The Semantic

Web

Asresearcherscontinue
to create new languages
in the hope of developing
a Semantic\Web, they il
lack consensuson a
gandard. Theauthors
describe how Protégé-
2000—a tool for
ontology development
and knowledge
acquisition—can be
adapted for editing
modelsin different
Semantic\Web

languages.

Creating Semantic
Web Contents with
Protege-2000

Natalya F. Noy, Michael Sintek, Stefan Decker, M onica Crubézy, Ray W. Ferger son, and

Mark A. Musen, Stanford University

B ecause we can process only atiny fraction of information available on the Web,

we must turn to machinesfor help in processing and analyzing its contents. With

current technol ogy, machines cannot understand and interpret the meaning of theinfor-

mation in natural-language form, which is how most Web information is represented

today. We need a Semantic Web to expressinforma-
tion in aprecise, machine-interpretable form, so soft-
ware agents processing the same set of datasharean
understanding of what the terms describing the data
mean.t

Consequently, we've recently seen an explosion
in the number of Semantic Web languages devel-
oped. Because researchers and devel opers haven't
yet reached a consensus on which language is the
most suitable, which features each language must
have, or which syntax isthe most appropriate, we are
likely to see even more languages emerge. We need
to develop toolsthat will let us experiment with these
new languages so we can compare their expressive-
ness and features, change language specifications,
and select a suitable language for a specific task.

Inthisarticle, we describe Protégé-2000, agraph-
ical tool for ontology editing and knowledge acqui-
sition that we can adapt to enable conceptual model-
ing with new and evolving Semantic Web languages.
Protégé-2000 | ets us think about domain modelsat a
conceptual level without having to know the syntax
of the language ultimately used on the Web. We can
concentrate on the concepts and relationshipsin the
domain and the facts about them that we need to
express. For example, if we are developing an ontol-
ogy of wines, food, and appropriate wine-food com-
binations, we can focus on Bordeaux and lamb
instead of markup tags and correct syntax.

Naturally, designing anew tool specifically for a
new language could be better than adapting an exist-
ing tool. We can offer several reasons, however, for

adapting an existing tool at the stage where no sin-
gle language has emerged as the winner. First, we
can experiment with emerging languages without
committing enormous amounts of resourcesto cre-
ating tools that are custom-tailored for these lan-
guages—only to decide later that the languages are
not suitable. Second, Protégé-2000 already provides
considerable functionality that anew tool will need
to replicate, both at the modeling and user-interface
levels. Third, using different customizations of the
same tool to edit ontologies in different languages
gives us most of the translation among the models
inthelanguages“for free” Trand ating amodel from
one language to another becomes as easy as select-
inga“saveas...” item from amenu.

Semantic Web languages

Al researchers have used ontologies for along
time to express formally a shared understanding of
information. An ontology isan explicit specification
of the conceptsin adomain and the relations among
them, which providesaformal vocabulary for infor-
mation exchange. Specific instances of the concepts
defined in the ontol ogies—instance data—paired
with ontol ogies constitute the basis of the Semantic
Web. In recent experimentsto prototype the Seman-
tic Web, membersof different communitieswith dif-
ferent backgrounds and goals in mind have created
amultitude of languagesfor representing ontologies
and instance dataon the Web (see Tablel). Typically,
a Semantic Web language for describing ontologies
and instance datacontains a hierarchical description

60

1094-7167/01/$10.00 © 2001 |EEE

IEEE INTELLIGENT SYSTEMS

Table 1. A selection of Semantic Web languages.

Language Description URL

XOL XML-based ontology-exchange language www.ai.sri.com/~pkarp/xol

Topic Maps IS0 standard for describing knowledge structures www.topicmaps.org

SHOE Simple HTML Ontology Extensions www.cs.umd.edu/projects/plus/SHOE
RDF and Resource description framework and www.w3.0rg/RDF

RDFS RDF Schema

DAML+OIL DARPA Agent Markup Language + www.daml.org

Ontology Inference Layer

of important conceptsin adomain (classes).
Individuals in the domain are instances of
these classes, and properties (slots) of each
classdescribe variousfeatures and attributes
of the concept. Logical statements describe
relations among concepts. For example, con-
sider an ontology describing wines, food, and
appropriate wine-food combinations. Some
of the classes describing thisdomain are Wine,
Wineries, and different types of Food. Some
propertiesof the Wine classincludethewine's
flavor, body, sugar level, and the winery that pro-
duced it.

These notions are present in many Seman-
tic Web languages existing today including
SHOE, Topic Maps, XOL, RDF and RDFS,
and DAML+OIL.

The SHOE (Simple HTML Ontology
Extensions) language, devel oped at the Uni-
versity of Maryland, introduces primitivesto
define ontology and instance data on Web
pages. Classesare called categoriesin SHOE.
Categoriescongtituteasimpleis-a hierarchy,
and slots are binary relations. SHOE also
allowsrelationsamong instances or instances
and data to have any number of arguments
(not just binary relations). Horn clauses
expressintensional definitionsin SHOE.

The Hytime community developed Topic
Maps, a recent ISO standard (ISO/IEC
13250). Topic Maps aim to annotate docu-
ments with conceptual information. Topics
correspond to classes in other ontology lan-
guages and can be linked to documents. Top-
icsareinstances of Topic Types (other topics),
which can berelated to one another with Asso-
ciations. Associations correspond closely to
slots in other ontology languages. Associa-
tions belong to Association Types, which are
again Topics. Topic Maps do not have a spe-
cialized primitive for representing instances.
Any instance of atopic type can act asatopic
typeitself.

The bioinformatics community designed
XOL for the exchange of ontologies in the
field of bioinformatics. It evolved to become
ageneral language for interchange of ontol-
ogy and instance data. Being an interchange
language, XOL includes primitivesfoundin
many knowledge-representation systems,
object databases, and relational databases. It
provides meansto define classes, aclasshier-
archy, slots, facets, and instances.

RDF (resource description framework)
provides agraph-based data model, consist-
ing of nodes and edges. Nodes correspond to

objects or resources and the edges to prop-
erties of these objects. The labels on the
nodes and edges are Uniform Resource I den-
tifiers (URIs). However, RDF itself does not
defineany primitivesfor creating ontologies.
Itisthe basisfor several other ontol ogy-def-
inition languages such as RDFS and
DAML+OIL.

RDF Schema? defines the primitives for
creating ontologies. Figure 1 showsan exam-
ple of a graph representing our ontology of
wines as an RDFS. In RDFS, there are
classes of concepts, which constitute a hier-
archy with multiple inheritance. For exam-
ple, the class Wine is a subclass of the class
Drink. Classes typically have instances (for
example, a specific red wine is an instance
of the Red Wine class) and aresource can bean
instance of more than one class (for exam-
ple, Romariz Port is an instance of both the Red
Wine and the Dessert Wine classes). Resources
have properties associated with them (for
example, Wine hasflavor). Properties describe
attributes of a resource or a relation of a
resource to another resource. RDFS defines
aproperty’s domain—resources that can be
subjects of the property—and a property’s
range—resources that can be objects of the

rdf:type

d:White_wine

rdfs:subClassOf

rdfs:Class

rdf:Property

rdfs:range

d:Winery

Figure 1. An RDF Schema graph representing the Wine ontology.

