node,	aka	bnode



Blank	Nodes	Using	Triples

exstaff:85740	exterms:address	??	.	
??	exterms:postalCode	"01730"	.	
Exstaff:72120	exterms:address	???	.	
???	exterms:postalCode	"01702"	.	

lWe	want	to	ensure	that	the	bnodes for	85740’s	
and	72120’s	addresses	are	distinct

lThe	graphical	notation	does	this	by	using	two	
different	objects	for	the	bnodes

lRDF	allows	us	to	assign	an	special	ID	to	a	bnode
while	still	maintaining	its	blank	node	nature



Blank	Node	Identifiers
exstaff:85740	exterms:address	_:johnaddress	.	
_:johnaddress	exterms:street	"1501	Grant	Avenue"	.	
_:johnaddress	exterms:postalCode	"01730"	.	

lDistinct	bnode	must	have different bnode ids
lBnode	ids have	significance	only	in a	single	
graph
– dbpedia:Alan_Turing refers	to	the	same	thing	in	every	graph,	
but	a	bnode _:1	in	two	different	graphs	may	not

–Merging	two	graphs	requires	us	to	rename	their	bnode ids	to	
avoid	accidental	conflation	(e.g.,	_:1	=>	_:100)

lBnode	ids may	only	appear	as	subjects	or	
objects and not	as	predicates in	triples	



Semantics	of	Blank	Nodes

l In	terms	of	first-order	logic,	blank	nodes	
correspond	to	existentially	quantified	variables

l Another	example:	“John’s	mother	is	50”
l FOL:		∃x	mother(john,	x)	∧ age(x,	50)
l RDF:		:john	:mother	_32	.		:_32	:age	“50”	.

:john “50”
:mother :age



Blank	nodes	are	good	for

lRepresenting	n-ary relationships in	RDF
e.g.,	the	relationship	between	John Smith and	
the	street,	city,	state,	and	postal	code	
components	of	his	address

lTo make	statements	about	resources	that
don’t have	URIs	but	are	described	by	
relationships	with	other	resources	that	do
e.g.,	John’s	mother



Example

lTo	make statements	about Jane	Smith we	
could		use	her	email	address	URI	
(mailto:jane@example.org)	to	denote	her

lWell,	if	we	do	so,	how	are	we	going	to	record	
information	both	about	Jane's	mailbox (e.g.,	
the	server	it	is	on)	as	well	as	about	Jane	herself
(e.g.,	her	current	physical	address)? Similarly,	if	
we	use	her	Web	page	URI	etc.



Bnode	Example

When	Jane	herself	does	not	have	a	URI,	a	blank	
node	provides	a	better	way	of	modeling	this	
situation	

_:jane	exterms:mailbox	<mailto:jane@example.org>	.
_:jane	rdf:type	exterms:Person	.	
_:jane	exterms:name	"Jane	Smith"	.	
_:jane	exterms:empID	"23748"	.	
_:jane	exterms:age	"26"	.	



Another	use	case:	Measurements

lWhat	does	this	mean?
dbr:Nile dbp:length "6853"^^xsd:integer

lWe	can	click	on	dbp:length to	see	its	definition



Another	use	case:	Measurements

lWhat	does	this	mean?
dbr:Nile dbp:length "6853"^^xsd:integer

lWe	can	click	on	dbp:length to	see	its	definition
dbp:length rdf:type rdf:Property .
dbp:length rdfs:label "Length"@en .

lUnfortunately,	the	definition	doesn’t	specify	
the	unit	of	measurement.	L



Another	use	case:	Measurements

lWhat	does	this	mean?
dbr:Nile dbp:length "6853"^^xsd:integer

lMeasurements	typically	have	a	numeric	value
and	a	unit
– Weight:	2.4	pounds	vs.	2.4	kilograms
– Length:	5	miles	vs.	5	kilometers
– Price:	29.00	in	US	Dollars	vs.	21.16	Euro
– Time:	30	years	vs.	3	milliseconds

lWe	can	use	a	bnode to	represent	a	
measurement	as	a	pair	with	a	value and	unit



Measurements

lWhat	does	this	mean?
dbr:Nile dbp:length _:1	.
_:1	rdf:type ex:Measure .
_:1	rdf:value ”6853"^^xsd:integer .
_:1		un:units dbr:Kilometre .

