Linear Discriminant Analysis

- Learn $\mathrm{P}(\mathbf{x}, y)$. This is sometimes called the generative approach, because we can think of $P(x, y)$ as a model of how the data is generated.
- For example, if we factor the joint distribution into the form

$$
P(\mathbf{x}, y)=P(y) P(\mathbf{x} \mid y)
$$

- we can think of $P(y)$ as "generating" a value for y according to $P(y)$. Then we can think of $P(x \mid y)$ as generating a value for \mathbf{x} given the previously-generated value for y.
- This can be described as a Bayesian network

Linear Discriminant Analysis (2)

$\square \mathrm{P}(y)$ is a discrete multinomial distribution

- example: $\mathrm{P}(y=0)=0.31, \mathrm{P}(y=1)=0.69$ will generate 31% negative examples and 69\% positive examples
\square For LDA, we assume that $P(x \mid y)$ is a multivariate normal distribution with mean μ_{k} and covariance matrix Σ

$$
P(\mathbf{x} \mid y=k)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{k}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{k}\right]\right)
$$

Multivariate Normal Distributions: A tutorial

- Recall that the univariate normal (Gaussian) distribution has the formula

$$
p(x)=\frac{1}{(2 \pi)^{1 / 2} \sigma} \exp \left[-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right]
$$

- where μ is the mean and σ^{2} is the variance
- Graphically, it looks like this:

The Multivariate Gaussian

- A 2-dimensional Gaussian is defined by a mean vector $\mu=\left(\mu_{1}, \mu_{2}\right)$ and a covariance matrix

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{1,1}^{2} & \sigma_{1,2}^{2} \\
\sigma_{1,2}^{2} & \sigma_{2,2}^{2}
\end{array}\right]
$$

\square where $\sigma^{2}{ }_{i, j}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$ is the variance (if $i=j$) or co-variance (if $i \neq j$). Σ is symmetrical and positive-definite.

The Multivariate Gaussian (2)

\square If Σ is the identity matrix $\Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and
$\mu=(0,0)$, we get the standard normal distribution:

The Multivariate Gaussian (3)

- If Σ is a diagonal matrix, then x_{1}, and x_{2} are independent random variables, and lines of equal probability are ellipses parallel to the coordinate axes. For example, when

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]_{\text {and }} \\
\mu & =(2,3) \text { we obtain }
\end{aligned}
$$

The Multivariate Gaussian (4)

- Finally, if Σ is an arbitrary matrix, then x_{1} and x_{2} are dependent, and lines of equal probability are ellipses tilted relative to the coordinate axes. For example, when

$$
\begin{aligned}
\Sigma & =\left[\begin{array}{cc}
2 & 0.5 \\
0.5 & 1
\end{array}\right] \text { and } \\
\mu & =(2,3) \text { we obtain }
\end{aligned}
$$

Estimating a Multivariate Gaussian

- Given a set of N data points $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{N}}\right\}$, we can compute the maximum likelihood estimate for the multivariate Gaussian distribution as follows:

$$
\begin{aligned}
\widehat{\mu} & =\frac{1}{N} \sum_{i} \mathbf{x}_{i} \\
\hat{\Sigma} & =\frac{1}{N} \sum_{i}\left(\mathbf{x}_{i}-\hat{\mu}\right) \cdot\left(\mathbf{x}_{i}-\hat{\mu}\right)^{T}
\end{aligned}
$$

- Note that the dot product in the second equation is an outer product. The outer product of two vectors is a matrix:

$$
\mathbf{x} \cdot \mathbf{y}^{T}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \cdot\left[y_{1} y_{2} y_{3}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

- For comparison, the usual dot product is written as $\mathbf{x}^{\top} \cdot \mathbf{y}$

The LDA Model

\square Linear discriminant analysis assumes that the joint distribution has the form

$$
P(\mathbf{x}, y)=P(y) \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{y}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{y}\right]\right)
$$

where each μ_{y} is the mean of a multivariate Gaussian for examples belonging to class y and Σ is a single covariance matrix shared by all classes.