MARCH/APRIL 2001

computer.org/intelligent

61

The

Web

Semantic

E’.’wines Protégé-2000 [D:\Protege\Tutorial\Wines\wines._pprj) The tabs representing different _ (O] x|
Project Edit Window Help views offg knot\(vled_g? baset_and the
contiguration information
ol#lo] -1 [=]s D
(€] crasses [[S]]] : |
Relatmnshm|5uperclass ~ | v| c] o] xS wne
: T -
o] IC,IDrmk = i| Name Documentation Constraints ‘W C;ﬂ»
b 2
@ C'VE'_"B 2 |Wine | A wine class represents all]
©- (C) White wine : possible wines i
? (©)Red wine Role i
(C) Beaujolais }
o] (E:[I Red Burgundy |Cnncrete hd | f&
(C) Red Zinfandel - i
© Bordeaux Template Slots H/ m g‘;
? (CiMedoc : Name | Type | Cardinality | Other Facets §§
() Pauiliac S| body Symbol single allowed-values={FULL,MEDIUM,LIGHT} B
O Margaux S| color Symbol single allowed-values={RED,ROSE WHITE}
EEiISt' Emillion 2l Eﬂavur Symbol single allowed-values={DELICATE MODERATE,STRONG} f.
. (L) Graves 1 [S] grape Instance multiple classes={Wine grape} E
i‘.:C::fSauterne | [S] maker ! Instance single classes={Winery} B
(C) Cabernet Ngnc ‘| [S]name String single
(L) Cabemet SaQ4gnon A [8] sugar Symbol single allowed-values={DRY,SWEET,0F F-Db
(C) Merlat :
(C) Pinot Noir : The facets
} N aal il
A T e) 7 N I LA
The class hiearchy The slot definition

—

Figure 2. A snapshot of the ontology representing wines. The tree on the left represents a class hierarchy. The form on the right

shows the definition of the Wine class.

property. For example, the property maker
may have a class Wine as its domain and a
class Winery asitsrange.

DAML+OIL (DARPA Agent Markup lan-
guage + Ontology Inference Layer)? takes a
different approach to defining classes and
instances. In addition to defining classes and
instances declaratively, DAML+OIL and
other description-logics languages et us cre-
ateintensional classdefinitionsusing Boolean
expressions and specify necessary, or neces-
sary and sufficient, conditionsfor classmem-
bership. These languages rely on inference
engines (classifiers) to compute a class hier-
archy and to determine class membership of
instances based on the properties of classes
and instances. For example, we can define a
class of Bordeaux wines as “aclass of wines
produced by awinery inthe Bordeaux region.”
In DAML+OIL, we can aso specify global
properties of classes and dots. For example,
we can say that the location ot istransitive: if
awinery islocated in the Bordeauix region and
theBordeaux regionislocated in France, then
the winery is in France. We will describe
DAML+OIL in more detail later.

We can see from this discussion that
Semantic Web languages for representing
ontologies and instance data have many fea-
turesin common. At the sametime, thereare
significant differences stemming from dif-
ferent design goals for the languages. In
adapting Protégé-2000 as an editor for these
languages, we build on the similarities
among them and custom-tailor the tool to
account for theindividual differences.

Protégé-2000

For many years now, experts in domains
such as medicine and manufacturing have
used Protégé-2000 for domain modeling. We
show not only how we adapt Protégé-2000
to the new world of the Semantic Web—
reusing its user interface, internal represen-
tation, and framework—Dbut also how our
changes enable conceptual modeling with the
new Semantic Web languages.

Protégé-2000 is highly customizable,
which makesits adaptation asan editor for a
new language faster than creating anew edi-
tor from scratch. The following features
make this customization possible:

* An extensible knowledge model. We can
redefine declaratively the representational
primitives the system uses.

« Acustomizable output file format. We can
implement Protégé-2000 components that
translate from the Protégé-2000 internal
representation to a text representation in
any formal language.

¢ A customizable user interface. We can
replace Protégé-2000 user-interface com-
ponents for displaying and acquiring data
with new componentsthat fit the new lan-
guage better.

¢ An extensible architecture that enables
integration with other applications. We
can connect Protégé-2000 directly to
external semantic modules, such as spe-
cific reasoning engines operating on the
modelsin the new language.

Protégé-2000 knowledge model
Protégé-2000's representational primi-
tives—the elements of its knowledge
model4—are very similar to those of the
Semantic Web languages that we described
earlier. Protégé-2000 has classes, instances

62

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

of these classes, slots representing attributes
of classes and instances, and facets express-
ing additional information about slots.

Figure 2 shows an example definition of a
class, whichispart of an ontology describing
wines, food, and desirable wine-food com-
binations. In the figure, the tree on the left
representsaclass hierarchy. The class of Pail-
lac wines, for instance, is a subclass of the
class of Médoc wines. In other words, each
Pavillac wineis aMédoc wine. The class of Médoc
winesis, in turn, a subclass of Red Bordeaux
winesand so on. Theformontherightin Fig-
ure 2 represents the definition of the selected
class (Wine). There is the name of the class,
its documentation, a list of possible con-
straints, and definitions of slots that the
instances of thisclasswill have. Instances of
the classWine will have slots describing their
flavor, body, sugar level, the winery that produced
the wine, and so on.

Theformin Figure 3 displays an instance
of the class Pavillac representing Chiteau Lofite
Rothschild Pavillac, and the fields display the slot
valuesfor that instance. Therefore, we know
that Chéteau L afite Rothschild Pavillac hasa
full body and strong flavor among other
properties. Both the class-definition forms
(the right-hand side in Figure 2) and the
instance-definition forms (Figure 3) are
knowledge-acquisition forms in Protégé-
2000. The fields on the knowledge-acquisi-
tion forms correspond to slot values, and we
define classesand instancesby filling in slot
values in these fields. Protégé-2000 gener-
atesknowledge-acquisition forms automati-
cally based on the types of the slots and
restrictions on their values.

The Protégé-2000 user interface (Figure
2) consists of several tabsfor editing differ-
ent elements of a knowledge base and cus-
tom tailoring the layout of the knowledge-
acquisition forms, such as the forms in
Figures 2 and 3. The Classes tab defines
classes and slots, and the Instances tab
acquires specific instances. The Forms tab
allows us to change the layout and the con-
tents of the knowledge-acquisition forms.

We can customize almost al of the Pro-
tégé-2000 features we have described to fit
aspecific domain or task by

» changing declaratively the standard class
and slot definitions;

« changing the content and the layout of the
knowledge-acquisition forms; and

* developing plug-ins using the Protégé-
2000 application-programming interface.

Let’slook at how we can customize Pro-
tégé-2000 and then see how we can use this
flexibility to create Protégé-based editorsfor
new Semantic Web languages.

