
Search in
Python

Chapter 3

Today’s topics

• AIMA Python code
• What it does
• How to use it
• Worked example: water jug

program

Install AIMA Python ?

• Aimacode is a GitHub repo of python code linked
to the AIMA book
• It’s not available for pip installing L
– Per Peter Norvig’s recommendation

• One workaround is to:
– Clone repo on your computer and follow instructions in its

readme file
– Add directory to your PYTHONPATH environment variable
– Use it with Binder

https://github.com/aimacode/aima-python
https://norvig.com/
https://github.com/aimacode/aima-python/blob/master/README.md
https://www.devdungeon.com/content/python-import-syspath-and-pythonpath-tutorial
https://mybinder.org/

Two Water Jugs Problem

• Given two water jugs, J1 and J2, with
capacities C1 and C2 and initial amounts W1
and W2, find actions to end up with amounts
W1’ and W2’ in the jugs

• Example problem:
–We have a 5 gallon and 2 gallon jug
– Initially both are full
–We want to end up with exactly one gallon

in J2 and don’t care how much is in J1

5 2

AIMA’s search.py
• Defines a Problem class for a search problem
• Has functions to do various kinds of search given

an instance of a Problem, e.g., BFS, DFS, & more
• InstrumentedProblem subclasses Problem and is

used with compare_searchers for evaluation
• To use for WJP:
1.Decide how to represent it (i.e., state, actions, goal);
2.Define WJP as a subclass of Problem; and
3.Provide methods to (a) create a WJP instance, (b)

compute state successors, and (c) test for a goal

Example: Water Jug Problem

Given full 5-gal. jug
and empty 2-gal. jug,
fill 2-gal jug with one
gallon
•State = (x,y), where x is
water in jug 1; y is water
in jug 2
• Initial State = (5,0)
•Goal State = (-1,1), where
-1 means any amount

Name Cond. Transition Effect

dump1 x>0 (x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,y)→(x-D,y+D)
D = min(x,C2-y)

Pour from Jug
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,y)→(x+D,y-D)
D = min(y,C1-x)

Pour from Jug
2 to Jug 1

Action table

5 2

Our WJ problem class
class WJ(Problem):

def __init__(self, capacities=(5,2), initial=(5,0), goal=(0,1)):
self.capacities = capacities
self.initial = initial
self.goal = goal

def goal_test(self, state): # returns True iff state is a goal state
g = self.goal # -1 is a don’t care
return (state[0] == g[0] or g[0] == -1) and

(state[1] == g[1] or g[1] == -1)

def __repr__(self): # returns string representing the object
return f"WJ({self.capacities},{self.initial},{self.goal}"

5 2

Note: f-string

Returns list of possible actions in state

def actions(self, state):
(J1, J2) = state
(C1, C2) = self.capacities
acts = []
if J1>0: acts.append(('dump', 1))
if J2>0: acts.append(('dump', 2))
if J2<C2 and J1>0: acts.append(('pour', 1, 2))
if J1<C1 and J2>0: acts.append(('pour', 2, 1))
return acts # returns empty list if none possible

Note: we represent
an action as a tuple
of its name and
arguments, e.g.
• (dump, 1)
• (pour 2, 1)

Result returns
successor

state

def result(self, state, action):
""" Given state and action, returns successor

after doing action"""
if len(action) == 2: # eg (‘dump’, 1)

act, arg1 = action
else: # eg (‘pour’, 1, 2)

act, arg1, arg2 = action
(J1, J2), (C1, C2) = state, self.capacities
if act == 'dump':

return (0, J2) if arg1 == 1 else (J1, 0)
elif act == 'pour':

if arg1 == 1:
delta = min(J1, C2-J2)
return (J1-delta, J2+delta)

else:
delta = min(J2, C1-J1)
return (J1+delta, J2-delta)

Note: the AIMA
code will call this
for each possible
action that can be
done in a state

So, we don’t need to
check if the action is
possible in the state

Our WJ problem class

def h(self, node):
heuristic function that estimates distance
to a goal node
return 0 if self.goal_test(node.state) else 1

Note: this is only
useful for informed
search algorithms

For uninformed
algorithms, we don’t
worry about finding
a least costly path

Solving a WJP
code> python
>>> from wj import * # Import wj.py and search.py
>>> from search import *
>>> p1 = WJ((5,2), (5,2), (-1, 1)) # Create a problem instance
>>> p1
WJ((5, 2),(5, 2),(-1, 1))
>>> answer = breadth_first_search(p1) # Used the breadth 1st search function
>>> answer # Will be None if the search failed or a
<Node (0, 1)> # a goal node in the search graph if successful
>>> answer.path_cost # The cost to get to every node in the search graph
6 # is maintained by the search procedure
>>> path = answer.path() # A node’s path is the best way to get to it from
>>> path # the start node, i.e., a solution
[<Node (5, 2)>, <Node (5, 0)>, <Node (3, 2)>, <Node (3, 0)>, <Node (1, 2)>, <Node (1, 0)>, <Node (0,
1)>]

Comparing Search Algorithms Results

Uninformed searches: breadth_first_tree_search,
breadth_first_search, depth_first_graph_ search,
iterative_deepening_search, depth_limited_ search
• All but depth_limited_search are sound (i.e.,

solutions found are correct)
• Not all are complete (i.e., can find all solutions)
• Not all are optimal (find best possible solution)
• Not all are efficient
• AIMA code has a comparison function

Comparing Search Algorithms Results
HW2> python
Python 2.7.6 |Anaconda 1.8.0 (x86_64)| ...
>>> from wj import *
>>> searchers=[breadth_first_search, depth_first_graph_search,
iterative_deepening_search]
>>> compare_searchers([WJ((5,2), (5,0), (0,1))], ['SEARCH ALGORITHM',
'successors/goal tests/states generated/solution'], searchers)
SEARCH ALGORITHM successors/goal tests/states generated/solution
breadth_first_search < 8/ 9/ 16/(0, >
depth_first_graph_search < 5/ 6/ 12/(0, >
iterative_deepening_search < 35/ 61/ 57/(0, >
>>>

The Output
hhw2> python wjtest.py -s 5 0 -g 0 1
Solving WJ((5, 2),(5, 0),(0, 1)

breadth_first_tree_search cost 5: (5, 0) (3, 2) (3, 0) (1, 2) (1, 0) (0, 1)
breadth_first_search cost 5: (5, 0) (3, 2) (3, 0) (1, 2) (1, 0) (0, 1)
depth_first_graph_search cost 5: (5, 0) (3, 2) (3, 0) (1, 2) (1, 0) (0, 1)
iterative_deepening_search cost 5: (5, 0) (3, 2) (3, 0) (1, 2) (1, 0) (0, 1)
astar_search cost 5: (5, 0) (3, 2) (3, 0) (1, 2) (1, 0) (0, 1)

SUMMARY: successors/goal tests/states generated/solution
breadth_first_tree_search < 25/ 26/ 37/(0, >
breadth_first_search < 8/ 9/ 16/(0, >
depth_first_graph_search < 5/ 6/ 12/(0, >
iterative_deepening_search < 35/ 61/ 57/(0, >
astar_search < 8/ 10/ 16/(0, >

