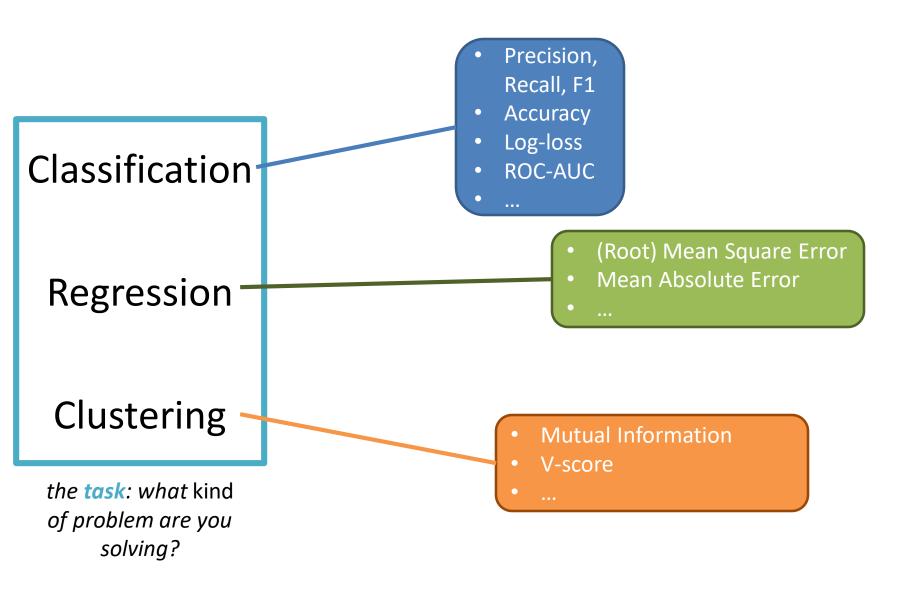
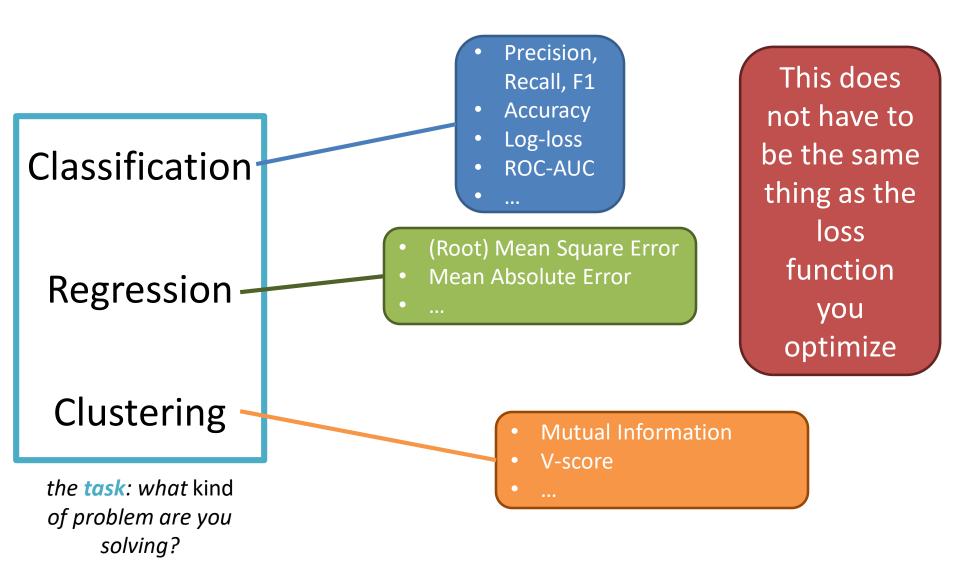
Experimental Setup, Multi-class vs. Multi-label classification, and Evaluation

CMSC 678 UMBC

Central Question: How Well Are We Doing?



Central Question: How Well Are We Doing?



