Chapter 2 RDF Syntax 1

RDF Overview

- RDF data model
- RDF syntax?
- RDF serializations: XML, Turtle, N3, ntriples
- RDF Schema (RDFS)
- Semantics of RDF and RDFS
 - Axiomatic Semantics
 - Operational semantics based on rules
- Querying RDF via SPARQL

Introduction

- Problem: What does an XML document mean?
 - XML is about data structures
 - The meaning (semantics) not apparent to machines
- RDF is more a data model than a language
 - It is realized in many different formats
- RDF defines very basic semantics
 - RDFS and OWL define more RDF vocabulary for building rich data models
- RDF remains domain independent

Example 1

```
<academicStaffMember> Grigoris Antoniou </academicStaffMember> <professor> Michael Maher </professor> <course name="Discrete Mathematics"> <isTaughtBy> David Billington </isTaughtBy> </course>
```

- What does this mean?
 - Are professors also academic staff members?
 - If someone teaches a course, are they an academic staff member?
- Can't say in XML, but can say so in RDFS

Example 2

- Embedding of elements is just a syntactic constraint
- No meaning is defined
- Meaning is in documentation or viewer's minds
- Does the machine have a mind?

Key RDF documents: standards

http://w3.org/standards/techs/rdf

Topics

- Basic concepts of RDF
 - Resources, properties, values, statements, triples
 - URIs and URIrefs
 - RDF graphs
 - Literals, gnames
- Vocabularies and modeling
 - Vocabularies
 - Blank nodes, data modeling, types, reification
 - Lists, bags, collections
- Serialization of RDF graphs
 - XML, Turtle, Ntriples
- Critique of RDF

What is RDF?

 A data model for representing information (esp. metadata) about resources in the Web

 Can represent information about things that can be identified on the Web, even when not retrievable (e.g., a book)

 Usecases: provide data for applications rather than directly to people

RDF Basics

- Core idea: identify resources using Web
 identifiers and describing resources in terms of
 simple properties and property values
- RDF data model is as a "pure" graph model
- To identify resources, RDF uses Uniform
 Resource Identifiers (URIs) and URI references
 (URIrefs).
- Definition: A resource is anything that is identifiable by a URIref

Example

Consider the following information:

```
"there is a Person identified by

http://www.w3.org/People/EM/contact#me,
whose name is Eric Miller, whose email
address is em@w3.org, and whose title is

Dr."
```

Example (cont'd)

Basics

Resources being described have properties that have values, and resources are described by making statements specifing those properties and values

- The part that identifies the thing the statement is about is the subject
- The part that identifies the property of the subject the statement specifies is the predicate
- The part that identifies the property's value is the object

Example

http://www.example.org/index.html has a creator whose value is "John Smith"

- The subject is the URL http://www.example.org/index.html
- The predicate is the word "creator"
- The object is the phrase "John Smith"

RDF Triples

- RDF statements can be written as triples
- Simple <u>ntriples</u> notation has a set of triples terminated by a periods, where URI's are inside angle brackets

```
<a href="http://www.example.org/index.html">
<a href="http://www.example.org/index.html">
<a href="http://www.example.org/staffid/85740">http://www.example.org/staffid/85740</a>
<a href="http://www.example.org/index.html">http://www.example.org/index.html</a>
<a href="http://www.example.org/index.html">http://www.example.org/index.html</a>
<a href="http://www.example.org/index.html">http://www.example.org/index.html</a>
<a href="http://purl.org/dc/elements/1.1/language">http://purl.org/dc/elements/1.1/language</a>
"en" .
```

Graphs: pure and impure

Pure graph model

 A pure graph model consists only of edges between pairs of nodes

Can be directed or undirected; can be labeled or not

 A graph can be represented as an unordered collection of (subject, predicate, object) triples
 If directed, predicate goes from subject to object

 Nodes not the subject or object of a triple are not even allowed

john

hates

mary

likes

bill

(John, likes, Mary), (Mary, likes, Bill), (John, hates, Bill)

RDF graph model

- RDF is like this with a few caveats
 - Subjects and predicates are identified by a URI
 - Object can also be a URI but can also be a literals, i.e., a string or a number
- RDF defines some special URIs and gives them specific meaning

hates

bill

- http://www.w3.org/1999/02/22-rdf-syntax-ns#type
- RDF has simple conventions for representing both ordered and unordered sequences and a few other data structures

Property graphs

- Graph databases have become popular in the past ten years
- A common extension of the pure graph model is to allow nodes and edges to have properties
- A simple version: properties are key/value pairs, e.g.
 - Age : 25
 - Date: 1990-09-21"
- We might give the spouse edge from John to Mary two properties: start with value "1999-09-1" and end with value "2016-01-11"