Fitting the LDA Model

- It is easy to learn the LDA model in a single pass through the data:
- Let $\widehat{\pi}_{k}$ be our estimate of $\mathrm{P}(y=k)$
- Let N_{k} be the number of training examples belonging to class k.

$$
\begin{aligned}
\hat{\pi}_{k} & =\frac{N_{k}}{N} \\
\widehat{\mu_{k}} & =\frac{1}{N_{k}} \sum_{\left\{i: y_{i}=k\right\}} \mathbf{x}_{i} \\
\hat{\Sigma} & =\frac{1}{N} \sum_{i}\left(\mathbf{x}_{i}-\hat{\mu}_{y_{i}}\right) \cdot\left(\mathbf{x}_{i}-\hat{\mu} y_{i}\right)^{T}
\end{aligned}
$$

- Note that each \mathbf{x}_{i} is subtracted from its corresponding $\widehat{\mu} y_{i}$ prior to taking the outer product. This gives us the "pooled" estimate of Σ

LDA learns an LTU

- Consider the 2-class case with a 0/1 loss function. Recall that

$$
\begin{aligned}
P(y=0 \mid \mathbf{x}) & =\frac{P(\mathbf{x}, y=0)}{P(\mathbf{x}, y=0)+P(\mathbf{x}, y=1)} \\
P(y=1 \mid \mathbf{x}) & =\frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)+P(\mathbf{x}, y=1)}
\end{aligned}
$$

\square Also recall from our derivation of the Logistic Regression classifier that we should classify into class $\hat{\mathrm{y}}=1$ if

$$
\log \frac{P(y=1 \mid \mathrm{x})}{P(y=0 \mid \mathrm{x})}>0
$$

- Hence, for LDA, we should classify into $\hat{y}=1$ if

$$
\log \frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)}>0
$$

because the denominators cancel

LDA learns an LTU (2)

$$
\begin{aligned}
& P(\mathbf{x}, y)=P(y) \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{y}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{y}\right]\right) \\
& \frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)}=\frac{P(y=1) \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}}}{} \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{1}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{1}\right]\right) \\
& P(y=0) \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{0}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{0}\right]\right) \\
& \frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)}=\frac{P(y=1) \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{1}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{1}\right]\right)}{P(y=0) \exp \left(-\frac{1}{2}\left[\mathbf{x}-\mu_{0}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{0}\right]\right)} \\
& \log \frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)}=\log \frac{P(y=1)}{P(y=0)}-\frac{1}{2}\left(\left[\mathbf{x}-\mu_{1}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{1}\right]-\left[\mathbf{x}-\mu_{0}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{0}\right]\right)
\end{aligned}
$$

LDA learns an LTU (3)

- Let's focus on the term in brackets:

$$
\left(\left[\mathbf{x}-\mu_{1}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{1}\right]-\left[\mathbf{x}-\mu_{0}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{0}\right]\right)
$$

- Expand the quadratic forms as follows:

$$
\begin{aligned}
& {\left[\mathbf{x}-\mu_{1}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{1}\right]=\mathbf{x}^{T} \Sigma^{-1} \mathbf{x}-\mathbf{x}^{T} \Sigma^{-1} \mu_{1}-\mu_{1}^{T} \Sigma^{-1} \mathbf{x}+\mu_{1}^{T} \Sigma^{-1} \mu_{1}} \\
& {\left[\mathbf{x}-\mu_{0}\right]^{T} \Sigma^{-1}\left[\mathbf{x}-\mu_{0}\right]=\mathbf{x}^{T} \Sigma^{-1} \mathbf{x}-\mathbf{x}^{T} \Sigma^{-1} \mu_{0}-\mu_{0}^{T} \Sigma^{-1} \mathbf{x}+\mu_{0}^{T} \Sigma^{-1} \mu_{0}}
\end{aligned}
$$

\square Subtract the lower from the upper line and collect similar terms. Note that the quadratic terms cancel! This leaves only terms linear in \mathbf{x}.

$$
\mathrm{x}^{T} \Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)+\left(\mu_{0}-\mu_{1}\right) \Sigma^{-1} \mathbf{x}+\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{0}^{T} \Sigma^{-1} \mu_{0}
$$

LDA learns an LTU (4)

$$
\mathbf{x}^{T} \Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)+\left(\mu_{0}-\mu_{1}\right) \Sigma^{-1} \mathbf{x}+\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{0}^{T} \Sigma^{-1} \mu_{0}
$$

- Note that since Σ^{-1} is symmetric $\mathbf{a}^{T} \Sigma^{-1} \mathbf{b}=b^{T} \Sigma^{-1} \mathbf{a}$ for any two vectors a and \mathbf{b}. Hence, the first two terms can be combined to give

$$
2 \mathrm{x}^{T} \Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)+\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{0}^{T} \Sigma^{-1} \mu_{0} .
$$

- Now plug this back in...