Outline

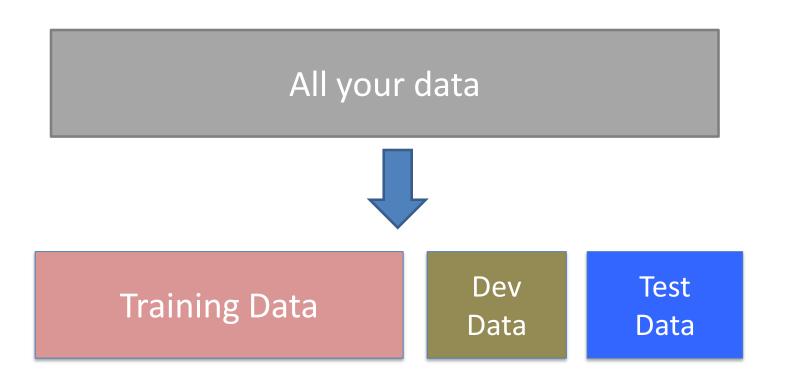
Experimental Design: Rule 1

Multi-class vs. Multi-label classification

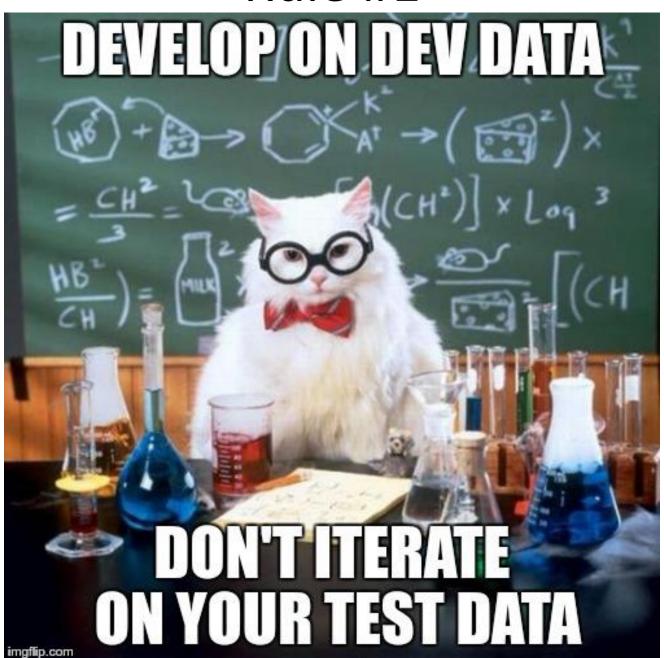
Evaluation

Regression Metrics

Classification Metrics



Rule #1



What is "correct?"
What is working "well?"

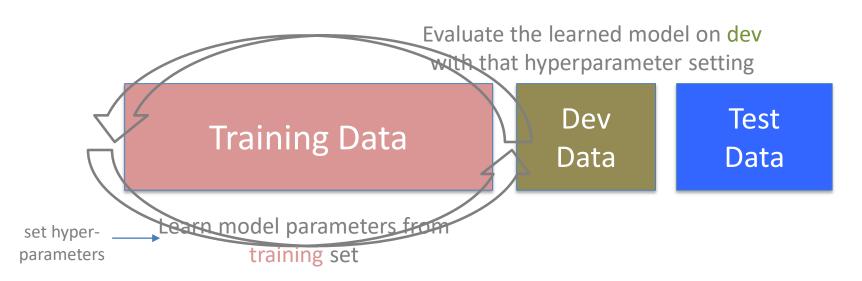
Training Data

Dev Data

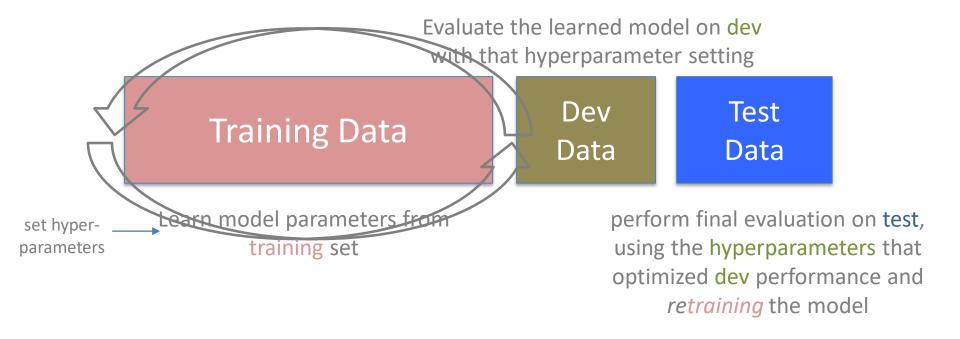
Test Data

set hyper- Learn model parameters from training set

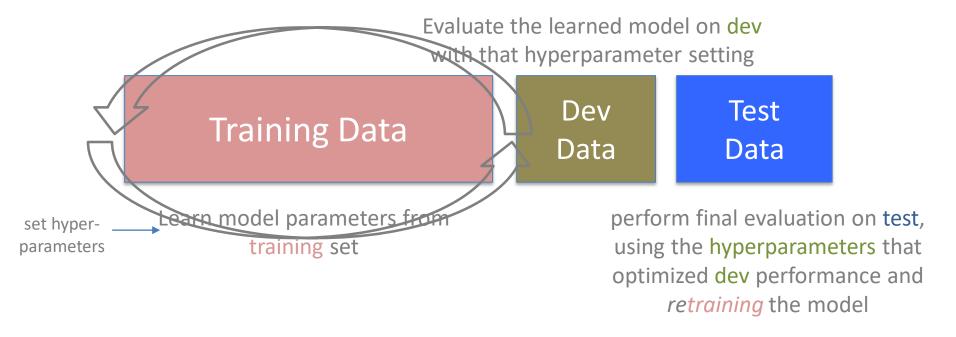
What is "correct?"
What is working "well?"



What is "correct?"
What is working "well?"



What is "correct?"
What is working "well?"



Rule 1: DO NOT ITERATE ON THE TEST DATA

On-board Exercise

Produce dev and test tables for a linear regression model with learned weights and set/fixed (non-learned) bias

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation

Regression Metrics

Classification Metrics

Given input x, predict discrete label y

Given input x, predict discrete label y

If $y \in \{0,1\}$ (or $y \in \{\text{True}, \text{False}\}$), then a binary classification task

Given input x, predict discrete label y

If $y \in \{0,1\}$ (or $y \in \{\text{True}, \text{False}\}$), then a binary classification task

If $y \in \{0,1,...,K-1\}$ (for finite K), then a multi-class classification task

Q: What are some examples of multi-class classification?

