FLORA: The Secret of Object-Oriented Logic Programming

Bertram Ludéscher Guizhen Yang Michael Kifer

July 13, 2001

CONTENTS ;

Contents
1 Introduction 1
2 FLORA Shell Commands 2
3 F-logic and FLORA by Example 3
4 Inside FLORA 3
41 How FLORA Works 4
42 FLORAvVS. FLORID e e 5
5 Syntax of FLORA 5
5.1 Basic F-logic Syntax L 6
5.2 Path Expressionsinthe RuleBodyo, 7
5.3 Path Expressionsinthe Rule Head 9
5.4 References: Truth Value vs. Object Value 9
5.5 Symbols, Strings, Comments oL o e 10
5.6 Aggregation e e e 12
5.7 Arithmetic Expressions L o o 13
5.8 Negation in FLORA o o v i i e e e e e e 14
5.9 Imheritance L e e e e 15
5.10 Type Checking o o e 18
5.11 Meta-programming in FLORA« v vt it vttt i 18
6 Compiled Code vs. Dynamic Code 21
7 JFLORA Modules and Interaction with XSB 25
8 FLORA and Tabling 28
9 FLORA Compiler 30
10 FLORA Debugger 31
11 Emacs Support 32

11.1 Imstalation e e e e e e 32

CONTENTS

11.2 Functionality L e

12 Future Enhancements

ii

1 INTRODUCTION 1

1 Introduction

FLORA is a sophisticated F-logic to XSB compiler. It translates a program written in the F-logic
language [3] (which must be in a file with extension .flr, e.g., file.flr) and outputs a file with
extension .P (e.g., file.P), which is a regular XSB program. This program is then passed to XSB
for compilation (yielding file.0) and execution.

The current version of FLORA was implemented by Guizhen Yang, but its origins trace back
to the FLIP compiler developed by Bertram Ludaescher, and the basic architectures of the two
compilers are similar. However, unlike FLIP, FLORA is a complete application development platform
with many features not found in FLIP. It has a much more optimized compiler, and its tokenizer
and parser are very different from FLIP’s.

The programming language supported by FLORA is a dialect of F-logic that is mostly compatible
with the extensions introduced in FLORID, a C++-based F-logic system developed at Freiburg
University.! In particular, FLORA fully supports the versatile syntax of FLORID path expressions.
However, FLORA has numerous extensions of its own, and some features differ significantly.

FLORA is part of the official distribution of XSB beginning with version 2.0. It is organized as
an XSB package and lives in the directory

<xsb-installation-directory>/packages/flora/

FLORA is fully integrated into the XSB system, including its module system. In particular, FLORA
modules can invoke predicates defined in other XSB modules, and regular XSB modules can query
the objects defined in FLORA modules. At present, XSB is the only platform where FLORA can
run, because it heavily relies on tabling and the well-founded semantics for negation that at the
moment are available only in XSB.

As mentioned earlier, an XSB programmer can invoke FLORA objects from other XSB programs.
However, the easiest way to get a feel of the system is to start FLORA shell and begin to enter
queries interactively. To this end, you must first invoke XSB and then load the flora package:

foo> xsb
XSB loading messages omitted ...
| 7- [flora].

[flora loaded]
| ?-

At this point, it is possible to use a limited number of FLORA commands, but to run queries you
must enter the FLORA command loop:

| ?- flora_shell.
FLORA messages omitted ...
flora 7-

'See http://www.informatik.uni-freiburg.de/~dbis/florid/ for more details.

2 FLORA SHELL COMMANDS 2

At this point, FLORA takes over and F-logic syntax becomes the norm. To get back to the XSB
command loop, type Control-D or

| ?- end.
FLORA comes with a number of demo programs that live in
<xsb-installation-directory>/packages/flora/demos/

The demos can be run by issuing the command “rundemo(demo-filename).” at the FLORA
prompt, e.g.,

rundemo (flogic_basics).

There is no need to change to the demo directory.