URIs and URIREFs

Uniform Resource Identifiers (URIs)

- URIs identify resources on the Web
- Unlike URLs, they aren't limited to identifying things with network locations
- No organization controls who makes URIs or how they can be used
 - Some URI schemes (http: URL's) depend on centralized systems such as DNS
 - Others are completely decentralized

URI Reference (URIref)

 A URIref is a URI with an optional fragment identifier at the end, e.g:

http://example.org/index.html#section2

- Fragment usecase:
 - HTML fragments refer to a place in a page
 - RDF fragments refer to resources in a RDF graph that the URI denotes, e.g., subjects, predicates or objects
 - http://www.w3.org/2004/02/skos/core : vocabulary for describing topics
 - http://www.w3.org/2004/02/skos/core#broader : the broader concept in SKOS Core vocabulary
- Like URLs, URIrefs may be either absolute or relative
 - Note: the empty URI refers to the resource it's in

URIrefs in RDF (cont'd)

- RDF and Browsers use URIrefs to identify things, but interpret URIrefs slightly differently:
 - Browsers also use URIrefs to retrieve things
 - RDF uses URIrefs only to identify things and these might not even be retrievable
- Linked Data best practice is to use HTTP URIs that return RDF data for every URI

Content Negotiation

• What does HTTP stand for?

Content Negotiation

- •What does HTTP stand for?
- HTTP == <u>Hypertext Transfer Protocol</u>
- Lets Web client (browser, program) and server (apache) do many things (e.g., authentication)
- E.g.: specify format of data returned, e.g., as RDF data in one of several formats or as HTML
- Consider
 - http://dbpedia.org/page/Alan_Turing
 - curl <u>-LI http://dbpedia.org/page/Alan_Turing</u>
 - curl –LH "Accept:application/rdf+xml" http://dbpedia.org/page/Alan_Turing

RDF Graphs

RDF Graphs

- RDF models statements by nodes and arcs in a graph
- A statement is represented by a node for the subject, a node for the object and an arc for the predicate (subject => object)
- A node may be identified by a URIref or it can be a literal or a blank node
- An arc is identified by a URIref
- Note: We will draw RDF graphs as directed graphs
 - But an arc can be the subject of an RDF statement
 - :has_parent owl:inverseOf :has_child

Example

- Consider the following statements:
 - http://www.example.org/index.html has a creation-date whose value is August 16, 1999.
 - http://www.example.org/index.html has a language whose value is English.

The RDF Graph of the Example

- Note: http://purl.org/dc/elements/1.1 is prefix for the Dublin Core vocabulary/ontology
- http://www.example.org/... is uses for examples

RDF and Related Data Models

- In terms of the relational model, an RDF statement is like a tuple in a relation Graph with columns Subject, Predicate, Object
- For first-order logic, an RDF statement is like an atomic formula triple(subj, pred, obj) where triple is a FOL predicate and subj, pred and obj are constants
 - Alternativedly in logic: pred(subj, obj)

Literals and QNames

Literals

What is 27? Number or string?

Plain and Typed Literals

- RDF has two kinds of literals: plain and typed
- Plain literals have a lexical form (their lexical value) and optionally a language tag, e.g:
 - "27", "Hello world"@en, "Bonjour le monde"@fr
- RDF typed literals are formed by pairing a string with a URIref for a particular XMLS datatype, e.g.:
 - "27"^^http://www.w3.org/2001/XMLSchema#integer
 - "27"^^xsd:int

Data Types for Literals

- In practice, the most widely used data typing scheme is the one by XML Schema
 - But any externally defined data typing scheme is allowed in RDF documents
- XML Schema predefines many data types
 - E.g. Booleans, integers, floating-point numbers, times, dates, etc.

XMLSchema Datatypes

http://www.w3.org/TR/xmlschema-2/

Qnames for URIrefs

- The ntriples notation results in very long lines
- We can use an XML qualified name (QName)
 w/o brackets for a full URI reference
 - http://dbpedia.org/page/Alan_Turing
 - dbp:Alan_Turing
- Qnames have a prefix that's been assigned to a namespace URI, a colon and a local name
 - How to assign a prefix to a URI varies by serialization
- The concepts of names and namespaces used in RDF originate in XML

Topics

- Basic concepts of RDF
 - Resources, properties, values, statements, triples
 - URIs and URIrefs
 - RDF graphs
 - Literals, qnames
- Vocabularies and modeling
 - Vocabularies
 - Blank nodes, data modeling, types, reification
 - Lists, bags, collections
- Serialization of RDF graphs
 - XML, Turtle, Ntriples
- Critique of RDF