Changing the notion of classes
and slots

The definition of the Wine classin Figure 2
isastandard class definition in Protégé-2000,
with a class name, documentation, list of
dlots, and so on. What if we need to add more
attributesto aclass definition, or change how
aclasslooks, or changethe default definition
of aclass in the system? For instance, we
might want to add alist of afew best winer-
ies for each type of wine in the hierarchy.
Such alist is a property of aclass (such as
Pavillac wines) rather than a property of spe-
cific instances of the class (such as Chéteau
Lafite Rothschild Pavillac). The list of the best
wineriesfor aclassisnot inherited by itssub-
classes: The best wineries producing red Bor-
deaux are not necessarily the same asthe best
Médoc or Pauillac wineries (although, they
may overlap). Therefore, this list must
become a part of aclass definition the same
way asdocumentation isapart of aclassdef-
inition. The Protégé-2000 metaclass archi-
tecture lets us do just that.*°

Metaclasses are templates for classesin
the same way that classes are templates for
instances. We can define our own meta-
classesand effectively change adefinition of
what aclassis, in the same way we would
defineanew class. The default Protégé-2000
template (the standard metacl ass) definesthe
fieldsthat we seein Figure 2. We can extend
declaratively this standard definition of what

Name

‘Chateau Lafite Rothschild Pauillac

g% Chateau Lafite Rothechild Pauillac [Pauillac)

a class is with new fields of any type by
defining a new metaclass, which simply
becomes a part of the knowledge base. Fig-
ure 4 shows a definition of the Red Bordeaux
classthat includesthe additional field with a
list of the best Bordeaux wineries.

Similarly, we can define new metaslots as
user-defined templates for new dots. If slot
definitionsin our system must havefieldsin
addition to the ones that Protégé-2000 has,
we simply define new templates where we
describe these new fields.

Custom-tailoring slot widgets for
value acquisition

Thelook and behavior of thefieldson the
knowledge-acquisition forms in Figures 2
and 3 depend on the types of the values that
thefields cantake. A field for astring value,
such as aclass name, has asimple text win-
dow. A field that contains alist of complex
valuesis alist box with buttons to add and
remove values and to create new values.
Thesefieldsare called ot widgets. They not
only display the values appropriately, but also
help to ensure that the values are correct
based on the slot definitionsin the ontology.
For example, the maker of awine must be a
winery—an instance of the Winery class. The
slot widget for the maker slot in Figure 3 lets
us set the value only to a Winery instance.

Developers can extend Protégé-2000 by
implementing their own slot widgetsthat are
tailored to acquire and verify particular kinds
of values. Suppose we wanted to be more
precise about the sugar level in wine and to
mark it on ascale rather than simply choos-
ing among three values—dry, sweet, or off-dry.

ok NEED

<I» Chateau Lafite Rothschild

el

Grape

i Cabernet Sauvignon grape

Boky Color

FuLL - |

Flavor Tannin Level

| STRONG ~| |MODERATE ~
Sugar

|DRY |

Figure 3. An instance of the class Pauillic representing the (hteau Lafite Rothschild Pavillac. This
wine has a full body, a sirong flavor, and a moderate tannin level, among other properties.

MARCH/APRIL 2001

computer.org/intelligent

63

The

Semantic Web

i wines Protégé-2000

Project Edit Window Help

[D:\ProtegeiT utonal\Wines\wines_pprj)

ojs)@ o~ [&®
[(c]) Crasses |[S]]|

Relationship Supe.. v [V][C[[2] %
(T winery =
@ (C) wine region &
¢ (© consumable thing
@ (C)Food
% (© Drink
@ (CWine 2
@ (T)White wine
% () Red wine =
(T Beaujolais :
© (C)Red Burgundy |
(C)Red Zinfandel |
o @ Bordeausx
(C) Sauterne
(C) cabemet Franc
(C) Cabernet Sauvigh
'CC:Z' Merlot
() Pinot Moir
(C) Chianti

Superclasses

(C) Red wine

(C) Bordeaux (Wine template)

W

I> Chéateau Mouton-Rothschild

“| Name Documentation
IElordeaux The class of all Bordeaux wines
Role
|Cnncn!le - |
Best Wineries lv”?”T”T

@ Chateau Lafite Rothschild -
KI» Chateau Margaux :
&> Chéteau Latour

KI> Chéateau Haut-Brion

The field in the
new template

;| Template Slots mmm".—d
: Mame | Twpe | cardinality | Other Facets

i S| body Symbal single allowed-values={FULL MEDIUM LIGHT}

§§ Elcoluro Symhol single allowed-values={RED ROSE YWHITE} value={RED}

S| Ravor Symbaol single allowed-values={DELICATE MODERATE, STRONG}

: [S] grape Instance multiple classes={Wine grape}

IS maker T Instance single classes={ninery}

S| name String single

E]sugar Symbal single allowed-values={DRY,SWEET OFF-DREY?}

= bz e s o e e

Figure 4. A class definition that uses a nonstandard template. We added the best wineries slot to the standard class-definition template.

We could store the value as a number in the
sugar slot. We could use a slot widget that
would let usselect thevalue on adlider rather
than enter anumber (see Figure 5). Whenwe
customize knowledge-acquisition forms, we
choose not only the layout of the fields on
the form, but also the slot widgets that must
be used for different fields. The slot widgets
we choose do not usually affect the contents
of theknowledge baseitself, but their use can
makethelook and feel of thetool much more
suitablefor aparticular domain or language.
Slot widgetsaso can help ensuretheinternal
consistency of a knowledge base by check-
ing, for example, that an integer value that
we enter is between the allowed maximum
and minimum for that slot.

Using a back-end plug-in to
generate the right output

When we develop adomain model in Pro-
tégé-2000, we do not need to think about the
specificfileformat that Protégé-2000 will use

to save our work. We think about our domain
at the conceptudl level and create classes, dots,
facets, and instances using the graphical user
interface. Protégé-2000 then savesthe result-
ing domain models in its own file format.
Developers can change thisfile format in the
sameway they plugin dot widgets. Back-end
plug-inslet devel opers substitute the Protégé-
2000 text file format with any other file for-
mat. For example, suppose we wanted to use
XML to publish the wine ontology and other
domain model swe create using Protégé-2000.
We would then need to create an XML back
end that substitutes filesin the Protégé-2000
format with thefilesin XML. A back end cre-
ates a mapping between the in-memory rep-
resentation of aProtégé-2000 knowledge base
and thefile output in therequired format. The
back end also enables usto import thefilesin
that format into Protégé-2000. The new file
format hasthe same status asthe Protégé-2000
native file format, and the users can choose
either format for their files.

Editing Semantic Web languages
with Protégé-2000

Armed with the arsenal of toolsto custom-
tailor Protégé-2000 quickly and easily, let’s
look at what isinvolved in creating a Protégé-
2000 editor for anew Semantic Web language.
We will use the Protégé-RDFS editor devel-
oped in our laboratory as an example, but the
ideas are the same for any new language.

