el
b
\

~ ——0

Sl S

LIRS
)

) i
)| Q)‘
|

I n fO r m e d o | 3 ﬁ |

]
Search
Chapter 4 (b)

Some material adopted from notes
by Charles R. Dyer, University of
Wisconsin-Madison

Today’s class: local search

* |terative improvement methods (aka local
search) move from potential solution to
potential solution until a goal is reached

 Examples include: Hill climbing, Simulated
annealing, Local beam search, Genetic

algorithms

* Online search interleaves searching and acting

When local search may win

Local search may be good when

* You don’t know a goal, but can recognize one
when you see it

* You only want to find a goal and don’t need to
keep track of the sequence of actions that
reached it

* You don’t care about finding the shortest
solution

* You do care about find a solution quickly

Hill Climbing

Extended current path with successor that’s
closer to solution than end of current path

If goal is to get to the top of a hill, then
always take a step that leads you up

Simple hill climbing: take any upward step

Steepest ascent hill climbing: consider all
possible steps, take one that goes up most

No memory required

Hill climbing on a surface of states

evaluation

' 1
' tate Height defined by an
I evaluation function
that takes a state &

returns a number

Hill climbing for search

* For informed search and many other problems
(e.g., neural network training) we want to find

a global minimum

— Search evaluation function: measure of how far the
current state is from a goal

* |t’s an easy change to make in the algorithm, or
we can just negate the evaluation function

* We still call it hill climbing though

Hill-climbing search 'f.j

e |If there’s successor s for current state n such that
— h(s) < h(n) and h(s) <= h(t) for all successors t

then move from n to s; otherwise, halt at n

i.e.: Look one step ahead to decide if a successor is better than
current state; if so, move to best successor

* Like greedy search, but doesn’t allow backtracking or
jumping to alternative path since it has no memory

* Like beam search with a beam width of 1 (i.e., maximum
size of the nodes list is 1)

* Not complete since search may terminate at a local
minima, plateau or ridge

Hill climbing example

218]3 1]2
start 11614 =4 goal |3
7 5 7] 6
5 A\—S 9 \T
21813 1]2
1 41 h=-3]
716]5 716
-3 A\ - I
2 3 2
118]4 1]8
7[6]5 S 716
h=-3 -

f(n) = -(number of tiles out of place)

0

Exploring the Landscape

] local maximum
* Local Maxima: peaks not

highest point in space

* Plateaus: broad flat region
giving search no guidance b
(use random walk) '

* Ridges: flat like plateaus,
but with drop-offs to sides;
steps to North, East, South
and West may go down,
but step to NW may go up

plateau

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

Drawbacks of hill climbing

* Problems: local maxima, plateaus, ridges

 Possible remedies:

— Random restart: keep restarting search from
random locations until a goal is found

may require an estimate — how low can we go

— Problem reformulation: reformulate search
space to eliminate these problematic features

* Some problem spaces are great for hill
climbing and others are terrible

Example of a local optimum

Hill Climbing and 8 Queens

* Randomly put one queen 1n each
column

* Goal state: no two queens attack
one another

* Actions: moving any queen to a
different row

* Each state thus has 65 successors

* Heuristic h: # of pairs attacking one
another

* Current state: h=17

* h=0 => solution

Can be extended to a N-queens problem for an NxN board

Hill Climbing and 8 Queens

18 14 13 |12]] 14

14 |[12)| 18 15 14

14 17 |12] 14 ||12]] 18

(a) (b)

Figure 4.3 (a) An 8-queens state with heuristic cost estimate i = 17, showing the value of
h for each possible successor obtained by moving a queen within its column. The best moves

are marked. (b) A local minimum in the 8-queens state space; the state has h =1 but every
successor has a higher cost.

argmax and argmin

The argmax and argmin concept is common in
many Al and machine learning algorithms

See argmax on Wikipedia (argmin is similar)

argmax f(z) :={z | Vy: f(y) < f(=)}.

