13.2

Planning 2

approaches
Chapter 11.1-11.3

ome material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer



Planning as State-Space Search

e Forward (progression) state-space search

— Prone to exploring irrelevant actions

— Uninformed forward-search in large state spacesis too
inefficient to bepractical

— Need heuristics to make forward search feasible



Example: Air Cargo Problem

10 airports: each has 5 planes and 20 pieces of cargo
Goal: Move all cargo at airport Atoairport B

Simple solution: Load 20 cargo onto plane; at
airport A, fly to airport B, unload cargo

Average branching factor is huge:

e Eachof 50 planes can fly to 9 airports
200 cargo can be unloaded/loaded onto any plane atairport
* In any state min. 450 actions, max. 10,450 actions

If we take average 2000 possible actions per state,
searchgraph up to obvious solution has 20004
nodes



Backward Relevant-States Search

e Start at the goal, apply actions backwards until
reach initial state

e Only consider actions that are relevant to the
goal (or current state), i.e.

— Action must contribute to thegoal
— Must not have any effect which negates an

element ofthe goal

e Consider a set of relevant states at each step, not
just a single state (cf. belief state search)



Backward Relevant-States Search

e Must know how to regress from a state description to a
predecessor state

e PDDLdescription makes it easy to regress actions:
* Effects added by action need not have been true before
* Preconditions must have been true before

* Do not Del(a) as we don’t know whether or not fluents were
true before

e Need to deal with partially uninstantiatedactions and
states, not just ground ones

e Backward search keeps branching factor lower than
forward, but it’s harder to define good heuristics — so
most current systems favor forward search



Heuristics for Planning

Planning complex state representation, rather
than ones, so we can define good domain-
independent heuristics

Admissible heuristics (i.e., not over-estimating)
can be derived by defining a relaxed problem
that’s easier to solve

=> Can use A* search to find optimal solutions

Exact cost of a solution to easier relaxed problem
becomes a heuristic for the original problem

Heuristic examples: ignore preconditions, state
abstraction, problem decomposition...



Planning as Boolean Satisfiability

e Reduces planning problem to classical
propositional SAT problem

e SAT problem: is a propositional formula
satisfiable? (i.e.,is there an assignment that
makes it true?)

e Making plans by logical inference

eTo use SATPlan, PDDL planning problem
description needs first to be translated to
propositional logic



SATPlan

e SATPlan asks whether there exists any plan
solving a given planning problem

—SATPLAN is about satisficing (want any solution,
not necessarily the cheapest or the shortest)

e Bounded SATPlan asks whether there exists
a plan of length k or less

—Can be used to ask for the optimal solution

e |f we don’t allow functional symbols in the
PDDL, both problems are decidable



SATPlan Algorithm

1. Construct a propositional sentence that includes

a) Description of initial state

b) Description of the planning domain (precondition axioms,
successor state axioms, mutual exclusion of actions) up to

some maximum time N
c) Assertion that the goal is achieved at time N
2. Call SAT solver to return a model for this sentence

3. If a model exists, extract variables representing
actions at each time from 0 to N and are assigned

true, and present them in order of times as a plan


https://en.wikipedia.org/wiki/Satplan

SOTA for Classical Planning?

e See the 2019 AAAI tutorial on the 2018
International Planning Competition for details

e A system using an approach inspired by SATPlan is
good for finding an optimal plan

e The Fast Forward (FF) planner works well when
satisficing is your goal
— A forward chaining heuristic state space planner

— It is the one used in Planning.Domains
— Open source (written in c)


https://www.nms.kcl.ac.uk/andrew.coles/PlanningCompetitionAAAISlides.pdf
https://fai.cs.uni-saarland.de/hoffmann/ff.html