lThe	RDF	namespace	has	a	value property	but	
assigns	no	specific	meaning	to	it

Nile

dbr:Kilometre 6853

un:unit

rdf:type

ex:Measure
dbp:length

rdf:value



Serialization



RDF	Serialization
• Abstract	model	for	RDF	is	a	graph
• Serialize	as	text	for	exchange,	storage,	viewing	
and	editing	in	text	editors

• The	big	three
• XML/RDF	– the	original
• Ntriples	– simple,	but	verbose;	good	for	processing
• Turtle	– compact,	easy	for	people	to	read	and	write

• Special	formats
• Trig	– a	format	for	named	graphs
• RDFa	– embed	RDF	in	HTML	attributes
• JSON-LD	– RDF	statements	as	a	JSON	object



XML	encoding	for	RDF

<rdf:RDF	xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib="http://daml.umbc.edu/ontologies/bib/">

<rdf:Description	about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent	Information	Systems	on	the	Web	</dc:Title>
<dc:creator>
<rdf:Description	>
<bib:name>Tim	Finin</bib:Name>
<bib:email>finin@umbc.edu</bib:Email>
<bib:aff	resource="http://umbc.edu/"	/>
</rdf:Description>	
</dc:creator>
</rdfdescription>
</rdf:RDF>

RDF/XML	is	a	W3C
Standard	widely	used	for	
storage	and	exchange

Being	supplanted	by	other	
forms

Complex	and	confusing	so	we	
won’t	spend	time	on	it



Ntriples

lGood	for	ingesting	into	a	program	or	store
lSequence	of	triples	each	terminated	with	a	“.”
lURIs	encased	in	angle	brackets;	no	QNames;	
literals	in	double	quotes

lTrivial	to	parse/generate;	common	download	
format	for	RDF	datasets	(e.g.,	DBpedia)

lUses	lots	of	characters	due	to	repeated	URLs,	but	
compresses	well

<http://example.org/Turing><http://www.w3.org/1999/02/22-rdf-syntax-ns#type>	<http://xmlns.com/foaf/0.1/Person>	.
<http://example.org/Turing>	<http://xmlns.com/foaf/0.1/name>	"Alan	Turing"	.
<http://www.w3.org/2001/sw/RDFCore/ntriples/>	<http://xmlns.com/foaf/0.1/mbox>	<mailto:alan@turing.org>	.

W3C	Specification



Turtle

lNtriples⊂ Turtle⊂ N3
lCompact,	easy	to	read	and	write	and	parse
lQnames,	[	]	notation	for	blank	nodes,	;	and	,
@prefix	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>	.
@prefix	dc:	<http://purl.org/dc/elements/1.1/>	.
@prefix	foaf:	<http://xmlns.com/foaf/0.1/>	.

<http://www.w3.org/TR/rdf-syntax-grammar>
dc:title	"RDF/XML	Syntax	Specification	(Revised)"	;
dc:creator	[	foaf:name	"Dave	Beckett";

foaf:mbox	<mailto:dave@beckett.org>	,		
<mailto:dbeck@gmail.com>

]	.	



Some	details

l@PREFIX	lines	define	namespace	abbreviations
lBasic	pattern	is

Subj pred1	value1;
pred2	value2;
pred3	value3,	value4	.

lSpecial	notation	for	the	rdf:type predicate
:john	a	foaf:Person;	foaf:name "John	Smith"	.

lSpecial	notation	for	anonymous	bnodes
:john	foaf:knows	[	a	foaf:Person;	foaf:nick "Bob"	].