2 JFLORA Shell Commands

The following FLORA shell commands are supported:

help : show this info

compile(’FILE’) : compile FILE.P; create FILE.Q
flcompile(’FILE’) : compile FILE.flr; create FILE.P and FILE.O
flcompile ("FILE’,[...]1)2 : flcompile(’FILE’) with options [...]
flconsult (’FILE’) : compile FILE.flr, then consult FILE.P
flconsult (’FILE’,[...]) : flconsult(’FILE’) with optiomns [...]

flload (’FILE[.EXT]’)3 : consult FILE.flr, FILE.P or FILE.O
[’FILE[.EXT]’,...] : consult a list of .flr, .P, or .0 files
dyncompile (’FILE’) : compile FILE.flr to dynamic code

dyncompile (’FILE’,[...]) : dyncompile(’FILE’) with options [...]
dynconsult (’FILE’) : dyncompile FILE.flr, then dynamically load FILE.P
dynconsult (’FILE’,[...]) : dynconsult(’FILE’) with options [...]
dynload (’FILE[.EXT]’)* : dynamically load FILE.flr or FILE.P
<’FILE[.EXT]’,...> : dynload a list of .flr or .P files

rundemo (’FILE’) : flconsult a demo from FLORA demos directory
rundemo (’FILE’,[...]) : rundemo(’FILE’) with optiomns [...]

abolish all tables® : flush all tabled data

all : show all solutions at once (default)

one : show solutions one by one

maxerr (all/N) : set/show the max number of errors FLORA reports
end : say Ciao to FLORA

halt : quit FLORA and XSB

3 F-LOGIC AND FLORA BY EXAMPLE 3

All commands with a FILE argument passed to them use the XSB library_directory predicate
to search for the module, except that the command rundemo(FILE) first looks for FILE in the
FLORA demo directory. In general, all XSB commands can be executed from FLORA shell, if the
corresponding XSB library has already been loaded.

After a syntax error, parsing error, or compiling error, FLORA shell will discard tokens read
from the current input stream until the end of file or a rule delimiter (.) is encountered. If FLORA
shell seems to hang forever after the prompt:

[FLORA: discarding tokens]

Wy

hitting the Enter key once, then entering a character and Enter again will normally reset the
current input buffer and cause FLORA issue a command prompt:

flora 7-

3 F-logic and FLORA by Example

In the future, this section will contain a number of small introductory examples illustrating the use
of F-logic and FLORA. Meanwhile, the reader is referred to the excellent tutorial written by the
members of the FLORID project.® Since FLORA and FLORID share much of the same syntax, most
examples in that tutorial are also valid FLORA programs.

4 Inside FLORA

FLORA consists of the following modules:

e flrshell.P: top-level module that provides the FLORA shell commands for compiling and
consulting FLORA programs (flcompile/1, flconsult/1), for setting the output mode
(al1/0 or one/0 solution(s) at a time), and — last but not the least — for directly issuing
queries against the loaded database/program (see Section 2 for a full description of shell
commands).

e flrtokens.P: FLORA tokenizer.
e flrparser.P: DCG parser for F-logic.
e flrcompiler.P: FLORA compiler that translates F-logic to XSB.

e flrutils.P: miscellaneous utility predicates.

2Currently supported is equality checking option: eqlevel(N), N=0,1.

3File extension is optional, but must be .fir, .P or .O if supplied.

“File extension is optional, but must be .fir or .P if supplied.

®Tables need to be flushed if the database has been changed since last evaluation.
5See http://wuw.informatik.uni-freiburg.de/~dbis/florid/ for more details.

4 INSIDE FLORA 4

Additional libraries are located in the 1ib/ subdirectory, and there is also a number of files in the
closure/ subdirectory that serve as headers and trailers that are automatically attached to the
*.P files by FLORA compiler (explained later).