We start creating a Protégé-2000 editor for
our new language by determining the differ-
ences between the knowledge model s of the
two languages: the knowledge model of Pro-
tégé-2000 and the knowledge model under-
lying our language of choice. Wethen decide
which of the avail able tool s—metacl asses,
custom user-interface components, or acus-
tom back end—we will use to reconcile the
differences or to hide them from the user.

In practice, the overlap between the knowl -
edge models underlying the Semantic Web
languages available today is very large. The
models might use different terminology for

64

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

the same notion (for example, slotsin Pro-
tégé-2000 and properties in RDFS). How-
ever, the structure of the concepts, the under-
lying semantics, and therestrictionsare often
similar.

When we compare the two knowledge
models, we identify four categories of con-
cepts (see Figure 6):

1. Conceptsthat are exactly the sameinthe
two languages (possibly with different
names). Usually, classes, inheritance,
ingtances, dotsaspropertiesof classesand
instances, and many of thed ot retrictions
fall into this category.

2. Conceptsthat arethe same but expressed
differently in the two languages. For
example, Protégé-2000 associates slots
with classesby attaching aslot to aclass.
RDFS defines essentially the same rela-
tionship by defining adomain of aproperty.

3. Conceptsin our language of choice that
do not have an equivalent in Protégé-2000.
For example, RDFS dlowsan instance to
have more than onetype, whereasin Pro-
tégé-2000 each instance hasauniquedirect
type.

4. Conceptsthat Protégé-2000 supportsand
our language of choice doesnot. For exam-
ple, Protégé-2000 alows a slot to have

Name

E3 Chateau Lafite Rothschild Pauillac (Pauillac) _ (O x|

Maker

[v]e]

|Chateau Lafite Rothschild Pauillac

| <I> Chateau Lafite Rothschild

vic]

<I> Cahernet Sauvignon grape

Grape

Body Color
|FULL |
Flavor Tannin Level
| STRONG ~| |MODERATE ~
Sugar

N

A slider widget for
numeric values

<

Al

[»

Figure 5. Changing a slot widget. We use a slider instead of a simple field to acquire

numeric values for the sugar level.

morethan oneallowed classfor itsvalues,
whereas the range of aproperty in RDFS
islimitedto asingleclass.

Naturally, we can express al the features
of our languagethat fall into thefirst category
directly in Protégé-2000. We ded with thedif-
ferencesin the other three categoriesby defin-
ing appropriate metaclasses and metad otsand
by resolving the remaining changes in the
back end. We hide the differences from the
user behind custom-tailored slot widgets.

The second item on the list, the concepts
that do not have adirect equivalent in Protégé-
2000 but that can be mapped to native Pro-
tégé-2000 concepts, deserves a specia dis-
cussion. Consider domains of propertiesin
RDFS (rdfs:domain). A domain specifiesaclass
onwhich aproperty might be used. For exam-
ple, the domain of theflavor property isthe Wine
class. Protégé-2000 dlots are similar to prop-
ertiesin RDFS. Attaching adot to aclassin
Protégé-2000 al so specifiesthat aslot can be
used with that class. For example, theflavor slot

Protégé-2000

3

The new language

/

\

(1) Concepts
that are identical
semantically

(2) Concepts that can be
encoded as native Protégé
concepts

(3) Concepts that do not
have an equivalent
in native Protégé

(4) Concepts in Protégé that
do not have an equivalent
in the language

Use Protégé

Modeling concepts directly

Use native
Protégé concepts

Use metaclasses and
metaslots to encode
the information

User interface

Use custom labels and
slot widgets to hide
the differences

Use custom slot widgets
to facilitate
knowledge entry

Use knowledge-acquisition
forms to disable
the features

Map directly into
the model required
by the language

Back end

Map between the model in
Protégé and the model
required by the language

Map between the model in
Protégé and the model
required by the language

Define the means of storing
the information in the
language format

Figure 6. Comparing the knowledge models of Protégé-2000 and a new Semantic Web language.

MARCH/APRIL 2001

computer.org/intelligent

The

Semantic Web

Table 2. Creating the Protégé-based RDFS editor.

Category (1) Concepts in RDFS

to Protégé concepts

Modeling

rdfs:subClassOf =
subclass of

rdf:type = instance of

rdf:Property =
“STANDARD-SLOT

rdfs:subPropertyOf =
subslot of

rdfs:Resource = :THING

rdf:comment =
:DOCUMENTATION

User Custom labels on class

interface and slots forms (for
example, “Properties”
and “Comment”)

Back end Map Protégé concepts

directly to RDFS concepts

(2) Concepts in RDFS
that are (nearly) identical that can be encoded
as native Protégé concepts

rdfs:Class = :stanparD-cLAss Do not use explicit rdfs:domain and
rdfs:range for properties; rdfs:

domain encoded as slot attachment;
rdfs:range encoded as allowed class

(3) Concepts in RDFS
that do not have an
equivalent in native Protégé

rdfs:Class is a default for
metaclass, and rdf:Property is a
default metaslot; add properties
rdfs:isDefinedBy, rdfs:seeAlso

(4) Concepts in Protégé
that do not have
an equivalent in RDFS

Cardinality, inverse slot,
and default value facets;
multiple allowed classes
for a slot

Instance-typed slots

Translate slot attachments
as rdfs:domain for
properties and allowed

as core slots; add

rdfs:ConstraintProperty and
rdfs:ConstraintResource as
core classes; multiple types of

an instance

Plug-in URI slot widget for
validating URI-type slots.

types.

classes as rdfs:range

isattached to the Wine class. We havetwo ways
to encodethe RDFSdomain informationina
Protégé-RDFS editor. First, we can add a
domain dlot to atemplate (metasl ot) that wewill
use for all our slots. Then, afield for domain
will appear on each form for aslot, and we
will fill itinthere. Second, we can simply use
the native Protégé-2000 notion of slot attach-
ment and trandl ate the attachments of dotsto
classesinto domainsof propertiesin the back
end. The second solution lets us use the Pro-
tégé-2000 user interfacedirectly and hidesthe
features of a specific language used to store
theinformation.

Wefind it extremely beneficia to adopt the
paradigm of using the native Protégé-2000 fea-
tures wherever possible and of resorting to
additional definitions, such asmetaclassesand
metaslots, only when absolutely necessary.
This approach maximally facilitates the
exchange of domain models among different
languages, which we edit (or will edit) with
Protégé-2000. As new languages emerge and
weexperiment with them, theknowledge mod-
€els underlying these languages will undoubt-
edly overlap. By encoding asmuch aspossible
inthe native Protégé-2000 structuresand leav-
ing part of thetrandation between the Protégé-
2000 model and the language to the back end,
we maximize the amount of information that
we will preserve by smply loading a knowl-
edge base in one language supported by Pro-
tégé-2000 and saving it to another language.
Even though there would often be some parts

of these models that will not be part of this
overlap, we are maximizing the amount of
information that gets ported among modelsin
different languagesfor free.

Having generated the four groups of con-
cepts after comparing the two knowledge
models (see Figure 6), we can reconcile the
differences using

1. modeling—by changing default defini-
tionsof classesand slotsat the modeling
level;

2. the user interface—by developing spe-
cialized user-interface components; and

3. theback end—by implementing the new
back end that will translate between the
domain model in Protégé-2000 and the
domain model in our language of choice.

