
Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Informed
Search

Chapter 4 (b)

Today’s class: local search

• Iterative improvement methods (aka local
search) move from potential solution to
potential solution until a goal is reached

• Examples include: Hill climbing, Simulated
annealing, Local beam search, Genetic
algorithms

• Online search interleaves searching and acting

When local search may win

Local search may be good when
• You don’t know a goal, but can recognize one

when you see it
• You only want to find a goal and don’t need to

keep track of the sequence of actions that
reached it

• You don’t care about finding the shortest
solution

• You do care about find a solution quickly

Hill Climbing
• Extended current path with successor that’s

closer to solution than end of current path
• If goal is to get to the top of a hill, then

always take a step that leads you up
• Simple hill climbing: take any upward step
• Steepest ascent hill climbing: consider all

possible steps, take one that goes up most
• No memory required

Hill climbing on a surface of states

Height defined by an
evaluation function
that takes a state &
returns a number

Hill climbing on a surface of states

Height defined by an
evaluation function
that takes a state &
returns a number

Hill climbing for search

• For informed search and many other problems
(e.g., neural network training) we want to find
a global minimum
– Search evaluation function: measure of how far the

current state is from a goal

• It’s an easy change to make in the algorithm, or
we can just negate the evaluation function

• We still call it hill climbing though

Hill-climbing search
• If there’s successor s for current state n such that
– h(s) < h(n) and h(s) <= h(t) for all successors t

then move from n to s; otherwise, halt at n
i.e.: Look one step ahead to decide if a successor is better than
current state; if so, move to best successor

• Like greedy search, but doesn’t allow backtracking or
jumping to alternative path since it has no memory
• Like beam search with a beam width of 1 (i.e., maximum

size of the nodes list is 1)
•Not complete since search may terminate at a local

minima, plateau or ridge

Hill climbing example
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4

7 6 5

2

3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(number of tiles out of place)

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape
• Local Maxima: peaks not

highest point in space
•Plateaus: broad flat region

giving search no guidance
(use random walk)
•Ridges: flat like plateaus,

but with drop-offs to sides;
steps to North, East, South
and West may go down,
but step to NW may go up

Drawbacks of hill climbing
• Problems: local maxima, plateaus, ridges
• Possible remedies:
– Random restart: keep restarting search from

random locations until a goal is found
may require an estimate – how low can we go

– Problem reformulation: reformulate search
space to eliminate these problematic features

• Some problem spaces are great for hill
climbing and others are terrible

Example of a local optimum

1 2 5
7 4

8 6 3
4

1 2 3
8
7 6 5

1 2 5
7 4

8 6 3

2 5
1 7 4
8 6 3

1 2 5
8 7 4

6 3

-3

-4

-4

-4

0

start goal

Hill Climbing and 8 Queens

• Randomly put one queen in each
column

• Goal state: no two queens attack
one another

• Actions: moving any queen to a
different row

• Each state thus has 65 successors
• Heuristic h: # of pairs attacking one

another
• Current state: h= 17
• h=0 => solution

Can be extended to a N-queens problem for an NxN board

Hill Climbing and 8 Queens

argmax and argmin

• The argmax and argmin concept is common in
many AI and machine learning algorithms

• See argmax on Wikipedia (argmin is similar)

• Argmaxx f(x) finds value of x for which f(x) is
largest

• Argminx f(x) finds value of x for which f(x) is
smallest

• Computing this generally requires some search

https://en.wikipedia.org/wiki/Arg_max

Gradient
ascent
or descent

• Gradient descent procedure for finding the argx min f(x)
–choose initial x0 randomly
–Repeat xi+1 ← xi – η f '(xi)
–until the sequence x0, x1, …, xi, xi+1 converges
• Step size proportional to f '(xi), i.e. 1st derivative or slope;

Steeper slope => bigger step
• Often used in machine learning algorithms
– Cheaper to compute than Newton’s method

Images from http://en.wikipedia.org/wiki/Gradient_descent

https://en.wikipedia.org/wiki/Gradient_descent

Gradient methods vs. Newton’s method

• A reminder of Newton’s
method from Calculus:

xi+1 ← xi – η f '(xi) / f ''(xi)

• Newton’s method uses 2nd

order information (e.g.,
2nd derivative) to take a
faster route to a minimum
• Second-order info. is more

expensive to compute, but
converges quicker
• See gradient descent

Contour lines of a function
Gradient descent (green)
Newton’s method (red)