4.1 How FLORA Works

Overview. Asan F-logic-to-XSB compiler, FLORA first parses its argument file and then compiles
it to XSB syntax. For instance the command

flora 7- flconsult(myprog) .

compiles the program ’myprog.flr’ into the XSB file *myprog.P’. Take a look at this file to see
what has become of your F-logic program! The compilation consists mainly of a flattening procedure
sketched below. Next, ’myprog.P’ is compiled by XSB, yielding byte-code ’myprog.0’, which is
then loaded and executed. If ’myprog.flr’ contains queries, they are immediately executed by
XSB (provided there are no errors).

The main purpose of the FLORA shell, however, is to allow the evaluation of ad-hoc F-logic
queries. For example, after having requested the execution of the ’default.flr’ file from the
demo directory (using the command flora ?- rundemo(default).), you may ask

flora ?- X..kidsl[% Whose kids
self -> K; % ... (list them by name)
hobbies ->> % ... have hobbies
{H:dangerous_hobby} % ... that are dangerous?
1.

FLORA will parse, flatten, and evaluate this query in the same way as the queries in a source file.

Flattening F-logic. Consider, e.g., the following complex F-logic molecule, representing facts
about the object mary (the syntax of F-logic is given in Section 5.1):

mary:employee [age->29;kids->>{tim,leo};salary@(1998)->a_lot].

As described in [3], any complex F-logic molecule can be decomposed into a conjunction of
simpler F-logic atomic formulas. These latter atoms can be directly represented using Prolog
syntax. For the different kinds of F-logic atoms we use different Prolog predicates. For instance,
the result of translating the above F-molecule might be:

’_$_$_flora_isa’ (mary,employee). % mary:employee.
’_$_$_flora_fd’ (mary,@(age),29). % mary[age->29].

’_$_$ flora_mvd’ (mary,@(kids),tim). % mary[kids->>{tim}].
’_$_$_flora_mvd’ (mary,@(kids),leo). % mary[kids->>{leo}].
’_$_$_flora_fd’ (mary,@(salary,1998),a_lot). % mary[salary@(1998)->a_lot].

5 SYNTAX OF FLORA 5

Closure Axioms. The flattening process alone is not enough to convert an F-logic program
into Prolog, because of the semantics “hidden” behind the notions of the subclass relationship,
inheritance, and scalar methods. This semantics is captured through the facts and rules called
closure azioms, which must be explicitly added to the flattened user program. Closure axioms are
static and reside in the subdirectory closure/; these files are appended to every *.P file by the
FLORA compiler. These closure rules also perform the following tasks:

e Transitive closure of “::” (the subclass relationship). A runtime check warns about cycles in
the subclass hierarchy.

e Closure of “:” with respect to “::”, i.e., if X :C,C:: D then X : D.
e Perform monotone and non-monotone inheritance.

o Make sure that scalar methods are, indeed, scalar.

4.2 FLORA vs. FLORID

The syntax of FLORA and some of its design decisions are borrowed from FLORID, an F-logic
interpreter developed at Freiburg University, Germany. For more information on Florid please
visit the project home page at: http://www.informatik.uni-freiburg.de/~dbis/florid/. The
following is a list of differences between these two systems.

e FLORID

— (Semi-)naive bottom-up evaluation.

— “Hard-wired” closure axioms.

— Nonmonotonic inheritance (trigger semantics).
— C++ based system.

e FLORA

— Translation of F-logic into XSB rules.

— Top-down evaluation of the generated rules. When tabling is used, the compiled pro-
grams can be much more efficient than the corresponding FLORID programs.

— Closure axioms implemented as Prolog rules and are easy to experiment with.

— Non-monotonic inheritance implemented using closure axioms and the well-founded se-
mantics.

— Flora has a module system that fully integrates with the XSB module system.

— Flora programs have full access to the underlying XSB system, and vice-versa.

5 Syntax of FLORA

The following is adopted from [4].