Let'slook at how each of these three lev-
elsworks using the development of a Pro-
tégé-based RDFS editor as an example (see
Table 2 for asummary of the entire process).

The modeling level

We start by determining which conceptsin
our language of choiceareidentical to Protégé-
2000 conceptsor that can be represented using
the native Protégé-2000 concepts. We use the
native Protégé-2000 as ameansto model this
group of concepts, even if it is not how these
elements are directly expressed in our lan-
guage. We then define the new templates for
classand dot definitionsif necessary.

On import, create new class
as a subclass of the multiple

Disable default-value and
inverse-slot widgets on
slot forms.

Write out extra facet information
as Protégé-specific properties
on properties. If a slot has
multiple allowed classes, create
a new class for rdfs:range

value. On import, do the reverse.

Consider, for example, the two attrib-
utes—rdfs:seeAlso and rdfs:isDefinedBy—that are
associated with each class and each property
in RDFS. The rdfs:seeAlso property specifies
another resource containing information
about the subject resource, and the rdfs:isDe-
finedBy property indicates the resource defin-
ing the subject resource. The values of these
properties are other resources or URIs point-
ing to other resources. We must add thesetwo
fields that the Protégé-2000 itself does not
haveto each classand ot formin our knowl-
edge base. To add these fields, we define a
new metaclass that will serve as atemplate
for RDFS classes. Thismetaclassis, in fact,
equivalent to the RDFS class rdfs:Class. Figure
7 shows the definition of rdfs:Class with the new
template slotsthat will appear on each class
form that uses thistemplate.

The user-interface level

When creating a Protégé-based editor for a
new language, we can change both the behav-
ior and the look and feel of the knowledge-
acquisition forms to reflect the terminology
and thefeatures of thelanguage. First, we can
changethelabelson theforms—the simplest
type of customization. For example, we can
easily replace Protégé's “Template slots”
label in a class definition with the RDFS
“Properties’ label to give theform an RDFS
look. Other elements that we can easily con-
figure by manipulating the forms include
whether or not afield should bevisibleto the

66

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

E:‘i(new) Protége-2000 =] B
Project Edit Window Help
BEFISE BB
(Q) Classes [|5]/]
Relatiunship‘ hd " V" C || QH x : () rdfs:Class (rdfs:Class)
o) :,T_L'T."NG‘& . Name Documentation Constraints
@ (C) SYSTEM-CLASS ;
] @'EL&SS-‘“’; |rdfs:0|ass ‘
% (C):STANDARD-CLASS |2
N {Cirdis:Class™ ;| Role
©- (C) :CONSTRAINT A : |canc,m .,‘
©- (C):FACETA i
o= A & —
e_t%' ;%fﬁ? N il Properties ‘3‘\/ ﬂf
(=) elper® i
© (C) rdfs-Resource Name | Type | Cardinality | Other Facets
- 7| 15| rdfstisDefinedBy Instance single classes={URI rdfs:Resource}
7 rdfs:seeAIsn Instance single classes={URI| rdfs:Resource}
: :DIRECT—INST}\NCES Instance multiple classes={ THING}
: [S].DIRECT-SUBCLASSES Class multiple parents={ THING}
ISl nRECT.CIIPERCI ASSE Class rruiltinle narente={ THINGL
The additional slots | Rafs: isDefinedd |[‘_H Rufs:seeflso ’i@lﬂl j
defining RFDS-specific i
properties
T e »

Figure 7. A template definition for classes in RDFS. The class rdfs:Cluss inherits most of the slots from the standard class template, but
the two slots at the top of the list of properties are the ones that we defined for RDFS.

user, the buttonson thefields, the position and
size of the fields, and the slot widgets to be
used for each field. We perform this configu-
ration entirely in the Protégé-2000 Formstab
and not in the programming code.

We could also develop our own slot-wid-
get plug-insto allow editing and verification
of elementsthat are unique to our language.
For example, a URI widget in the Protégé-
RDF editor can validate that the user has
entered a correct URI or even take the user
to the corresponding Web page.

Disabling fieldsfor some slotson theform
prevents the user from exercising Protégé-
2000 featuresthat the particular Semantic Web
language does not support. For example, we
can disable the field for entering default slot
values in the Protégé-RDFS editor, because
RDFS does not support default values.

The back-end level

Whatever the differences between Protégé-
2000 and our language that we could not
resolve at the modeling and user-interface lev-
els, we will need to reconcile in the module
that saves the internal Protégé-2000 repre-

sentation in therequired output file format—
the back-end plug-in. The back-end plug-in

1. savesaProtégé-2000 knowledge basein
afileformat that conformsto the syntax
of our language of choice;

2. maps the elements of the Protégé-2000
knowledge base that do not have adirect
equivaent in our language to the appro-
priate set of elementsin thislanguage; and

3. importsdomain modelsin thislanguage
that were devel oped elsewhere for edit-
ing in Protégé-2000.

Usually, when developers define a lan-
guagewith anew syntax, they quickly imple-
ment a parser that allows devel opersto read
and write files in that language’s syntax.
Many of the new languages are extensions of
XML or RDF, and thus we can often usethe
existing XML and RDF parsersto take care
of the syntactic part of adapting to the new
language.

In RDFS, the back end must deal with a
number of issues that we did not resolve at
themodeling level or inthe user interface. We

might have resolved some of these issues
there, but it would have unnecessarily com-
plicated the editor for the user. For example,
instances in Protégé-2000 are of a single
class, whereas in RDFS they can be direct
instances of several classes (for example, they
have several direct types). Becausethe RDFS
model is more general, we have no problem
in saving a Protégé-2000 knowledge basein
RDFS. However, when we import RDFS
instance datainto Protégé-2000, we must deal
with instances that have several direct types.
Suppose we have aclassfor red winesand a
classfor dessert wines. We have Romariz Port as
an instance of both classesin RDFS. When
we import this RDFSinstance datainto Pro-
tégé-2000, the back end can cresteanew class
that is a subclass of both classes (for exam-
ple, denoting a concept of dessert red wines)
and make the Romariz Port instance an instance
of thisnew class. We can record thetwo orig-
inal classes of Romariz Port as additional slots
on the newly created class (as shown in Fig-
ure4). When saving back to RDFS, the back
end can extract the information fromthissot,
thus preserving the original model.