Image from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

https://en.wikipedia.org/wiki/Gradient_descent

Annealing

• In metallurgy, annealing is a technique
involving heating & controlled cooling of a material
to increase size of its crystals & reduce defects
• Heat causes atoms to become unstuck from initial

positions (local minima of internal energy) and
wander randomly through states of higher energy
• Slow cooling gives them more chances of finding

configurations with lower internal energy than
initial one

Simulated annealing (SA)
• SA exploits analogy between how metal cools and

freezes into a minimum-energy crystalline structure &
search for a minimum/maximum in a general system

• SA can avoid becoming trapped at local minima
• SA uses random search accepting changes decreasing

objective function f & some that increase it
• SA uses a control parameter T, which by analogy with

the original application, is known as the system
temperature

• T starts out high and gradually decreases toward 0

https://en.wikipedia.org/wiki/Simulated_annealing

SA intuitions
• Combines hill climbing (for efficiency) with random

walk (for completeness)
• Analogy: getting a ping-pong ball into the deepest

depression in a bumpy surface
–Shake the surface to get the ball out of local minima
–Don’t shake too hard to dislodge it from global minimum

• Simulated annealing:
–Start shaking hard (high temperature) and gradually

reduce shaking intensity (lower temperature)
–Escape local minima by allowing some “bad”moves
–But gradually reduce their size and frequency

https://en.wikipedia.org/wiki/Random_walk

Simulated annealing
• “bad”move from A to B accepted with prob.

-(f(B)-f(A)/T)
e

• The higher the temperature, the more likely
it is that a bad move can be made

• As T tends to zero, probability tends to zero,
and SA becomes more like hill climbing

• If T lowered slowly enough, SA is complete
and admissible

• Finding the proper rate to lower is still an
issue

Local beam search
• Basic idea
–Begin with k random states
–Generate all successors of these states
–Keep the k best states generated by them

• Provides a simple, efficient way to share
some knowledge across a set of searches

• Stochastic beam search is a variation:
– Probability of keeping a state is a function

of its heuristic value

Genetic algorithms (GA)
• Search technique inspired by evolution
• Similar to stochastic beam search
• Start with initial population of k random states
• New states generated by mutating a single

state or reproducing (combining) two parent
states, selected according to their fitness
• Encoding used for genome of an individual

strongly affects the behavior of search

Ma and Pa solutions

8 Queens problem

•Represent state by a
string of 8 digits in {1..8}
• S = ‘32752411’
• Fitness function = # of

non-attacking pairs
• F(Ssolution) = 8*7/2 = 28
• F(S1) = 24 State S1

Genetic algorithms

Ma Pa Offspring

Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min=0,
max=(8 × 7)/2 = 28)

• Probability of mating is a function of fitness score
• Random cross-over point for a mating pair chosen
• Resulting offspring subject to a random mutation with probability

Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min=0,
max=(8 × 7)/2 = 28)

• Probability of mating is a function of fitness score
• Random cross-over point for a mating pair chosen
• Resulting offspring subject to a random mutation with probability

Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min=0,
max=(8 × 7)/2 = 28)

• Probability of mating is a function of fitness score
• Random cross-over point for a mating pair chosen
• Resulting offspring subject to a random mutation with probability

Ant Colony Optimization
A probabilistic search technique for problems
reducible to finding good paths through graphs

Inspiration
• Ants leave nest
•Wander, discover

food
• Return to nest, pre-

ferring shorter paths
• Leave pheromone trail
• Shortest path is

reinforced

An example of agents communicating through their environment

http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

Taboo search

• Problem: Hill climbing can get stuck on
local maxima
• Solution: Maintain a list of k previously

visited states, and prevent the search
from revisiting them
• An example of a metaheuristic

https://en.wikipedia.org/wiki/Tabu_search
https://en.wikipedia.org/wiki/Metaheuristic

Online search
• Nothing to do with Web search!
• Involves interleave computation AND action
– search some, act some, repeat

• Exploration: Can’t be sure of action out-
comes; must perform them to know result

• More realistic approach for many problems
• Relatively easy if actions are reversible (ONLINE-

DFS-AGENT)
• LRTA* (Learning Real-Time A*): Update h(s)

(in state table) based on experience

Other topics

• Search in continuous spaces
– Different math

• Search with uncertain actions
– Must model the probabilities of an actions results

• Search with partial observations
–Acquiring knowledge as a result of search

Summary: Informed search
• Hill-climbing algorithms keep only a single state

in memory, but can get stuck on local optima
• Simulated annealing escapes local optima, and is

complete and optimal given a “long enough”
cooling schedule
• Genetic algorithms can search a large space by

modeling biological evolution
• Online search algorithms are useful in state

spaces with partial/no information