5 SYNTAX OF FLORA 6

5.1 Basic F-logic Syntax

e Symbols: The F-logic alphabet of object constructors consists of the sets F(function symbols),
P(predicate symbols including =), and V(variables). Variables are denoted by capitalized
symbols or an underscore followed by zero or more letters and /or digits (e.g., X, Name, _, v5).”
All other symbols, including the constants (which are 0-ary object constructors), are symbols
that start with a lowercase letter (e.g., a,john). Constants can also start with uppercase and
include non-alphanumeric symbols, but then they must be enclosed in single quotes (e.g.,
» ABO*c”).

In addition to the usual first-order connectives and symbols, there is a number of special
symbols: |, [, }, {, =, =, =, =, :, ::. Later we shall introduce additional symbols used
by the inheritance mechanism.

e Id-Terms/Oids: &

First-order terms over F and V are called id-terms, and are used to name objects, methods,
and classes. Ground id-terms (i.e., terms with no variables) correspond to logical object
identifiers (oids), also called object names.

o Atomic formulas: Let O, M, R;, X;,C, D, T be id-terms. In addition to the usual first-order
atoms, like p(X1,...,X},), there are the following basic types of formulas:

(1) O[M—R] (2) OIM—»{Ry,....R,}] (3) C[M=T] (4) C[M=»T].

(1) and (2) are data atoms, which specify that a method M applied to an object O yields the
result-object R;. In (1), M is a single-valued (or scalar) method, i.e., there is at most one
Ry such that O[M — Ry] holds. In contrast, in (2), M is multi-valued, so there can be several
result-objects R;. For n = 1 the curly braces can be omitted.

(3) and (4) denote signature atoms. They specify that method M, applied to objects
of class C, yields results of type T. In (3), M is declared as single-valued, and in (4) as
set-valued.

Objects are classified into classes using isa-atoms:
(5) O:C (6) C=:D.
(5) defines that O is an instance of class C, while (6) specifies that C is a subclass of D.

e Parameters: Methods can have arguments, i.e., MQ(P,..., Py) is allowed in (1) — (4), where
Py, ..., Py are id-terms, e.g., john[salary@(1998)—50000].

e Programs: F-logic literals, rules, and programs are defined as usual, based on F-logic atoms.

"The symbol “ denotes an anonymous variable, as in Prolog.
8Numbers (including integers and floats) may also be used as id-terms. But such use might be confusing and is
not recommended.

5 SYNTAX OF FLORA 7

F-molecules provide a shortcut for specifying properties of the same object. For instance, instead of
john:person A john[age—31] A john[children—»{bob,mary}], we can simply write john : person[age— 31;
children—{bob,mary}].

Example 5.1 (Publications Database) Figure 1 depicts an F-logic representation of a fragment
of an object-oriented publications database.

Schema:

conf_p :: paper.

journal_p :: paper.

paper[authors=person; title=-string].

journal p[in_vol=-volume].

conf_p[at_conf=conf_proc].

journal vol[of =journal; volume=-integer; number=-integer; year=-integer].
journal[name=>string; publisher=-string; editors@(integer)==person|.
conf_proc[of_conf=>conf_series; year=-integer; editors@(integer)==person).
conf_series[name=>string].

publisher[name=-string].

person[name=>string; affil@(integer)=-institution].
institution[name=>string; address=-string].

Objects:

0j1 : journal_pltitle— “Records, Relations, Sets, Entities, and Things”; authors—»{0mes}; in_vol—0;11].
0g; : conf_p[title— “DIAM II and Levels of Abstraction”; authors—»{0omes, Oebq }; at-conf—0,76].

0;11 : journal_vol[of—0;s; number—1; volume—1; year—1975].

0is : journal[name— “Information Systems”; editorsQ(...)—={om; }|.

oy76 : conf_proc[of—+vldb; year—1976; editors—»{0pci, Ocjn }]-

0y1gp : conf_serieslname— “Very Large Databases”].

Omes ¢ person[name— “Michael E. Senko”].

Om; : person[name— “Matthias Jarke”; affilQ(...)—0pyz).

Oryt ¢ institution[name— “RWTH_Aachen”].