Given input x, predict discrete label y

If $y \in \{0,1\}$ (or $y \in \{\text{True}, \text{False}\}$), then a binary classification task

If $y \in \{0,1,...,K-1\}$ (for finite K), then a multi-class classification task

Q: What are some examples of multi-class classification?

A: Many possibilities. See A2, Q{1,2,4-7}

Given input x, predict discrete label y

Single output If $y \in \{0,1\}$ (or $y \in \{True, False\}$), then a binary classification task If $y \in \{0,1,...,K-1\}$ (for finite K), then a multi-class classification task

If multiple y_l are predicted, then a multi-label classification task

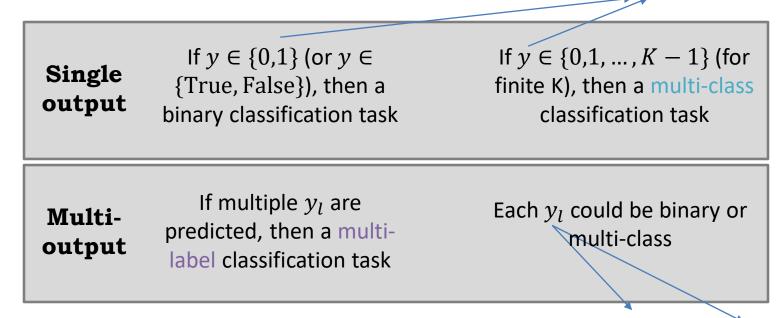
Given input x, predict discrete label y

```
Single output If y \in \{0,1\} (or y \in \{True, False\}), then a finite K), then a multi-class classification task

If multiple y_l are predicted, then a multi-label classification task
```

Given input x, predict multiple discrete labels $y = (y_1, ..., y_L)$

Given input x, predict discrete label y



Given input x, predict multiple discrete labels $y = (y_1, ..., y_L)$

Multi-Label Classification...

Will not be a primary focus of this course

Many of the single output classification methods apply to multi-label classification

Predicting "in the wild" can be trickier

Evaluation can be trickier

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

Loss function may (or may not) need to be extended & the model structure may need to change (big or small)

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

(there can be others)

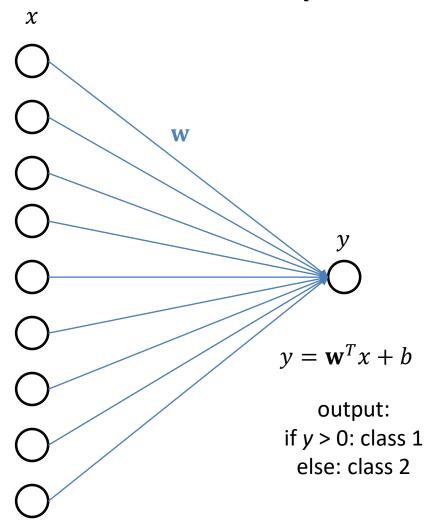
Loss function may (or may not) need to be extended & the model structure may need to change (big or small)

Common change:

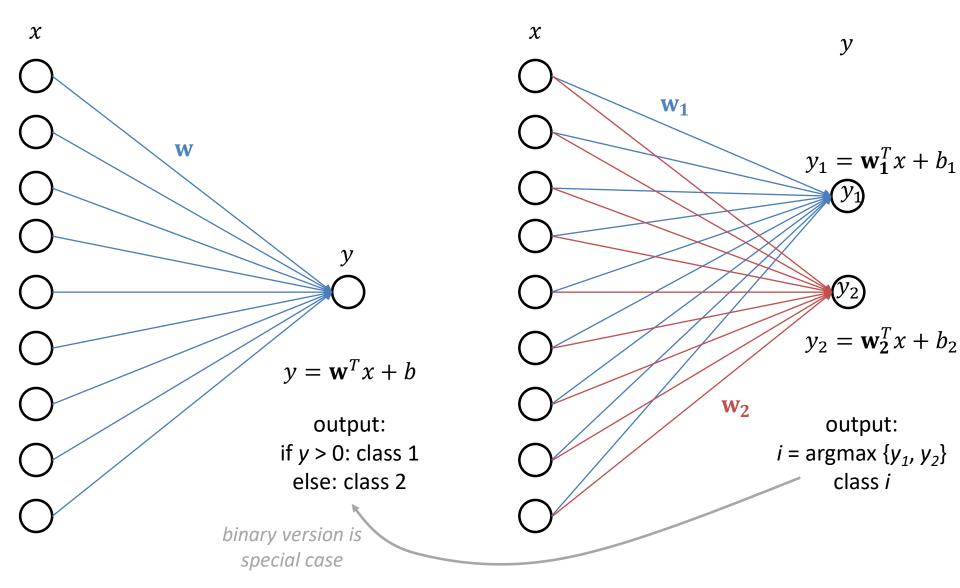
instead of a single weight vector w, keep a weight vector $w^{(c)}$ for each class c

Compute class specific scores, e.g., $\widehat{y_i^{(c)}} = (w^{(c)})^T x + b^{(c)}$