$$
\begin{aligned}
& \log \frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)}=\log \frac{P(y=1)}{P(y=0)}-\frac{1}{2}\left[2 \mathbf{x}^{T} \Sigma^{-1}\left(\mu_{0}-\mu_{1}\right)+\mu_{1}^{T} \Sigma^{-1} \mu_{1}-\mu_{0}^{T} \Sigma^{-1} \mu_{0}\right] \\
& \log \frac{P(\mathbf{x}, y=1)}{P(\mathbf{x}, y=0)}=\log \frac{P(y=1)}{P(y=0)}+\mathbf{x}^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)-\frac{1}{2} \mu_{1}^{T} \Sigma^{-1} \mu_{1}+\frac{1}{2} \mu_{0}^{T} \Sigma^{-1} \mu_{0}
\end{aligned}
$$

LDA learns an LTU (5)

$$
\log \frac{P(\mathrm{x}, y=1)}{P(\mathrm{x}, y=0)}=\log \frac{P(y=1)}{P(y=0)}+\mathrm{x}^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{0}\right)-\frac{1}{2} \mu_{1}^{T} \Sigma^{-1} \mu_{1}+\frac{1}{2} \mu_{0}^{T} \Sigma^{-1} \mu_{0}
$$

Let

$$
\begin{aligned}
\mathbf{w} & =\Sigma^{-1}\left(\mu_{1}-\mu_{0}\right) \\
c & =\log \frac{P(y=1)}{P(y=0)}-\frac{1}{2} \mu_{1}^{T} \Sigma^{-1} \mu_{1}+\frac{1}{2} \mu_{0}^{T} \Sigma^{-1} \mu_{0}
\end{aligned}
$$

Then we will classify into class $\widehat{y}=1$ if

$$
\mathbf{w} \cdot \mathbf{x}+c>0
$$

This is an LTU.

Two Geometric Views of LDA View 1: Mahalanobis Distance

- The quantity $D_{M}(\mathbf{x}, \mathbf{u})^{2}=(\mathbf{x}-\mathbf{u})^{T} \Sigma^{-1}(\mathbf{x}-\mathbf{u})$ is known as the (squared) Mahalanobis distance between \mathbf{x} and \mathbf{u}. We can think of the matrix Σ^{-1} as a linear distortion of the coordinate system that converts the standard Euclidean distance into the Mahalanobis distance
- Note that

$$
\begin{aligned}
& \log P(\mathbf{x} \mid y=k) \propto \log \pi_{k}-\frac{1}{2}\left[\left(\mathrm{x}-\mu_{k}\right)^{T} \Sigma^{-1}\left(\mathrm{x}-\mu_{k}\right)\right] \\
& \log P(\mathbf{x} \mid y=k) \propto \log \pi_{k}-\frac{1}{2} D_{M}\left(\mathbf{x}, \mu_{k}\right)^{2}
\end{aligned}
$$

- Therefore, we can view LDA as computing
- $D_{M}\left(\mathbf{x}, \mu_{0}\right)^{2}$ and $D_{M}\left(\mathrm{x}, \mu_{1}\right)^{2}$
and then classifying \mathbf{x} according to which mean μ_{0} or μ_{1} is closest in Mahalanobis distance (corrected by $\log \pi_{k}$)

View 2: Most Informative LowDimensional Projection
\square LDA can also be viewed as finding a hyperplane of dimension $K-1$ such that \mathbf{x} and the $\left\{\mu_{k}\right\}$ are projected down into this hyperplane and then \mathbf{x} is classified to the nearest μ_{k} using Euclidean distance inside this hyperplane

Generalizations of LDA

\square General Gaussian Classifier

- Instead of assuming that all classes share the same Σ, we can allow each class k to have its own Σ_{k}. In this case, the resulting classifier will be a quadratic threshold unit (instead of an LTU)
- Naïve Gaussian Classifier
- Allow each class to have its own Σ_{k}, but require that each Σ_{k} be diagonal. This means that within each class, any pair of features $x_{j 1}$ and $x_{j 2}$ will be assumed to be statistically independent. The resulting classifier is still a quadratic threshold unit (but with a restricted form)

Summary of Linear Discriminant Analysis

- Learns the joint probability distribution $\mathrm{P}(\mathbf{x}, y)$.
- Direct Computation. The maximum likelihood estimate of $\mathrm{P}(\mathbf{x}, y)$ can be computed from the data without search. However, inverting the Σ matrix requires $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time.
- Eager. The classifier is constructed from the training examples. The examples can then be discarded.
\square Batch. Only a batch algorithm is available. An online algorithm could be constructed if there is an online algorithm for incrementally updated Σ^{-1}. [This is easy for the case where Σ is diagonal.]