Figure 1: A Publications Object Base and its Schema Represented Using F-logic

5.2 Path Expressions in the Rule Body

In addition to the basic F-logic syntax, the FLORA system also supports path expressions to simplify
object navigation along single-valued and multi-valued method applications, and to avoid explicit
join conditions [1]. The basic idea is to allow the following path ezpressions wherever id-terms are
allowed:

(1) O.M 8) 0.M

The path expression in (7) is single-valued; it refers to the unique object Ry for which O[M — Ry]
holds; (8) is a multi-valued path expression; it refers to each R; for which O[M —»{R;}] holds. The

5 SYNTAX OF FLORA 8

symbols O and M stand for an id-term or path a expression. Moreover, M can be a method that
takes arguments, i.e., O..M@Q(Py,..., P;) is a valid path expression.

In order to obtain a unique syntax and to specify different orders of method applications,
parentheses can be used. By default, path expressions associate to the left, so a.b.c is equivalent
to (a.b).c and specifies the unique object o such that a[b—z] A z[c—o] holds (note that z = a.b).
In contrast, a.(b.c) is the object o’ such that blc—z'] A a[z'—0'] holds (here, ' = b.c). In general,
these can be different objects. Note that in (a.b).c, b is a method name, whereas in a.(b.c) it is
used as an object name. Observe that function symbols can also be applied to path expressions,
since path expressions (like id-terms) are used to reference objects. Thus, f(a.b) is legal.

As path expressions and F-logic atoms can be arbitrarily nested, this leads to a concise and
very flexible specification language for object properties, as illustrated in the following example.

Example 5.2 (Path Expressions) Consider again the schema given in Figure 1. Given the name

n of a person, the following path expression references all editors of conferences in which n had a
9

paper:

_: conf_p[authors—+{_[name—n]}].at_conf..editors
Therefore, the answer to the query
?7- P :conf_p[authors—»{_[name—n]}].at_conf[editors—>{E}].

is the set of all pairs (P,E) such that P is (the logical oid of) a paper written by n, and E is the
corresponding proceedings editor. If one is also interested in the affiliations of the above editors
when the papers were published, we only need to slightly modify our query:

?- P:conf_p[authors—»{_[name—n]}].at_conflyear—Y]..editors[affil@(Y)—A].

Thus, FLORA’s path expressions support navigation along the method application dimension using
the operators “.” and “..”. In addition, intermediate objects through which such navigation takes
place can be selected by specifying the properties of such objects inside square brackets.

To access intermediate objects that arise implicitly in the middle of a path expression, one can
define the method self as X([self—X] and then simply write ... [self=O]... anywhere in a complex
path expression. This would bind the id of the current object to the variable O.1°

Example 5.3 (Path Expressions with self) Recall the second query in Example 5.2. If the
user is also interested in the respective conferences, the query can be reformulated as

X][self—X].
?- P :conf_p[authors—+{_[name—n]}].at_conf[self—C; year—Y]..editors[affil@(Y)—A].

9Each occurrence of “” denotes a distinct don’t-care variable (existentially quantified at the innermost level).
10A similar feature is used in other languages, e.g., XSQL [2].

5 SYNTAX OF FLORA 9

5.3 Path Expressions in the Rule Head

Only single-valued path expressions are allowed in a rule head. Set-valued path expressions are not
allowed because the semantics is not always clear in such cases.

The following is an example of a path expression in rule head. It says that the mother of person
X. The rule defines the grandsons of X’s mother.

X.mother[grandson—»Y] :- X: person[son—>Y].
Complications arise if we specify the following later on:

john[mother—mary].
john[son—»david].

and ask the following query:
?- mary[grandson—>S].

Here, we should be able to identify mary and john.mother, since the attribute mother is scalar.
To deal with single-valued path expressions in rule heads, FLORA skolemizes john.mother and
derives the requisite equalities. All this is done by the FLORA compiler transparently to the
user: if a path expression in rule head is detected, FLORA replaces this expression with a Skolem
constant and then appends appropriate rules to the target .P file to ensure that proper equalities
are maintained.

