
Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Informed
Search

Chapter 4 (a)

Today’s class
• Heuristic search
• Best-first search
–Greedy search
–Beam search
–Algorithms A and A*
–Examples

• Memory-conserving variations of A*
• Heuristic functions

Big idea: heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to discover]
involving or serving as an aid to learning, discovery, or problem-solving by
experimental and especially trial-and-error methods

Free On-line Dictionary of Computing
heuristic 1. <programming> A rule of thumb, simplification or educated
guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

WordNet
heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to a
general formulation that serves to guide investigation [ant: algorithmic] n :
a commonsense rule (or set of rules) intended to increase the probability
of solving some problem [syn: heuristic rule, heuristic program]

https://en.wikipedia.org/wiki/Heuristic
https://www.merriam-webster.com/dictionary/heuristic
http://foldoc.org/heuristic
http://wordnetweb.princeton.edu/perl/webwn?s=heuristic&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=

Informed methods add
domain-specific information

• Select most promising path along which to
continue searching

• h(n): estimates goodness of node n
• h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.
• Estimates how close a state n is to a goal

using domain-specific information

Heuristics
• All domain knowledge used in search is encoded

in the heuristic function, h(<node>)
• 8-puzzle example:
–Number of tiles out of place

• Better 8-puzzle heuristic:
–Sum of distances for each tile to its goal position

• In general
– h(n) >= 0 for all nodes n
– h(n) = 0 implies that n is a goal node
– h(n) = ∞ implies n is a dead-end that can’t lead to goal

Weak vs. strong methods
• Weak methods are extremely general methods not

tailored to a specific situation or domain, e.g.:
–Generate and test: generate solution candidates and test until

you find one
–Means-ends analysis: represent current situation & goal, then

seek ways to shrink differences between them
– Space splitting: list possible solutions to a problem, then try to

rule out classes of the possibilities
– Subgoaling: split large problem into smaller ones that can be

solved one at a time
• Called weak because they don’t use more powerful,

domain-specific heuristics; strong methods are specific
to a particular problem
• Weak methods useful when we don’t have a strong one

Heuristics for 8-puzzle

Misplaced
Tiles
Heuristic

• Three tiles are misplaced (the 3, 8, and 1)
so heuristic function evaluates to 3

• Heuristic says that it thinks a solution may
be available in 3 or more moves

• Very rough estimate, but easy to calculate

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

h = 3

(not including
the blank)

3 2 8
4 5 6
7 1

3 tiles are not
where they
need to be

Heuristics for 8-puzzle

Manhattan
Distance
Heuristic

• The 3, 8, and 1 tiles misplaced by 2, 3, and
3 steps, so heuristic function evaluates to 8

• Heuristic says that it thinks a solution may
be available in 8 or more moves

• More accurate than the misplaced heuristic,
but slightly more expensive to compute

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

3 3

8

8

1

1

2 steps

3 steps

3 steps

h = 8

(not including
the blank)

5

6 4

3

4 2

1 3 3

0 2

Use heuristics to
guide search

In this hill climbing
example, Manhattan
Distance heuristic
helps quickly find a
solution to the puzzle

At a node, compute
all possible next
states, move to one
with lowest value

h(n)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

1 2 3
4 8
7 6 5

87

http://en.wikipedia.org/wiki/Hill_climbing

1 2 3
4 5 8
6 7

1 2 3
4 5
6 7 8

1 2 3
4 5 8
6 7

1 2 3
4 5
6 7 8

1 2
4 5 3
6 7 8

6

7 5

6 6

In this example,
hill climbing
doesn’t work!

All nodes on
fringe are taking a
step “backwards”
(local minima)

This puzzle is
solvable in just 12
more steps

h(n)

Best-first search
• Search algorithm that improves depth-first

search by expanding most promising node
chosen according to heuristic rule

• Order nodes on nodes list by increasing value
of an evaluation function, f(n), incorporating
domain-specific information

• f(n) = g(n) + h(n) where
o g(n) = distance from start node to node n
o h(n) = heuristic estimate of distance from n to a goal

• Using the f(n) concept is a generic framework
for search methods

http://en.wikipedia.org/wiki/Best_first_search

Greedy best first search search
• A greedy algorithm makes locally optimal

choices in hope of finding a global optimum
• Uses evaluation function f(n) = h(n), sorting

nodes by increasing values of f
• Selects node to expand appearing closest

to goal, i.e., node with smallest f value
• Not complete (why?)
• Not admissible, as in example
–Assume arc costs = 1, greedy search finds

goal g, with solution cost of 5
–Optimal solution: path to goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule

Beam search
• Use evaluation function f(n)=h(n), but max size

of the nodes list is k, a fixed constant
• Only keeps k best nodes as candidates for

expansion, discard rest
• k is the beam width
• More space efficient than greedy search, but

may discard nodes on a solution path
• As k increases, approaches best first search
• Not complete
• Not admissible (optimal)

http://en.wikipedia.org/wiki/Beam_search

Algorithm A
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•g(n) adds “breadth-first”term

to evaluation function
•Ranks nodes on search frontier by

estimated cost of solution from
start node via given node to goal
•Not complete if h(n) can = ∞
•Not admissible (optimal)

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

C is chosen next to expand

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9

http://en.wikipedia.org/wiki/A*_search_algorithm

Algorithm A
1 Put start node S on the nodes list, called OPEN
2 If OPEN is empty, exit with failure
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n
1 If n’ not already on OPEN or CLOSED
• put n' on OPEN
• compute h(n’) then set g(n')=g(n)+ c(n,n’); f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new
version of n', then:
• Redirect pointers backward from n’ on path with lower g(n’)
• Put n' on OPEN