MARCH/APRIL 2001

computer.org/intelligent

67

The Semantic Web

ﬁwines—nil-fuud—led-meal Protégeé-2000
Project Edit Window Help

clzl@l - - =/
Dil | (C)) Classes [(S][] "

[D:%Protege\5 emantic Web paper\wines-oil-food-red-meat.pprij]

Auxilliary core
classes

L]

,é SPICY-RED-MEAT-COURSE (QilClass)

Relationship|super... v [V[C [&%

(C) THING A

- . Name Documentation
@ (C) :SYSTEM-CLASS A : . :
® @) Exprassion : |SPICY—RED-MEAT—COURSE | a spicy red-meat course must contain red meat
‘@ ""E)CIassExpressiun A ;i and must contain food that is itself spicy or food
,'? (® BoaleanExpre : Role containing something that is spicy
(© And IConcrete v|
\o) Or | Tvve
() Not i
@ oilclassM || defined -]
@ (C) ProperyRestriction i
(© valueType i| HasPropertyRestriction ‘W C”; SubClassOf IV“ C” +” - H ¥
T |
©Hasvalue < FooD
@ (C) CardinalityRestriction & FOoD
@ () Aiom * ¥ :
@ (C) CONSUMABLE-THING | Epressions Expressiui' EZ FODD [(HasValue) =] E3
@ (C)MEAL-COURSE i —
(€} 8PICY-RED-MEAT-COURSE | | \[[nas-value FOOD RED-MEAT) onproperty | V| +| -|
(€ SHELLFISH-COURSE haswliertol §]FO0D
(C) SEAFOOD-COURSE : ‘:m(h T T——
(€} OYSTER-SHELLFISH-COURS / AsVAILE Ao =
© (C) EDIBLE-THING ‘ {has-value CONTAINS ToClass m "'” =
E:E':]l MEAL (has-value HAS-TASTE SPICYN ’tg RED-MEAT
©- (C) TASTE ;
i| Template Siots \iﬂ [C
: Narme | Twe | cardinalty | Other Facets
S|FOOD Instance multiple classes={EDIBLE-THING}

e P e =

»

Figure 8. The definition for the spicy-red-meat-course class in the Protégé-OIL editor. In addition to the standard fields, such as those
shown in Figure 2), we have OIL-specific fields such as hasPropertyResriction and subClassOf for specifying complex class expressions.
These slots use the OIL-specific slot widget to display expressions. The tree on the left contains the auxiliary core classes we

defined for OIL.

Any user-defined back end has the same
status as all the other back ends, including
the ones that are part of the core Protégé-
2000 system: it can be used as a storage for-
mat for Protégé-2000 knowledge bases.
Therefore, there is another, no less impor-
tant, goal of a back-end plug-in: to ensure
that when we create aknowledge basein Pro-
tégé-2000, saveit using the back-end plug-in,
and load it again, we have preserved all the
information. Hence, we must find a way to
store the elements that Protégé-2000 sup-
ports, but that our language of choice does
not. Most Semantic Web languages are flex-
ible enough to easily store thisinformation.
For example, in RDFS, we simply add new
Protégé-specific propertiesto slotsto record
default values, which RDFS does not have.
These properties have no meaning to another
RDFS agent, but if we read the knowledge

base back in Protégé-2000, we will have the
default values preserved.

Creating new tabs to include
other semantic modules

In addition to creating a Protégé-based
editor for a new Semantic Web language,
developers can plug in other applicationsin
the knowledge-base—editing environment. In
addition to the standard tabs that constitute
the Protégé-2000 user interface (Figures 2
and 4), devel opers can create tab plug-insin
the sameway they can plug in new slot wid-
gets. These tabs can include arbitrary appli-
cations that benefit from the live connection
to the knowledge base. These applications
then become an integral part of the knowl-
edge-base—editing environment.

Consider our wine example again. Having
created a knowledge base of wines and food

and the appropriate combinations, we might
want to build an application that produces
winesuggestionsfor ameal courseinarestau-
rant. Such an application would actively use
the data in the knowledge base but it would
a soimplement itsown reasoning mechanism
to analyze suggestions. We canimplement this
wine-selection application asatab plug-in.

In practical terms, atab plug-inisasepa-
rate application, a developer’'s own user-
interface space from which the devel oper can
connect to, query, and update the current Pro-
tégé-2000 knowledge base.

In the realm of the Semantic Web, a tab
can include any applicationsthat would help
us acquire or annotate the knowledge base.
Such applications can

» enable direct annotation of HTML pages
with semantic elements;

68

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

* provide connection to external reasoning
and inference resources;

 acquire the semantic data automatically
from text; and

 present agraphical view of aset of inter-
related resources.

Using Protégé to edit DANIL+OIL

DAML+OIL, the Semantic Web language
that was heavily inspired by research in
description logics (DL), alows more types
of concept definitionsin ontol ogiesthan Pro-
tégé-2000 and RDFS do. The DL-inspired
languages usually include thefollowing fea-
turesin addition to the onesfound in thetra-
ditional frame-based languages:

 We can specify not only necessary but also
sufficient conditionsfor class membership.
For example, if awineis produced by a
winery from the Bordeaux region, it isa
Bordeaux wine.

» Wecan usearbitrary Boolean expressions
in class and slot definitions to specify
superclasses of aclass, domain and range
of aslot, and so on. For example, a spicy
red-meat course must contain red meat and
must contain food that isitself spicy or
food containing something that is spicy.

» We can specify global slot properties. For
example, location is atransitive property: if
the Chéteau Lafite Rothschild winery isin the Bor-
deaux region and the Bordeaux region isin
France, then the Chiiteau Lafite Rothschild winery
isin France.

» We can define global axiomsthat express
additional propertiesof classes. For exam-
ple, we can say that the classification of
the class of al wines into the subclasses
for red, white, and rosé winesis digjoint:
Each instance of the Wine class belongs
only to one of these subclasses.

We have adapted Protégé-2000 to work as
an OIL editor. (The OIL languageis a pre-
cursor for DAML+OIL.) In doing so, wefol-
lowed the same steps we described in creat-
ing the Protégé-based RDFS editor. In
addition, we haveintegrated external services
for OIL ontologies into Protégé-2000. Inte-
grating DAML+OIL would require nearly
identical steps.

The modeling level

We introduce the new class and dlot tem-
plates, OilClass and OilProperty, to specify com-
plex class and slot definitions. Asaresult, a

class template, for example, acquires these
three new fields (see Figure 8):

1. type—to specify whether the class defin-
ition contains only necessary or both
necessary and sufficient conditions for
class membership;

2. hasPropertyRestriction—to specify complex
expressionsfor slot restrictions; and

3. subclassOf—to specify complex expres-
sions describing the position of the class
in the class hierarchy.

Tointegrate OIL into Protégé-2000, we used
the namesfrom the RDFS serialization syntax
of (Standard-)OIL and not the plan ASCI| ver-
sion. Seewww.ontoknowledge.org/oil/ for the
various syntaxes and versions.

Just as for RDFS, we use as many native
Protégé-2000 mechanismsfor modeling OIL
ontologies as possible. If anew classissim-
ply asubclass of several existing classesin
the hierarchy, we use Protégé' s own notion of
subclasses by placing the new class where it
belongsinthehierarchy. However, if asuper-
class definition requires boolean expres-
sions—something Protégé-2000 does not
allow—we use the subClassOf field that we see
on the template. Even though Protégé-2000
does not understand the semantics of this
field, we can represent this additional super-
classinformation declaratively, and then pass
itto aclassifier or simply savein OIL.

