Propositional Logic: Pro & Con # Propositional logic: pro and con ## Advantages - -Simple KR language good for many problems - Lays foundation for higher logics (e.g., FOL) - Reasoning is decidable, though NP complete; efficient techniques exist for many problems ## Disadvantages - Not expressive enough for most problems - -Even when it is, it can very "un-concise" ## PL is a weak KR language - Hard to identify individuals (e.g., Mary, 3) - Can't directly represent properties of individuals or relations between them (e.g., "Bill age 24") - Generalizations, patterns, regularities hard to represent (e.g., "all triangles have 3 sides") - First-Order Logic (FOL) represents this information via **relations**, **variables** & **quantifier**s, e.g., - John loves Mary: loves(John, Mary) - Every elephant is gray: \forall x (elephant(x) \rightarrow gray(x)) - There is a black swan: ∃ x (swan(X) ^ black(X)) ## Hunt the Wumpus domain #### Some atomic propositions: ``` A12 = agent is in call (1,2) S12 = There's a stench in cell (1,2) B34 = There's a breeze in cell (3,4) ``` W22 = Wumpus is in cell (2,2) V11 = We've visited cell (1,1) OK11 = cell (1,1) is safe | 1,4 | 2,4 | 3,4 | 4,4 | |---------------------|---------------------|------------------|-----| | | | | | | 1,3
W ! | 2,3 | 3,3 | 4,3 | | 1,2
A
S
OK | 2,2
OK | 3,2 | 4,2 | | 1,1
V
OK | 2,1
B
V
OK | 3,1
P! | 4,1 | #### = Agent = Glitter, Gold OK = Safe square = Pit= Stench Visited = Wumpus #### Some rules: $$\neg S22 \rightarrow \neg W12 \land \neg W23 \land \neg W32 \land \neg W21$$ $$S22 \rightarrow W12 \lor W23 \lor W32 \lor W21$$ $$B22 \rightarrow P12 \lor P23 \lor P32 \lor P21$$ $$W22 \rightarrow S12 \land S23 \land S32 \land W21$$ $$W22 \rightarrow \neg W11 \land \neg W21 \land ... \neg W44$$ $$A22 \rightarrow V22$$ $$A22 \rightarrow \neg W11 \land \neg W21 \land ... \neg W44$$ $$V22 \rightarrow OK22$$ If there's no stench in cell 2,2 then the Wumpus isn't in cell 21, 23 32 or 21 ## **Hunt the Wumpus domain** - Eight symbols for each cell, i.e.: A11, B11, G11, OK11, P11, S11, V11, W11 - Lack of variables requires giving similar rules for each cell! - Ten rules (I think) for each | $A11 \rightarrow$ | $W11 \rightarrow$ | |------------------------|------------------------| | $V11 \rightarrow$ | $\neg W11 \rightarrow$ | | P11 → | $S11 \rightarrow$ | | | $\neg S11 \rightarrow$ | | $\neg P11 \rightarrow$ | $B11\to$ | | | $\neg B11 \rightarrow$ | | 1,4 | 2,4 | 3,4 | 4,4 | |----------------|---------------------|-----------|-----| | 1,3
W! | 2,3 | 3,3 | 4,3 | | 1,2
S
OK | 2,2
OK | 3,2 | 4,2 | | 1,1
V
OK | 2,1
B
V
OK | 3,1
P! | 4,1 | A = Agent B = Breeze G = Glitter, Gold OK = Safe square P = Pit S = Stench V = Visited W = Wumpus - 8 symbols for 16 cells => 128 symbols - 2^{128} possible models \odot - Must do better than brute force ### After third move - We can prove that the Wumpus is in (1,3) using these four rules - See R&N section 7.5 | 1,4 | 2,4 | 3,4 | 4,4 | |-------------------|---------------------|-----------|-----| | 1,3
W ! | 2,3 | 3,3 | 4,3 | | 1,2 A S OK | 2,2
OK | 3,2 | 4,2 | | 1,1
V
OK | 2,1
B
V
OK | 3,1
P! | 4,1 | $$(R1)$$ $\neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$ $(R2)$ $\neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$ $(R3)$ $\neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$ $(R4)$ $S12 \rightarrow W13 \lor W12 \lor W22 \lor W11$ ## Proving W13: Wumpus is in cell 1,3 ``` Apply MP with \negS11 and R1: ``` $$\neg W11 \land \neg W12 \land \neg W21$$ Apply **AE**, yielding three sentences: (R1) \neg S11 $\rightarrow \neg$ W11 $\land \neg$ W12 $\land \neg$ W21 (R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31 (R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13 (R4) $S12 \rightarrow W13 \lor W12 \lor W22 \lor W11$ Apply MP to ~S21 and R2, then apply AE: Apply **MP** to S12 and R4 to obtain: Apply **UR** on (W13 \vee W12 \vee W22 \vee W11) and \neg W11: Apply **UR** with (W13 \vee W12 \vee W22) and \neg W22: Apply **UR** with (W13 \vee W12) and \neg W12: W13 **QED** #### **Rule Abbreviation** MP: modes ponens AE: and elimination R: unit resolution # **Propositional Wumpus problems** - Lack of variables prevents general rules, e.g.: - \forall x, y $V(x,y) \rightarrow OK(x,y)$ - \forall x, y S(x,y) \rightarrow W(x-1,y) \vee W(x+1,y) ... - Change of KB over time difficult to represent - -In classical logic; a fact is true or false for all time - A standard technique is to index dynamic facts with the time when they're true - A(1, 1, 0) # agent was in cell 1,1 at time 0 - A(2, 1, 1) # agent was in cell 2,1 at time 1 - -Thus we have a separate KB for every time point ## **Propositional logic summary** - Inference: deriving new sentences from old - Sound inference derives true conclusions given true premises - Complete inference derives all true conclusions from premises - Different logics make different commitments about what world is made of and kinds of beliefs we can have - **Propositional logic** commits only to existence of facts that may or may not be the case - Simple syntax & semantics illustrates inference process - Sound, complete and fast proof procedures - It can be impractical or cumbersome for many worlds FIN