Algorithm A*
• Pronounced “a star”
• Algorithm A with constraint that h(n) <= h*(n)
–h*(n) = true cost of minimal cost path from n to goal
–So: h(n) never overestimates cost to get from n to goal

• h is admissible when h(n) <= h*(n) holds
• Using an admissible heuristic guarantees that 1st

solution found will be an optimal one
• A* is complete whenever branching factor is finite

and every action has fixed, positive cost
• A* is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

Observations on A
• Perfect heuristic: If h(n)=h*(n) for all n, only nodes on

an optimal solution path expanded; no extra work done
• Null heuristic: If h(n) = 0 for all n, then it’s an admissible

heuristic; A* acts like uniform-cost search

• Better heuristic: If h1(n) < h2(n) ≤ h*(n) for all non-goal
nodes, then h2 is a better heuristic than h1
– If A1* uses h1, and A2* uses h2, then every node

expanded by A2* is also expanded by A1*
– i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*
• The closer h to h*, the fewer extra nodes expanded

Example search space

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Example search space

S

CBA

D GE

1 5 8

9 4 5
3

7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

parent pointer
(for current best
known path) 0

1

4 8 9

85

g value (current)

Example
n g(n) h(n) f(n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 ∞ ∞ ∞
E 8 ∞ ∞ ∞
G 9 0 9 0

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

https://en.wikipedia.org/wiki/Oracle_machine

Greedy search
f(n) = h(n)
node expanded nodes list

{S(8)}
S {C(3) B(4) A(8)}
C {G(0) B(4) A(8)}
G {B(4) A(8)}

• Solution path found is S C G
• 3 nodes expanded
• Search was fast! But path is NOT optimal
• It didn’t take into account high cost (8) to get to C
• Greedy algorithms make locally optimal choices at

each step

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Queue of nodes on
fringe ordered by f()
• Pop leftmost node

off queue
• If a goal, done
• Else compute its

successor & update
queue and graph

https://en.wikipedia.org/wiki/Greedy_algorithm

A* search
f(n) = g(n) + h(n)

expand fringe
{S(8)}

S {A(9) B(9) C(11)}
A {B(9) G(10) C(11) D(inf) E(inf)}
B {G(9) G(10) C(11) D(inf) E(inf)}
G {C(11) D(inf) E(inf)}

• Solution path found is S B G, 4 nodes expanded.
• Estimates total cost of path to try to find global optimum
• Still pretty fast. And optimal, too [assuming h(n)<h*(n)]

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

h(S)=8
h(A)=8
h(B)=4
h(C)=3
h(D)=inf
h(E)=inf
h(G)=0

Proof of the optimality of A*
• Assume that A* has selected G2, a goal state

with a suboptimal solution, i.e., g(G2) > f*
• Proof by contradiction shows it’s impossible
–Choose a node n on an optimal path to G
–Because h(n) is admissible, f* >= f(n)
– If we choose G2 instead of n for expansion, then

f(n) >= f(G2)
–This implies f* >= f(G2)
–G2 is a goal state: h(G2) = 0, f(G2) = g(G2).
–Therefore f* >= g(G2)
–Contradiction

Dealing with hard problems
• For large problems, A* may need too much space
• Variations conserve memory: IDA* and SMA*
• IDA*, iterative deepening A*, uses successive

iteration with growing limits on f, e.g.
– A* but don’t consider a node n where f(n) >10
– A* but don’t consider a node n where f(n) >20
– A* but don’t consider a node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*
– Uses queue of restricted size to limit memory use

Finding good heuristics
• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than

(dominates) h1
• Relaxing problem: remove constraints for easier

problem; use its solution cost as heuristic function
• Max of two admissible heuristics is a “combining

heuristic”: admissible heuristic, and it’s better!
• Use statistical estimates to compute h; may lose

admissibility
• Identify good features, then use machine learning

to find heuristic function; also may lose admissibility

Use A or A*?

• Finding a good heuristic that’s always an
underestimate can be hard
– Some are impactable for real problems because they’re

expensive to compute or lead to large search spaces

• We may be happy with solutions that are at
least close to an optimal one

• For many problems, using a fast heuristic that
sometimes overestimates is a good choice

• Still, for some problems might be worth the
effort to find an optimal solution

Informal plot of cost of searching and cost of computing heuristic
evaluation against informedness of heuristic, Nils Nilsson, Principles of
Artificial Intelligence (1980)

What’s in a Name?

• Why are these algorithms named A
and A*?

• To find out, read this short piece in
CACM:

James W. Davis, Jeff Hachtel, A* Search:
What's in a Name?, Communications of the
ACM, Jan. 2020, Vol. 63 No. 1, Pages 36-37

https://cacm.acm.org/magazines/2020/1/241713-a-search/fulltext

Summary: Informed search
•Best-first search is general search where minimum-cost

nodes (w.r.t. some measure) are expanded first
•Greedy search uses minimal estimated cost h(n) to goal

state as measure; reduces search time, but is neither
complete nor optimal
•A* search combines uniform-cost search & greedy

search: f(n) = g(n) + h(n). Handles state repetitions &
h(n) never overestimates
–A* is complete & optimal, but space complexity high
–Time complexity depends on quality of heuristic function
–IDA* and SMA* reduce the memory requirements of A*