Notation3	or	N3

l N3	was	an	early	turtle-like	notation	developed	by	
Tim_Berners Lee	himself

l Included	support	for	inference	rules
– See	CWM for	software

l Never	became	a	recommended	W3C	standard
– Some	of	its	features	were	problematic	for	OWL
– Supplanted	by	Turtle



Try…

lRDF	examples:	http://bit.ly/691rdf
lSimple.ttl
#	A	simple	Turtle	example	

@prefix	foaf:	<http://xmlns.com/foaf/0.1/>	.
@prefix	:	<#>	.

:john	a	foaf:Person;
foaf:gender "Male";
foaf:name "John	Smith",	"Johnny	Smith";
foaf:knows	:mary,

[a	foaf:Person;
foaf:mbox <mailto:mary.smith@gmail.com>]	.

:mary a	foaf:Person;	
foaf:name "Mary	Smith"	.



Notation	translation

lMost	modern	Semantic	Web	software	can	read	
and	write	input	in	the	three	major	serialization	
notations
– E.g.,	Protégé,	Jena,	Sesame,	…

lThere	are	also	simple	programs	that	can	
convert	between	them

l rdf2rdf is	a	good	example
– Written	in	Java



Reification



Reification

l Sometimes	we	wish	to	make	statements	
about	other	statements
E.g.,	to	record	provenance	data,	probability,	or	to	assert	
:john	:believes	{	:mary :loves	:john	}

l We	must	be	able	to	refer	to	a	statement	
using	an	identifier

l RDF	allows	such	reference	through	a	
reification	mechanism	which	turns	a	
statement	into	a	resource	



Reify

lEtymology:	Latin	res thing
lDate:	1854
lTo	regard	(something	abstract)	as	a	material	or	
concrete	thing



Wikipedia:	reification	(computer	science)

Reification	is	the	act	of	making	an	abstract	con-
cept or	low-level	implementation	detail	of	a	pro-
gramming language	accessible	to	the	program-
mer,	often	as	a	first-class	object.	For	example,
– The	C	programming	language	reifies	the	low-level	detail	
of	memory	addresses.

– The	Scheme	programming	language	reifies	continua-
tions (approximately,	the	call	stack).

– In	C#,	reification	is	used	to	make	parametric	polymor-
phism implemented	as	generics	a	first-class	feature	of	
the	language.

– …



Reification	Example

:949352	uni:name “Grigoris Antoniou”	.

reifies	as

[a	rdf:Statement;
rdf:subject:	:949352
rdf:predicate uni:name;
rdf:object “Grigoris Antoniou”	]	.



Reification	Example

<rdf:Description	rdf:about="#949352”>
<uni:name>Grigoris	Antoniou</uni:name>
</rdf:Description>

reifies	as
<rdf:Statement	rdf:ID="StatementAbout949352">
<rdf:subject	rdf:resource="#949352"/>
<rdf:predicate	rdf:resource="http://example.org/uni-

ns#name"/>
<rdf:object>Grigoris	Antoniou</rdf:object>
</rdf:Statement>



Another	reification	example

“Alice	suspects	that	Bob	loves	Carol”
@prefix	ep:	<http://example.com/epistimology>
@prefix	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix	xsd:	http://www.w3.org/2001/XMLSchema
:bob	:loves	:carol	.
[:alice	ep:believes
[a	rdf:Statement;
rdf:subject	:bob;
rdf:predicate	:loves;
rdf:object	:carol;
ex:certainty	“0.50”^^xsd:integer]



Reification

l rdf:subject,	rdf:predicate	&	rdf:object	allow	
us	to	access	the	parts	of	a	statement

l The ID	of	the	statement	can	be	used	to	refer	
to	it,	as	can	be	done	for	any	description

l We	write	an rdf:Description	if	we	don’t	want	
to	talk	about	a	statement	further

l We	write	an rdf:Statement	if	we	wish	to	
refer	to	a	statement



Containers



Container	Elements

l RDF	has	some	vocabulary	to	describe	collections	of	
things	and	make	statements	about	them

l E.g.,	we	may	wish	to	talk	about	the	courses	given	by	a	
particular	lecturer	

l The	content	of	container	elements	are	named	rdf:_1,	
rdf:_2,	etc.	
– Alternatively	rdf:li

l Containers	seem	a	bit	messy	in	RDF,	but	are	needed
l :john	:teaches	[a	rdf:Bag;	rdf:li	:cmsc201,	:cmsc202,	
cmsc345	.]	.