We use the hasPropertyRestriction field when we
need complex expressions or when we need
to specify existential dot constraints: Protégé-
2000 allows definition of value-type con-
straintson dots (“All values of thisslot must
beinstances of thisclass’). OIL alowsexis-
tentia dot constraintsin addition to thevalue-
type constraints (“ One value of thisslot must
come from this class and one value must
comefromthat class’). We build the complex
expressions declaratively by creating
instances of core auxiliary classes. We can
see some of these core classesin thetreein
Figure 8. In the example, we specify a sub-
class of ameal-course, spicy-red-meat-course, which
we define as “a course that must contain red
mesat and must contain food that isitself spicy
or food containing something that is spicy.”

Even though Protégé-2000 does not sup-
port some of the semanticsthat OIL has, we
can still encode the additional information
declaratively. Protégé-2000 will “ignore” the
information, but it will be able to passit on
toaclassifier or toencodeitin OIL sothat an
OIL agent can understand it.

The user-interface level

Apart from changing labels and rearrang-
ing fields on the forms for the OilClass and Oil-
Property templates, we created anew slot widget
to alow easier editing of nested expressions
such as the ones representing “food that is
itself spicy or food containing something that
isspicy” in Figure 8. This widget augments
the standard Protégé-2000 widget for select-
ing and creating values for instance-valued
dotswith adisplay of the nested expressions
inamorepractical form. A further extension
of this simple but effective slot widget can
include a full context-sensitive, validating
expression editor.

The back-end level

We describe herean OIL back end that pro-
duces the RDFS output for OIL. Therefore,
we can build largely on the existing RDFS
back end. In defining the classand slot names
and the structure of the auxiliary core classes
inthe OIL editor, we have mainly adhered to
the RDFS specification of OIL. As aresullt,
just using the RDFS back end, described ear-
lier, givesusan output that is very close but
not identical to the RDFS OIL output that we
need. Thus, to create the OIL back end, we
started with the existing RDFS back end. We
adapted it to add the parts of definitions spec-
ified by the native Protégé-2000 meansto the
complex class expressions.

The OIL back end encodes the concepts
that Protégé-2000 has and OIL does not
(global cardinality restrictions on slots, for
example) by defining additional statements
in a Protégé namespace. An OIL agent will
not understand these statements and will
ignore them, but Protégé-2000 will beableto
extract the necessary information from them.

Because many Semantic Web languages
areintheir infancy and already comein many
different versions, there is an alternative
approach to developing specific back ends
for each of these versions. We can create a
general RDF back end for Protégé-2000 and
then use a declarative and easily adaptable
RDF transformation language for generating
the desired outputs. Some research groups
are currently investigating such a back end
and the corresponding RDF transformation
(and query) language.

Accessing external services through
a tab plug-in

The DL languages, such as OIL and
DAML+OIL, traditionally rely on an infer-
ence component—a classifier—to find the

MARCH/APRIL 2001

computer.org/intelligent

69

The Semantic W

ﬁwines»oil-fuod-led-meat Protégé-2000
Project Edit Window Help

eh

K7

o]=@] o~ @8]
(0il| [©))) Classes [[]]|Slots | 7] Forms |

Relatmnsh|p|Superclass v H V" C|

Ell

(L) CONSUMABLE-THING
@ (C)MEAL-COURSE

{C) SHELLFISH-COURSE
(C) SEAFOOD-COURSE
(C) OYSTER-SHELLFISH-COU
¢ (C)EDIBLE-THING
¢ (C)SEAFOOD
@ (C) SHELLFISH

' (©) OYSTER-SHELLFIS
(CIFISH
©- (C) MEAT
(C) MEAL

() SPICY-RED-MEAT-COURSE

RSE

(€} NON-OYSTER-SHELLFISI

H

}_Q:' wines-oil-foodg

OIL tab plugin

Zzat Protégeé-2000

[I:ADiAwines\wine

(MOl

Ef’.’wines-oil-[ood-led-meat Protégé-2000
Project Edit Window Help

FaCT Interaction

[

IDIIDHﬁI E I%IIEI

-= [<PRIMITIVE NAME="CONSUMABLE-THING"/=]
directSupersC{=PRIMITIVE NAME="MEAL-COURSE"f=)

-= [<PRIMITIVE NAME="CONSUMABLE-THING"/=]
directSupersC=PRIMITIVE NAME="MEAT"/=)

-= [<PRIMITIVE NAME="EDIBLE-THING"=]
directSupersC{=PRIMITIVE NAME="NON-0YSTER-SHELLFISH",

-= [=<PRIMITIVE NAME="SHELLFISH"f=]
directSupersC{=PRIMITIVE NAME="0YSTER-SHELLFISH"/>)

-= [=PRIMITIVE NAME="SHELLFISH"f=]
directSupersC{=PRIMITIVE NAME="0YSTER-SHELLFISH-COUF

e W A

Expression
@ ©Top

© (T CONSUMABLE-THING
©- (C) EDIBLE-THING
@ (C) MEAL
@ (C)MEAL-COURSE

¢ (C) SEAFOOD-COURSE

@ (C) SHELLFISH-COURSE

-= [zPRIMITIVE NAME="SHELLFISH-COURSE"f=]
directSupersC{=PRIMITIVE NAME="RED-MEAT"/=)
-= [zPRIMITIVE MNAME="MEAT"/=]
directSupersC{=PRIMITIVE NAME="SALTY"=)

-= [zPRIMITIVE NAME="SPICY"f=]
directSupersC(<PRlMlTlVE MNAME="SEAFQOD"f=)

©- (C) TASTE

[<F'RIMITIVE NAME="EDIBLE-THING"/=]

="SEAFQON-COURSE"=)

Ao

Superclasses

|| | Messages

P @ OYSTER-SHELLFISH-C
(C) Bottorn M
o ‘@J SPICY-RED-MEAT-COURSE
©- (C) TASTE

Superclasses
) SHELLFISH-COURSE

[+1 |

(C) MEAL-COURSE

Eil

Figure 9. Tab plug-in for classification of OIL ontologies. On the right, we see a hierarchy of meal courses before classification. The
middle pane shows interactions with the FaCT classifier. The hierarchy on the right is the one that the classifier computed.

right position of a classin the class hierar-
chy and to determine which class definitions
are unsatisfiable (cannot have any instances).
Therefore, it is crucia to have a connection
toaDL classifier aspart of the environment
for editing OIL and DAML+OIL ontologies.
Having created a set of definitions, we can
invoke the classifier to determine how the
evolving class hierarchy looks. We can see
the effects that changes in class definitions
will have on the evolving hierarchy. We can
immediately check if logical expressions
defining aclass contradict one another mak-
ing the class unsatisfiable.

Therefore, in order to create afull-fledged
Protégé-based OIL editor, we need to con-
nect Protégé-2000 to such an inference com-
ponent and present the resultsto the user. We
implemented this connection as a Protégé-
2000 tab plug-in.