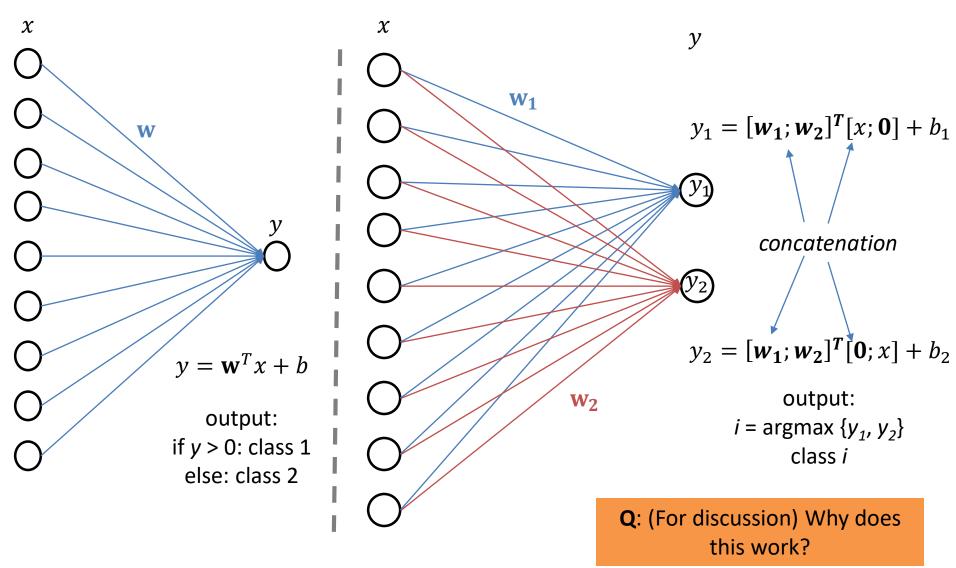
Multi-class Option 1: Linear Regression/Perceptron



Multi-class Option 1: Linear Regression/Perceptron: A Per-Class View



Multi-class Option 1: Linear Regression/Perceptron: A Per-Class View (alternative)



Option 1: Develop a multiclass version With C classes:

Option 2: Build a one-vsall (OvA) classifier Train C different binary classifiers $\gamma_c(x)$

 $\gamma_c(x)$ predicts 1 if x is likely class c, 0 otherwise

Option 3: Build an all-vs-all (AvA) classifier

Option 1: Develop a multiclass version With C classes:

Option 2: Build a one-vs-all (OvA) classifier

Train C different binary classifiers $\gamma_c(x)$

 $\gamma_c(x)$ predicts 1 if x is likely class c, 0 otherwise

Option 3: Build an all-vs-all (AvA) classifier

To test/predict a new instance z:

Get scores $s^c = \gamma_c(z)$

Output the max of these scores, $\hat{y} = \operatorname{argmax}_{c} s^{c}$

Option 1: Develop a multiclass version With C classes:

Option 2: Build a one-vsall (OvA) classifier Train $\binom{c}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$

Option 3: Build an all-vs-all (AvA) classifier

Option 1: Develop a multiclass version

Option 2: Build a one-vs-all (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

With C classes:

Train $\binom{c}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$ $\gamma_{c_1,c_2}(x)$ predicts 1 if x is likely class c_1 , 0 otherwise (likely class c_2)

Option 1: Develop a multiclass version

on

Option 2: Build a one-vsall (OvA) classifier Train $\binom{c}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$

With C classes:

 $\gamma_{c_1,c_2}(x)$ predicts 1 if x is likely class c_1 , 0 otherwise (likely class c_2)

Option 3: Build an all-vs-all (AvA) classifier

To test/predict a new instance z: Get scores or predictions $s^{c_1,c_2} = \gamma_{c_1,c_2}(z)$

Option 1: Develop a multiclass version

Option 2: Build a one-vs-all (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

(there can be others)

With C classes:

Train $\binom{c}{2}$ different binary classifiers $\gamma_{c_1,c_2}(x)$ $\gamma_{c_1,c_2}(x)$ predicts 1 if x is likely class c_1 , 0 otherwise (likely class c_2)

To test/predict a new instance z:

Get scores or predictions $s^{c_1,c_2} = \gamma_{c_1,c_2}(z)$

Multiple options for final prediction:

- (1) count # times a class c was predicted
- (2) margin-based approach

Option 1: Develop a multiclass version

Option 2: Build a one-vsall (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

(there can be others)

Q: (to discuss)

Why might you want to use option 1 or options OvA/AvA?

What are the benefits of OvA vs. AvA?

Option 1: Develop a multiclass version

Option 2: Build a one-vs-all (OvA) classifier

Option 3: Build an all-vs-all (AvA) classifier

(there can be others)

Q: (to discuss)

Why might you want to use option 1 or options OvA/AvA?

What are the benefits of OvA vs. AvA?

What if you start with a balanced dataset, e.g., 100 instances per class?

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation

Regression Metrics

Classification Metrics

Regression Metrics

(Root) Mean Square Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \widehat{y}_i)^2}$$

Regression Metrics

(Root) Mean Square Error

Mean Absolute Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \widehat{y}_i)^2} \qquad MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \widehat{y}_i|$$

$$MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \widehat{y}_i|$$

Regression Metrics

(Root) Mean Square Error

Mean Absolute Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \widehat{y}_i)^2} \qquad MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \widehat{y}_i|$$

$$MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \widehat{y}_i|$$

O: How can these reward/punish predictions differently?

Regression Metrics

(Root) Mean Square Error

Mean Absolute Error

$$RMSE = \sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - \widehat{y}_i)^2} \qquad MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \widehat{y}_i|$$

$$MAE = \frac{1}{N} \sum_{i}^{N} |y_i - \widehat{y}_i|$$

O: How can these reward/punish predictions differently?