Zr

Argmax, f(x) finds value of x for which f(x) is
largest

Argmin, f(x) finds value of x for which f(x) is
smallest

Computing this generally requires some search

https://en.wikipedia.org/wiki/Arg_max

Gradient
ascent -
or descent)l

Images from http://en.wikipedia.org/wiki/Gradient descent

* Gradient descent procedure for finding the arg, min f(x)
—choose initial x, randomly
—Repeat x;,; < x—n f'(x)
—until the sequence x,, Xy, ..., X;, Xi,; converges
* Step size proportional to f '(x;), i.e. 1st derivative or slope;
Steeper slope => bigger step
e Often used in machine learning algorithms
— Cheaper to compute than Newton’s method

https://en.wikipedia.org/wiki/Gradient_descent

Gradient methods vs. Newton’s method

* A reminder of Newton’ s

method from Calculus:
Xie1 € Xi— N f () / (%)

* Newton s method uses 2
order information (e.g.,
2nd derivative) to take a
faster route to a minimum

* Second-order info. is more
expensive to compute, but
converges quicker

Contour lines of a function

Gradient descent (green)
Newton’ s method (red)

Image from http://en.wikipedia.org/wiki/Newton's_method in_optimization

* See gradient descent

https://en.wikipedia.org/wiki/Gradient_descent

Annealing

* In metallurgy, annealing is a technique
involving heating & controlled cooling of a material
to increase size of its crystals & reduce defects

* Heat causes atoms to become unstuck from initial
positions (local minima of internal energy) and
wander randomly through states of higher energy

* Slow cooling gives them more chances of finding
configurations with lower internal energy than
initial one

Simulated annealing (SA)

SA exploits analogy between how metal cools and

freezes into a minimum-energy crystalline structure &
search for a minimum/maximum in a general system

SA can avoid becoming trapped at local minima

SA uses random search accepting changes decreasing
objective function f & some that increase it

SA uses a control parameter T, which by analogy with
the original application, is known as the system
temperature

T starts out high and gradually decreases toward 0

https://en.wikipedia.org/wiki/Simulated_annealing

SA intuitions

Combines hill climbing (for efficiency) with random
walk (for completeness)

Analogy: getting a ping-pong ball into the deepest
depression in a bumpy surface

—Shake the surface to get the ball out of local minima
—Don’t shake too hard to dislodge it from global minimum

Simulated annealing:

—Start shaking hard (high temperature) and gradually
reduce shaking intensity (lower temperature)

—Escape local minima by allowing some “bad” moves
—But gradually reduce their size and frequency

https://en.wikipedia.org/wiki/Random_walk

Simulated annealing

“bad” move from A to B accepted with prob.
o -(f(B)-f(A)/T)

The higher the temperature, the more likely
it is that a bad move can be made

As T tends to zero, probability tends to zero,
and SA becomes more like hill climbing

If T lowered slowly enough, SA is complete
and admissible

Finding the proper rate to lower is still an
Issue

Local beam search

* Basic idea
—Begin with k random states
— Generate all successors of these states
— Keep the k best states generated by them

* Provides a simple, efficient way to share
some knowledge across a set of searches

e Stochastic beam search is a variation:

— Probability of keeping a state is a function
of its heuristic value

Genetic algorithms (GA)

* Search technique inspired by evolution
* Similar to stochastic beam search
e Start with initial population of k random states

* New states generated by mutating a single
state or reproducing (combining) two parent
states, selected according to their fitness

* Encoding used for genome of an individual
strongly affects the behavior of search

Ma and Pa solutions

8 Queens problem

* Represent state by a

string of 8 digits in {1..8} [] L]
*S= '32752411] ...
* Fitness function = # of] WI.I
-attacki i H B
non-attacking pairs ¥ mym
* F(Seo1ution) = 8%7/2 =28 D W

. F(Sl) - 924 State S,

Genetic algorithms

Offspring
o P T

P

Qo

il
-
-
W

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Genetic algorithms

24748552 | 24 319 .| 32752411 >_< 32748552 | 3274¢1p2
24752411 | 24752411

32752411 | 23 29% 247548552

i

24415124 |_20 26% | 32752411 >_< 32752124 — 32252124
24415411 —| 2441541[]]

32543213 | 11 14% 24415;124

(a) (b) (e) (d) (e)

Initial Population = Fitness Function Selection Crossover Mutation

Figure4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) 1s ranked by the fitness function in (b), resulting in pairs for
mating in (c¢). They produce offspring in (d), which are subject to mutation in (e).