Figure 9 showsthe OIL tabin action. Ini-
tially, the class hierarchy hasthe various meal-
course subclasses as siblings. In addition, we
specify that an oyster-shellfish-course is a meal-
course that has ovstess as the valuefor itsroop Slot;

a shellfish-course is a meal-course that has shellfish
asitsfood, and so on. Wethen usethe OIL tab
to connect to a DL classifier, FaCT,® and to
haveit rearrange the class hierarchy accord-
ing to the class definitions. In the resulting
hierarchy, the oyster-shellfish-course class, for
example, is correctly classified as being a
subclass of the shellfish-course class.

With the advent of the Semantic Web,
the current network of online
resources is expanding from a set of static
documents designed mainly for human con-
sumption to a new Web of dynamic docu-
ments, services, and devices, which software
agents will be able to understand. Devel op-
erswill likely create many different repre-
sentation languages to embrace the hetero-
geneous nature of these resources. Some
languages will be used to describe specific
domains of knowledge; others will model
capabilities of services and devices. These

languages will have different emphasis,
scope, and expressive power.

Protégé-2000 provides full-fledged sup-
port for knowledge modeling and acquisi-
tion. Developersalso can custom-tailor Pro-
tégé-2000 quickly and easily to be an editor
for a new Semantic Web language. A Pro-
tégé-based editor enablesmodeling at acon-
ceptual level that allows developersto think
in terms of concepts and relations in the
domain that they are modeling and not in
terms of the syntax of thefinal output.

By adapting Protégé-2000 to edit a new
Semantic Web language rather than creating
anew editor from scratch or using atext edi-
tor to create ontologiesin the new language,
we obtain a graphical, conceptual-level
ontology editor and knowledge-acquisition
tool. We get anew editor to experiment with
the new language without investing many
resources into it. And we can use Protégé-
2000 as an interchange module to translate
most of the models in other Semantic-Web
languages into our new language and vice
versa. In our experience, it takes afew days

70

computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

to adapt Protégé-2000 to a new Semantic-
Web language—a lot less time than is
required to create any sophisticated software
from scratch. We were able to create these
editors even for alanguage like OIL, which
takes a knowledge-modeling approach that
is different from the frame-based approach
for which Protégé originally was designed.
The extensible and flexible knowledge model
and the open plug-in architecture of Protégé-
2000 constitute the basis for developing a
suite of conceptual-level editorsfor Seman-
tic Web languages. B

Acknowledgments

For moreinformation about the Protégé project,
please visit http://protege.stanford.edu. A grant
from Spawar, agrant from FastTrack Systems, and
the DARPA DAML program supported thiswork.

References

1. T. Berners-Lee, M. Fischetti, and M. Der-
touzos, Weaving the Web: The Original
Design and Ultimate Destiny of the World
Wide Web by its Inventor, Harper, San Fran-
cisco, 1999.

2. D. Brickley and R.V. Guha, “Resource
Description Framework (RDF) Schema Spec-
ification,” World Wide Web Consortium, Pro-
posed Recommendation 1999, www.w3.
org/TR/2000/CR-rdf-schema-20000327 (cur-
rent 28 Mar. 2001).

3. J. Hendler and D.L. McGuinness, “The
DARPA Agent Markup Language, " |EEE
Intelligent Systems, vol. 16, no. 6, Jan./Feb.,
2000, pp. 67-73.

4. N.F. Noy, R.W. Fergerson, and M.A. Musen,
“The Knowledge Model of Protégé-2000:
Combining Interoperability and Flexibility,”
Proc. Knowledge Engineering and Knowl-
edge Management: 12th Int'l Conf. (EKAW-
2000), LectureNotesin Artificial Intelligence,
no. 1937, Springer-Verlag, Berlin, 2000,
pp.17-32.

5. M.A.Musenet al., “Component-Based Sup-
port for Building Knowledge-Acquisition
Systems, ” Proc. Conf. Intelligent Informa-
tion Processing (11P 2000) Int’'| Federation
for Information Processing World Computer
Congress (WCC 2000), Beijing, China, 2000,
http://smi-web.stanford.edu/pubs/SM1 _
Abstracts/SM1-2000-0838.html (current 28
Mar. 2001).

6. |.Horrocks, “The FaCT system,” Proc. Auto-
mated Reasoning with Analytic Tableaux and
Related Methods: Int'l Conf. Tableaux 98, Lec-
ture Notesin Artificial Intelligence, no. 1397,
Springer-Verlag, Berlin, 1998, pp. 307-312.

The Auvrihors

Natalya F. Noy is aresearch scientist in the Stanford Medical Informatics
laboratory at Stanford University. Her interestsinclude ontology devel opment
and eval uation, semantic integration of ontologies, and making ontology-
development accessible to expertsin noncomputer-science domains. She has
aBSin applied mathematics from Moscow State University, Russia, an MA
in computer science from Boston University, and a PhD in computer science
from Northeastern University in Boston. Contact her at Stanford Medical
Informatics, 251 Campus Dr., Stanford Univ., Stanford, CA 94305;
noy @smi.stanford.edu.

Michael Sintek is aresearch scientist at the German Research Center for
Artificia Intelligence. Currently, heis project leader of the FRODO project
where an RDF-based framework for building distributed organi zational mem-
oriesisdeveloped. He hasaDiplomin computer science and economicsfrom
the University of Kaiserslautern. Contact him at the German Research Cen-
ter for Artificia Intelligence (DFK1) GmbH, Knowledge Management Group,
Postfach 2080, D-67608 Kaiserslautern, Germany; sintek@dfki.uni-kl.de.

Stefan Decker isapostdoctoral fellow at the Department of Computer Sci-
ence at Stanford University, where he works on Semantic Web Infrastruc-
tureinthe DARPA DAML program. Hisresearch interestsinclude knowledge
representation and database systems for the Web, information integration,
and ontology articulation and merging. He has a PhD in computer science
from the University of Karlsruhe, Germany, where he worked on ontology-
based accessto information. Contact him at Stanford University, Gates Hall
4A, Room 425, Stanford, CA 94305; stefan@db.stanford.edu.

Monica Crubézy isapostdoctoral researcher in the Stanford Medical Infor-
matics laboratory at Stanford University. Her research focuses on the mod-
eling and integration of libraries of problem-solving methodsin the Protégé
knowl edge-based-system development framework. She graduated from the
Ecole Polytechnique Féminine, France, in general engineering and computer
science. She has a PhD in computer science from the Institut National de
Recherche en Informatique et Automatiquein SophiaAntipolis, France. Con-
tact her at Stanford Medical Informatics, 251 Campus Drive,Stanford Uni-
versity, Stanford, CA 94305; crubezy @smi.stanford.edu.

Ray Fergerson isaprogrammer in the Stanford Medical Informatics labo-
ratory at Stanford University. He has a BS in physics from the Colorado
School of Mines and a PhD in experimental nuclear physics from the Uni-
versity of TexasinAustin. Contact him at Stanford Medical Informatics, 251
Campus Drive, Stanford University, Stanford, CA 94305; fergerson@smi.
stanford.edu.

Mark A. Musen'’s biography appearsin the Guest Editors’ Introduction on page 25.

MARCH/APRIL 2001

computer.org/intelligent 71