A: RMSE punishes outlier predictions more harshly

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation

Regression Metrics

Classification Metrics

Training Loss vs. Evaluation Score

In training, compute loss to update parameters

Sometimes loss is a computational compromise - surrogate loss

The loss you use might not be as informative as you'd like

Binary classification: 90 of 100 training examples are +1, 10 of 100 are -1

Some Classification Metrics

Accuracy

Precision Recall

AUC (Area Under Curve)

F1

Confusion Matrix

	Actually Correct	Actually Incorrect
Selected/ Guessed		
Not selected/ not guessed		

	Actually Correct	Actually Incorrect
Selected/ Guessed	True Positive (TP) Guessed	
Not selected/ not guessed		

Actually **Actually Correct** Incorrect Selected/ True Positive **False Positive** Guessed Correct (TP) Guessed Correct (FP) Not selected/ not guessed

Actually **Actually** Correct Incorrect Selected/ **False Positive** True Positive Correct (FP) Correct (TP) Guessed Guessed Not selected/ False Negative Correct (FN) Guessed not guessed

Actually Actually Correct Incorrect Selected/ True Positive **False Positive** Guessed Correct (FP) Guessed Correct (TP) Guessed Not selected/ False Negative True Negative Correct (FN) Guessed Correct (TN) not guessed

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: % of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

	Actually Correct	Actually Incorrect	
Selected/Guessed	True Positive (TP)	False Positive (FP)	
Not select/not guessed	False Negative (FN)	True Negative (TN)	

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: % of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Precision: % of selected items that are correct

$$\frac{TP}{TP + FP}$$

	Actually Correct	Actually Incorrect	
Selected/Guessed	True Positive (TP)	False Positive (FP)	
Not select/not guessed	False Negative (FN)	True Negative (TN)	

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: % of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Precision: % of selected items that are correct

$$\frac{TP}{TP + FP}$$

Recall: % of correct items that are selected

$$\frac{TP}{TP + FN}$$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP) False Positive (FI	
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: % of items correct

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Precision: % of selected items that