* Fitness function: number of non-attacking pairs of queens (min=0,
max=(8 X 7)/2 =28)

* Probability of mating is a function of fithess score
* Random cross-over point for a mating pair chosen
* Resulting offspring subject to a random mutation with probability

Genetic algorithms

32748552 3274812

24752411

24748552 || 24 31% .| 32752411 |

24752411

32752411 |

23 20% | 247148552 /]

24415124 |_20 26% | 32752411 >_< 32752124 — 32252124
24415411 —| 2441541[]]

32543213 | 11 14% 244155124

(a) (b) (e) (d) (e)

Initial Population = Fitness Function Selection Crossover Mutation

Figure4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) 1s ranked by the fitness function in (b), resulting in pairs for
mating in (c¢). They produce offspring in (d), which are subject to mutation in (e).

* Fitness function: number of non-attacking pairs of queens (min=0,
max=(8 X 7)/2 =28)

* Probability of mating is a function of fithess score
* Random cross-over point for a mating pair chosen
* Resulting offspring subject to a random mutation with probability

Genetic algorithms

24748552 | 24 31%
32752411 [| 23 29%
24415124 || 20 26%
32543213 11 14%

(a)

Initial Population

(b)

Fitness Function

()

Selection

(d)

Crossover

327552411 32748552 —| 3274912
247%48552 >_<E5.2411 -1 24752411
32752411 32752124 3252124
| 24415124 24415411 - 24415417

(e)

Mutation

Figure 4.6

The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) 1s ranked by the fitness function in (b), resulting in pairs for
mating in (c¢). They produce offspring in (d), which are subject to mutation in (e).

* Fitness function: number of non-attacking pairs of queens (min=0,
max=(8 X 7)/2 =28)

* Probability of mating is a function of fithess score

* Random cross-over point for a mating pair chosen

* Resulting offspring subject to a random mutation with probability

Ant Colony Optimization

A probabilistic search technique for problems
reducible to finding good paths through graphs

Inspiration

* Ants leave nest

* Wander, discover
food

* Return to nest, pre-
ferring shorter paths

* Leave pheromone trail

* Shortest path is
reinforced

An example of agents communicating through their environment

http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

Taboo search

* Problem: Hill climbing can get stuck on
local maxima

* Solution: Maintain a list of k previously
visited states, and prevent the search

from revisiting them
* An example of a metaheuristic

https://en.wikipedia.org/wiki/Tabu_search
https://en.wikipedia.org/wiki/Metaheuristic

Online search

Nothing to do with Web search!

Involves interleave computation AND action
— search some, act some, repeat

Exploration: Can’t be sure of action out-
comes; must perform them to know result

More realistic approach for many problems

Relatively easy if actions are reversible (ONLINE-
DFS-AGENT)

LRTA* (Learning Real-Time A*): Update h(s)
(in state table) based on experience

Other topics

e Search in continuous spaces
— Different math

e Search with uncertain actions

— Must model the probabilities of an actions results

e Search with partial observations

— Acquiring knowledge as a result of search

Summary: Informed search

* Hill-climbing algorithms keep only a single state
in memory, but can get stuck on local optima

* Simulated annealing escapes local optima, and is
complete and optimal given a “long enough”
cooling schedule

* Genetic algorithms can search a large space by
modeling biological evolution

* Online search algorithms are useful in state
spaces with partial/no information