The user must be aware, however, that equality maintenance is costly. Performance can be
improved if path expressions in the rule heads are avoided. Our experiments show that without
equality checking FLORA can be 10 times faster in some cases.

5.4 References: Truth Value vs. Object Value

Id-terms, F-logic atoms, and path expressions can all be used to reference objects. This is obvious
for id-terms and path expressions (7 — 8). Similarly, F-logic atoms (1 — 6) have not only a truth
value, but they also reference objects, i.e., yield an object value. For example, o:c[m—r] is a
reference to o and additionally, it specifies 0’s membership in class ¢ and the value of the attribute
m.

Consequently, all F-logic expressions of the form (1 — 8) are called references. F-logic references
have a dual reading. Given an F-logic database Z (see below), a reference has:

e An object value, which yields the name(s) of the objects reachable in Z by the corresponding
expression, and

o A truth value, like any other literal or molecule of the language. In particular, a reference r
evaluates to false if there is no object that is referenced by r in Z.

5 SYNTAX OF FLORA 10

Thus, a path expression can be viewed as a logical formula (the deductive perspective), or as an
expression that represents one or more objects (the object-oriented perspective).

Consider the following path expression and an equivalent (with respect to the truth value)
flattening:

a.blc»{de}] & a[b>{Xuw} Adle—Xge] N Xap[c—{Xge}]- (%)

Such flattening is used to determine the truth value of arbitrarily complex path expressions in the
body of a rule. Let obj (path) denote the ids of all objects represented by the path expression.
Then, for (*), we have:

obj(a.b) = {za | T = alb{aw}]) and obj(de) = {aa | T k= dle—aac]} |

where Z |= ¢ means that ¢ holds in Z. Observe that obj(d.e) contains at most one element because
the single-valued method e is applied to a single oid d. Thus, two formulas might be equivalent
logically, but their values as objects might be different!

In general, for an F-logic database Z, the object values of ground expressions are given by the
following mapping obj from ground references to sets of ground references:

obj(t) = {t|ZI =t[]}, for a ground id-term ¢
obj(o[...]) = {0 € objlo) | T EI[...]}
objlo:c) = {o €objlo) | T :c}
obj(c::d) = {d € obj(c) | T :d}
objlom) = {r'e objgr | Z = o[m—r]}

)
objlo.m) = {r' € obj(r) | T = o[m—»{r}]}

Observe that if t[] does not occur in Z, then obj(t) is (. Conversely, a ground reference r is called
active if obj(r) is not empty. A reference, r, can be single-valued or multi-valued:

e 7 is called multi-valued if

— it has the form o..m, or

— it has one of the forms ¢[...], 0:¢, c::d, or o.m, and any of the underlined subexpressions
is multi-valued;

e in all other cases, r is single-valued.

5.5 Symbols, Strings, Comments

Symbols. FLORA symbols (that are used for the names of constants, predicates, and object
constructors) begin with a lowercase letter followed by zero or more letters (A... Z,a... z), digits
(0...9), or underscores (_), e.g., student, apple_pie. Symbols can also be any sequence of characters
enclosed in a pair of single quotes, e.g., > JOHN SMITH’, ’default.flr’. Internally, FLORA symbols
are represented as XSB atoms, which are used there as names of predicates and function symbols.

5 SYNTAX OF FLORA 11

Escaped String | ASCII (decimal) Symbol
A\ 92 \
\n 10 NewLine
\N 10 NewLine
\t 9 Tab
\T 9 Tab
\r 13 Return
\R 13 Return
\v 11 Vertical Tab
\V 11 Vertical Tab
\b 8 Backspace
\B 8 Backspace
\f 12 Form Feed
\F 12 Form Feed
\e 27 Escape
\E 27 Escape
\d 127 Delete
\D 127 Delete
\s 32 Whitespace
\S 32 Whitespace

Table 1: Escaped Character Strings and Their Corresponding Symbols

FLORA also recognizes escaped characters inside single quotes (’). An escaped character nor-
mally begins with a backslash (\). Table 1 lists the special escaped character strings and their
corresponding special symbols. An escaped character may also be any ASCII character. Such a
character is preceded with a backslash together with a lowercase x (or an uppercase X) followed
by one or two hexadecimal symbols representing its ASCII value. For example, \xd is the ASCII
character Carriage Return, whereas \x3A represents the semicolon. In other cases, a backslash is
recognized as itself.