are correct TP

 $\overline{TP + FP}$

Min: 0 🖂

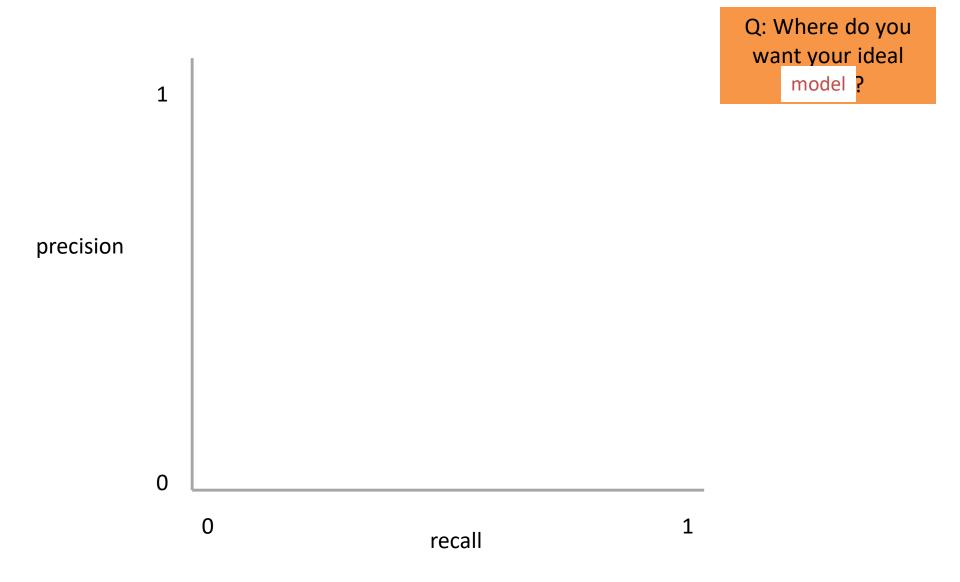
Max: 1 **⊕**

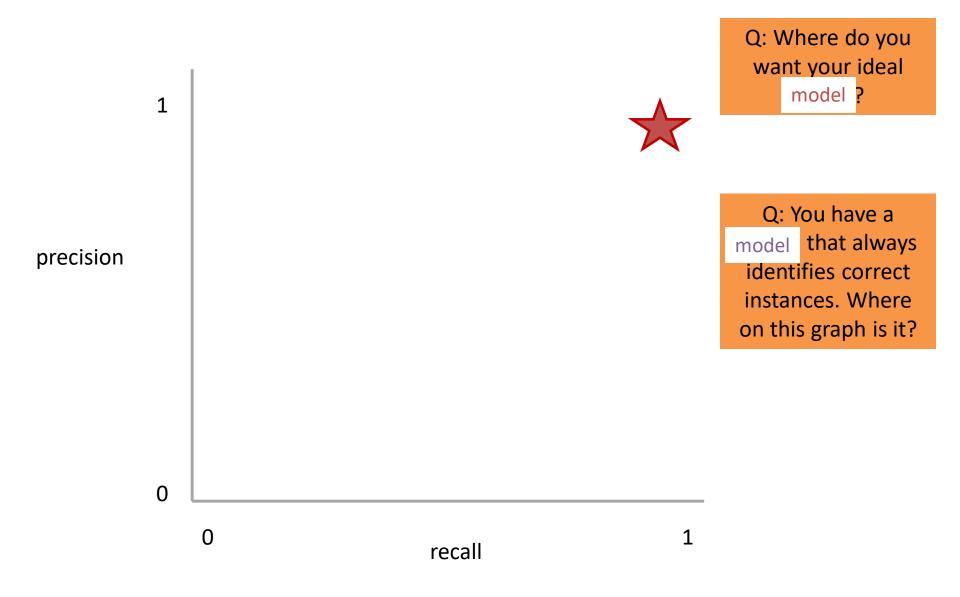
Recall: % of correct items that are

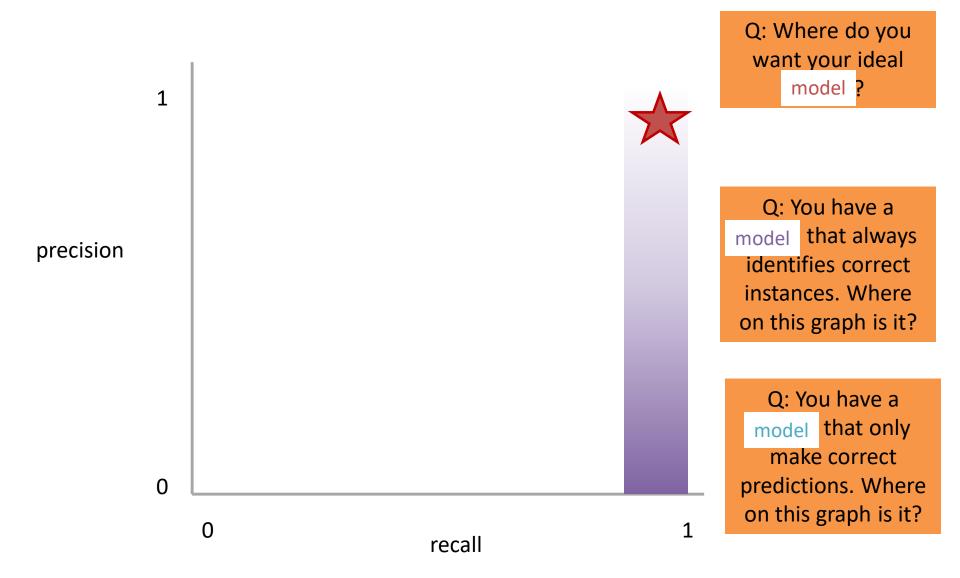
selected TP

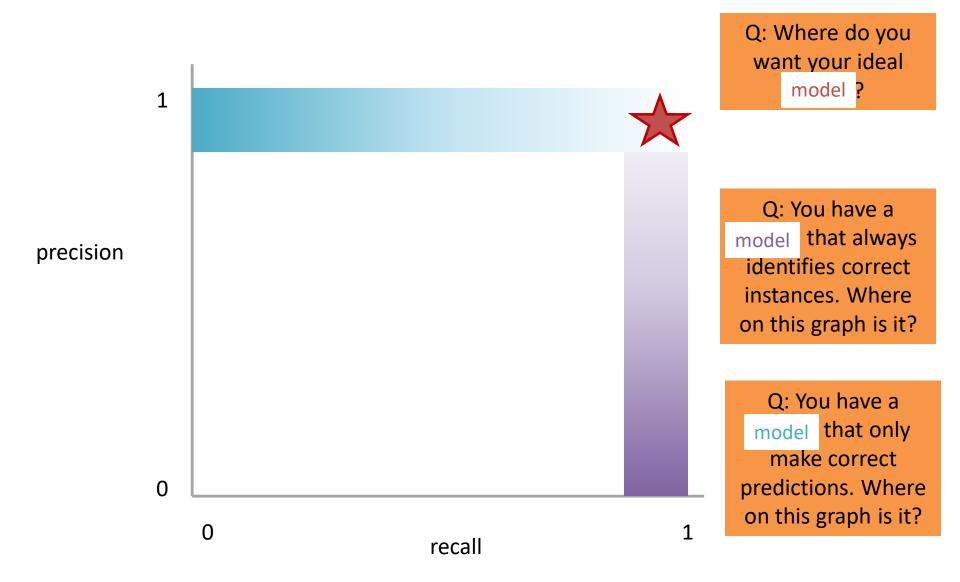
 $\overline{\text{TP} + \text{FN}}$

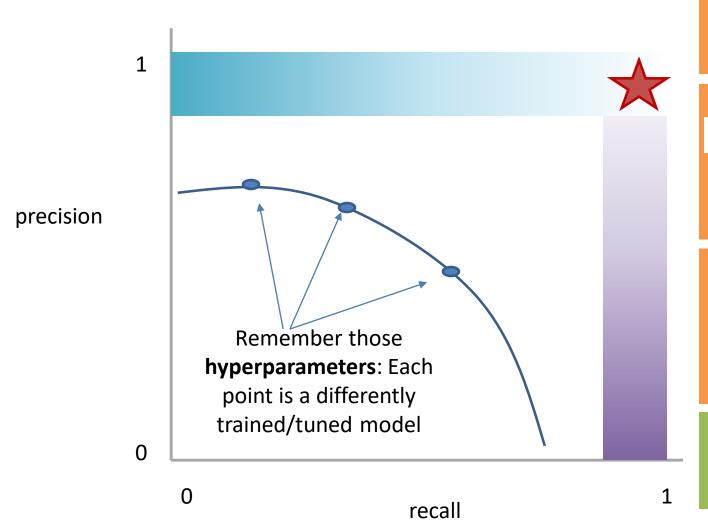
	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)