Three	Types	of	Container	Elements

l rdf:Bag an	unordered	container,	allowing	
multiple	occurrences	
e.g.,	members	of	the	faculty,	documents	in	a	folder

l rdf:Seq an	ordered	container,	which	may	
contain	multiple	occurrences
e.g.,	modules	of	a	course,	items	on	an	agenda,	
alphabetized	list	of	staff	members

l rdf:Alt a	set	of	alternatives
e.g., the	document	home site and	its	mirrors,	
translations	of	a	document	in	various	languages	



Example	for	a	Bag
Let’s	describe	a	course	with	a	collection	of	students



Example	for	a	Bag

@prefix	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix	s:			<http://example.org/students/vocab#>.
<http://example.org/courses/6.001>
s:students	[
a	rdf:Bag;
rdf:_1	<http://example.org/students/Amy>;
rdf:_2	<http://example.org/students/Mohamed>;
rdf:_3	<http://example.org/students/Johann>;
rdf:_4	<http://example.org/students/Maria>;
rdf:_5	<http://example.org/students/Phuong>.

].



Example	for	Alternative

<uni:course	rdf:ID="CIT1111"
uni:courseName="Discrete	Mathematics">

<uni:lecturer>
<rdf:Alt>

<rdf:li	rdf:resource="#949352"/>
<rdf:li	rdf:resource="#949318"/>

</rdf:Alt>
</uni:lecturer>

</uni:course>



Rdf:ID	Attribute	for	Container	Elements

<uni:lecturer	rdf:ID="949318"
uni:name="David	Billington">

<uni:coursesTaught>
<rdf:Bag	rdf:ID="DBcourses">

<rdf:_1	rdf:resource="#CIT1111"/>
<rdf:_2	rdf:resource="#CIT3112"/>

</rdf:Bag>
</uni:coursesTaught>

</uni:lecturer>



Bags	and	Seqs	are	never	full!
lRDF’s	semantics	is	“open	world”,	so…

–Not	possible	”to	close”	the	container,	to	say:	
“these	are	all elements,	there	are	no	more”

–RDF	is	a	graph,	with	no	way	to	exclude	the	
possibility	that	there	is	another	graph	
somewhere	describing	additional	members

l Lists	are	collections	with	only	the	specified	
members	mentioned.

lDescribed	using	a	linked	list	pattern	via:
–rdf:List,	rdf:first,	rdf:rest,	rdf:nil



Open	vs.	closed	world	semantics
lReasoning	systems	make	a	distinction	between	
open and	closed world	semantics
– OWS:	being	unable	to	prove	that	something	is	true	or	
false	says	nothing	about	its	veracity

– CWS:	what	cannot	be	proven	to	be	true	is	false
lDefault	model	for		Semantic	Web	is	OWS

This	was	a	design	decision	made	early	on



Open	vs.	closed	world	semantics
lClassical	logic	uses	Open	World	Semantics

Being	unable	to	prove	P=NP	doesn’t	convince	us	that	it’s	false

lDatabase	systems	typically	assume	CWS
The	DB	includes	all	trains	between	NYC	and	DC

lProlog’s	unprovable operator	(not	or	\+)	supports	CWS
flys(x)	:- bird(x),	\+	flightless(x).
flightless(x)	:- penguin(x);	ostrich(x);	emu(x).

lSome	systems	let	us	specify	for	which	predicates	we	
have	complete	knowledge	and	for	which	we	don’t
– If	UMBC’s	DB	doesn’t	list	you	as	registered	for	CMSC691,	you	
are	not	registered

– UMBC’s	DB	system	knows	some	of	your	minors	but	not	all



RDF	Lists
An	ordered	list	of	the	three	students	in	a	class



RDF	Lists

@prefix	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix	s:			<http://example.org/students/vocab#>.