One exception is that inside a quoted symbol, a single quote character is escaped by another
single quote, e.g., ’isn’’t’.

Strings (character lists). Like XSB strings, FLORA strings are enclosed in a pair of double
quotes ("). These strings are represented internally as lists of ASCII characters. For instance,
[102,111,111] is the same as "foo".

Escape characters are recognized inside FLORA strings similarly to FLORA symbols. However,
inside a string, a single quote character does not need to be escaped. A double quote character,
however, needs to be escaped by another double quote, e.g., """foo""".

Numbers. Normal FLORA integers are decimals represented by a sequence of digits, e.g., 892, 12.
FLORA also recognizes integers in other bases (2 through 36). The base is specified by a decimal
integer followed by a single quote (?). The digit string immediately follows the single quote. The
letters A...Z or a...z are used to represent digits greater than 9. Table 2 lists a few sample

5 SYNTAX OF FLORA 12

integers.
Integer Base (decimal) | Value (decimal)
1023 10 1023
271111111111 2 1023
821777 8 1023
16’ 3FF 16 1023
32°vv 32 1023

Table 2: Representation of Integers

Underscore (_) can be put inside any sequence of digits as delimiters. It is used to partition
some long numbers. For instance, 2711 1111 1111 is the same as 2°1111111111. However, “_”
cannot be the first symbol of an integer, since variables can start with an underscore. For example,

1.2_3 represents the number 123 whereas _12_3 represents a variable named _12_3.

Floating numbers normally look like 24.38. The decimal point must be preceded by an integral
part, even if it is 0, i.e., 0.3 must be entered as 0.3, not as .3. Each float may also have an optional
exponent. It begins with a lowercase e (or uppercase E) followed by an optional minus sign (—) or
plus sign (+) and an integer. This exponent is recognized as in base 10. For example, 2.43E2=243
whereas 2.43e-2=0.0243.

Comments. FLORA supports three kinds of comments: (1) all characters following the % symbol
are interpreted as a comment line; (2) all characters following // are also interpreted as a comment
line; (3) all characters inside a pairs of /* and */ are interpreted as comments. Only (3) can span
multiple lines.

Note that comments are considered to be white space. Therefore, tokens can also be delimited
by comments.

5.6 Aggregation

FLORA uses the same syntax for aggregation as in FLORID. An aggregate looks like this:

agg{X[Gs]; body}

Here, agg represents the aggregate operator. X is called the aggregation variable; Gs is a list of
comma-separated grouping variables. Finally, body is a list of literals that specify the conditions.
The grouping variables, Gs, are optional.

All the variables appearing in body but not in X and Gs are considered to be existentially
quantified. Furthermore, the syntax of an aggregate must satisfy the following conditions:
(1) Both X and Gs must appear in body; (2) Gs should not contain X.

The following aggregate operators are supported: min, maz, count, sum, avg, collectset and
collectbag.

5 SYNTAX OF FLORA 13

The operators min and maz can be applied to any list of terms. The order is specified by
the XSB operator @=<. In contrast, the operators sum and avg can take numbers only. If the
aggregate variable is instantiated to a non-number, sum and avg will discard it and generate a
runtime warning message.

For each group, the operator collectbag collects all the bindings of the aggregation variable into a
list. The operator collectset works similarly to collectbag, except that all the duplicates are removed
from the result list.