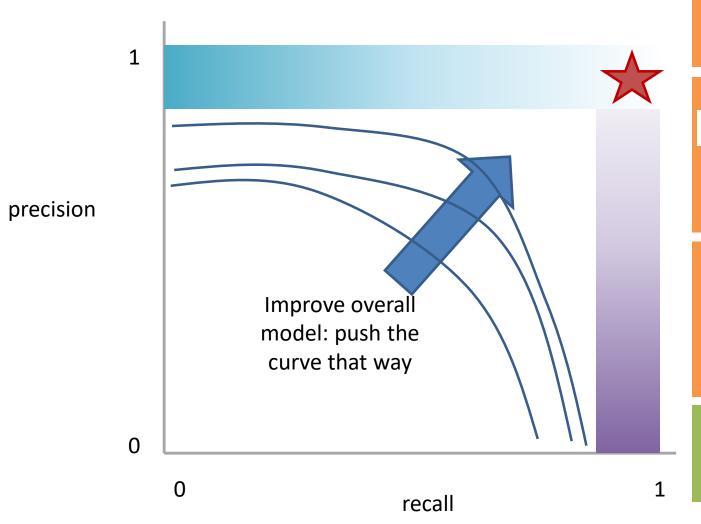


Q: Where do you want your ideal model ?

Q: You have a model that always identifies correct instances. Where on this graph is it?

Q: You have a model that only make correct predictions. Where on this graph is it?

Idea: measure the tradeoff between precision and recall



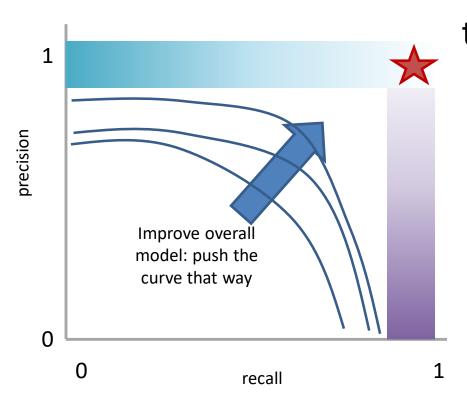
Q: Where do you want your ideal model ?

Q: You have a model that always identifies correct instances. Where on this graph is it?

Q: You have a model that only make correct predictions. Where on this graph is it?

Idea: measure the tradeoff between precision and recall

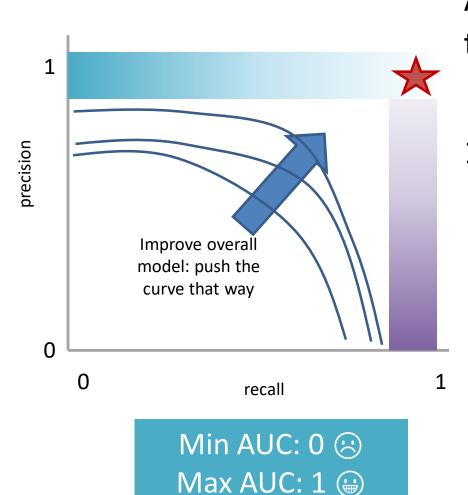
Measure this Tradeoff: Area Under the Curve (AUC)



AUC measures the area under this tradeoff curve

Min AUC: 0 ⊗ Max AUC: 1 ⊕

Measure this Tradeoff: Area Under the Curve (AUC)



AUC measures the area under this tradeoff curve

Computing the curve
 You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

orecision Improve overall model: push the curve that way 0 0 1 recall

Min AUC: 0 😕

Max AUC: 1

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate

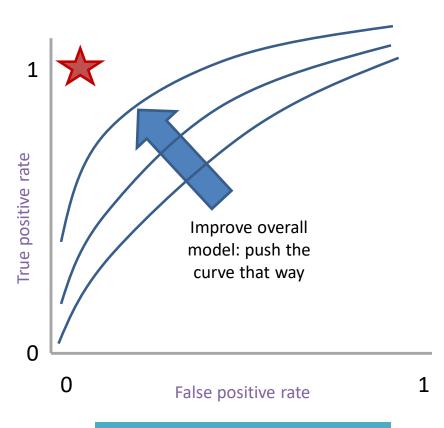
Threshold the scores and for each threshold compute precision and recall

2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC



Min ROC-AUC: 0.5 (2)

Max ROC-AUC: 1 (iii)

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute metrics

Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Main variant: ROC-AUC

Same idea as before but with some flipped metrics

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(1 + \beta^{2}) * P * R}{(\beta^{2} * P) + R}$$
algebra
(not important)

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{(1+\beta^2) * P * R}{(\beta^2 * P) + R}$$

Balanced F1 measure: β =1

$$F_1 = \frac{2 * P * R}{P + R}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

when to prefer the macroaverage?

macroprecision =
$$\sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

when to prefer the microaverage?