<http://example.org/courses/6.001>
s:students
[a	rdf:List;
rdf:first	<http://example.org/students/Amy>;
rdf:rest	[a	rdf:list

rdf:first	<http://example.org/students/Mohamed>;
rdf:rest	[a	rdf:List;

rdf:first	<http://example.org/students/Johann>;
rdf:rest	rdf:nil	]	]	]	.



RDF	Lists

Turtle	has	special	syntax	to	represent	lists:

@prefix	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix	s:			<http://example.org/students/vocab#>.

<http://example.org/courses/6.001>
s:students (
<http://example.org/students/Amy>
<http://example.org/students/Mohamed>
<http://example.org/students/Johann>

).



Critique	of	RDF



RDF	Critique:	Properties

lProperties	are	special	kinds	of	resources	
– Properties	can	be	used	as	the	object	in	an	object-
attribute-value	triple	(statement)

– Defined	independent of	resources

lThis	possibility	offers	flexibility

lBut	it	is	unusual	for	modelling	languages	
and	OO	programming	languages

lIt	can	be	confusing	for	modellers



RDF	Critique:	Binary	Predicates

lRDF	uses	only	binary	properties
– This	is	a	restriction	because	often	we	use	predicates	
with	more	than	two	arguments

– But binary	predicates	can	simulate	these
lExample:	referee(X,	Y,	Z)
– X is	the	referee	in	a	chess	game	between	players	Y
and	Z



RDF	Critique:	Binary	Predicates

lWe	introduce:
– a	new	auxiliary	resource	chessGame
– the	binary	predicates	ref,	player1,	and	player2

lWe	can	represent	referee(X,Y,Z) as:



RDF	Critique:	Reification

lThe	reification	mechanism	is	quite	powerful	
l It	appears	misplaced	in	a	simple	language	like	
RDF

lMaking	statements	about	statements	
introduces	a	level	of	complexity	that	is	not	
necessary	for	a	basic	layer	of	the	Semantic	Web

l Instead,	it	would	have	appeared	more	natural	
to	include	it	in	more	powerful	layers,	which	
provide	richer	representational	capabilities



RDF	Critique:	Graph	Representation

lThe	simple	graph	or	network	representation	
has	more	drawbacks

l Linear	languages	introduce	ways	to	represent	
this	with	parentheses	or	a	way	to	represent	a	
block	structure

lScoping,	for	example,	is	clumsy	at	best	in	RDF
believe(john,	and	(love(bob,	carol),	love(carol,	bob))

lSome	of	these	are	addressed	through	the	
notion	of	a	named	graph	in	RDF



RDF	graph	model	is	simple

l RDF’s	graph	model	is	a	simple	one
l Neo4J is	a	popular	graph	database	where	both	nodes	
and	links	can	have	properties



RDF	Critique:	Summary

lRDF	has	its	idiosyncrasies	and	is	not	an	
optimal	modeling	language	but

l It	is	already	a	de	facto	standard	
l It	has	sufficient	expressive	power	
– Reasonable	foundation	on	which	to	build

lUsing	RDF	offers	the	benefit	that	information	
maps	unambiguously	to	a	model	



Conclusion



Topics
• Basic	concepts	of	RDF

• Resources,	properties,	values,	statements,	triples
• URIs	and	URIrefs
• RDF	graphs
• Literals,	qnames

• Vocabularies	and	modeling
• Vocabularies
• Blank	nodes,	data	modeling,	types,	reification
• Lists,	bags,	collections

• Serialization	of	RDF	graphs
• XML,	Turtle,	Ntriples

• Critique	of	RDF