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

Micro- vs. Macro-Averaging: Example

Class 1

Class 2

Micro Ave. Table

	Truth : yes	Truth : no
	. yes	. 110
Classifier: ves	10	10
Classifier:	10	970
		370
no		

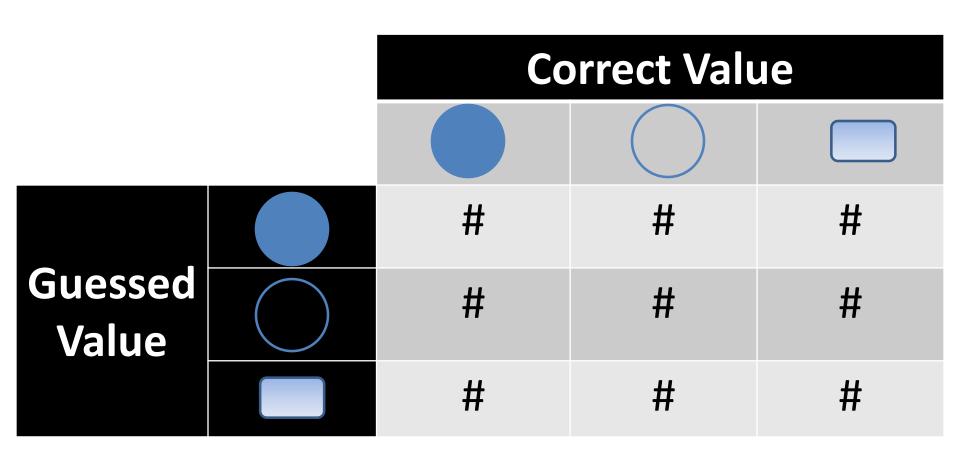
	Truth	Truth
	: yes	: no
Classifier: yes	90	10
Classifier:	10	890
no		

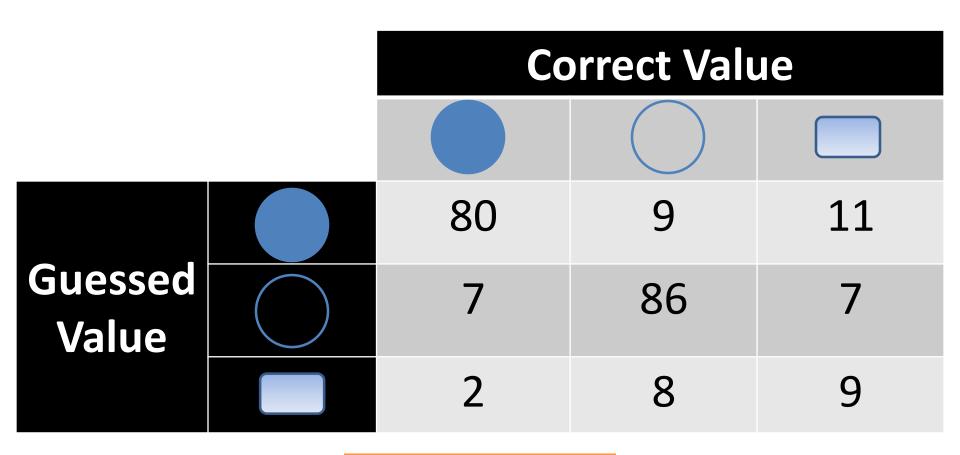
	Truth	Truth
	: yes	: no
Classifier: yes	100	20
Classifier:	20	1860
no		

Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

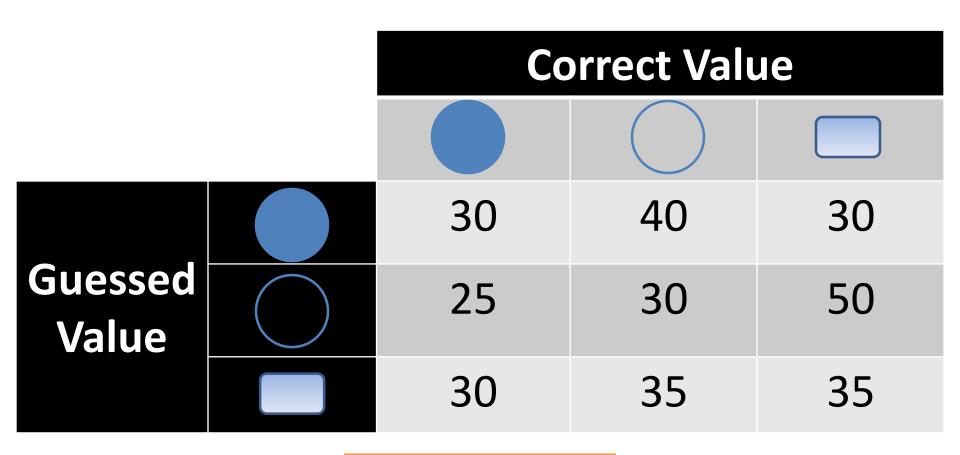
Microaveraged precision: 100/120 = .83

Microaveraged score is dominated by score on frequent classes





Q: Is this a good result?



Q: Is this a good result?

	Correct Value			
	7	3	90	
Guessed Value	4	8	88	
	3	7	90	

Q: Is this a good result?

Some Classification Metrics

Accuracy

Precision Recall

AUC (Area Under Curve)

F1

Confusion Matrix

Outline

Experimental Design: Rule 1

Multi-class vs. Multi-label classification

Evaluation

Regression Metrics

Classification Metrics