In general, aggregates can appear wherever a number or a list is allowed. Therefore, aggregates
can be nested. The following examples illustrate the use of aggregates (some borrowed from the
FLORID manual):

?- Z = min{S; john[salary@(Year)—S]}.
?- Z = count{Year; john.salary@(Year) < max{S; john[salary@(Y)—S], Y<Year}}.
?7- avg{S[Who]; Who : employee[salary@(Year)—S]} > 20000.

If an aggregate contains grouping variables that are not bound by a preceding subgoal, then this
aggregate would backtrack over such grouping variables. (In other words, they are considered to
be existentially quantified). For instance, in the last query above, the aggregate will backtrack over
the variable Who. Thus, if john’s and mary’s average salary is greater than 20000, this query will
backtrack and return both john and mary.

The following example is a query that for each employee asks for a list of years when this
employee had salary less than 60. This illustrates the use of the collectset aggregate.

?- Z= collectset{Year [Who]; Who[salary@(Year) -> X], X < 60}.
Z = [1990,1991]

Who = mary

Z = [1990,1991,1997]

Who = john

5.7 Arithmetic Expressions

Unlike XSB, in FLORA arithmetic expressions are always evaluated (in XSB, + can also be used as
a binary functor). Both single-valued and multi-valued path expressions are allowed in arithmetic
expressions, and all objects (variables) are considered to be existentially quantified. For example,
the following query

7- john..bonus + mary..bonus > 1000.
is actually equivalent to

?7- john[bonus—»V1], mary[bonus—»V2], V1 + V2 > 1000.

5 SYNTAX OF FLORA 14

The only difference is that the values of V1 and V2 will be printed out for the latter query, but not
for the former one.

Order matters in FLORA. All variables appearing in an arithmetic expression must be instan-
tiated at the time of evaluation. Otherwise, a runtime error will occur.

FLORA allows arithmetic expressions to appear in path expressions. Since arithmetic expres-
sions are always evaluated, an arithmetic expression inside a path expression is treated as the
number to which the expression evaluates. Furthermore, FLORA recognizes numbers as o0id’s, so
the result of the evaluation is treated as a regular object.

To illustrate, consider the following example:
?7- 1.m+2.n.k = X.

Since FLORA allows path expressions inside arithmetic expressions, and vice versa, it is not imme-

diately obvious whether the previous example stands for the arithmetic expression (1.m) + (2.n.k),

or for the path expression (1.m + 2.n).k, or (1.m + 2).n.k, or 1.(m + 2).n.k. The correct answer is
(1304

the first path expression, because “.” in a path expression binds stronger than “+” in an arithmetic
expression.

One more confusing example is 2.3.4. Does it mean (2).(3).(4), or (2.3).4, or 2.(3.4)? In FLORA,
2.3.4 alone means (2.3).4, since all tokens, like integers, floats, operators, etc., are first processed
by FLORA tokenizer and then passed to FLORA parser. In general, the interpretation of “.” as a
decimal point takes precedence over the interpretation as part of a single-valued path expression.

Another ambiguous situation arises when the symbols — and + are used. Indeed, they can be
used as minus/plus signs, e.g., —3 and +3, or as binary arithmetic operators; e.g., 4 — 7 and 4 + 7.
Actually, the minus and plus signs are defined in FLORA as unary operators which take precedence
over binary operators.

Table 3 lists various operators in decreasing precedence order, their associativity, and arity.

Wherever ambiguity may arise, parentheses can be used to avoid misleading expressions. Here
are more examples of legal expressions in FLORA:

The interpretation of the last expression stems from the fact that both the minus sign and the plus
sign are defined as unary operators. Therefore, —6 is a complex arithmetic expression (with an
arithmetic operator —) that represents a method, but not a negative integer.

To avoid further confusion, FLORA insists that all complex arithmetic expressions representing
0id’s in path expressions must be enclosed in parentheses. Thus, although 5.—6 may seem legal
according to Table 3, it has to be entered as 5.(—6).

5.8 Negation in FLORA

FLORA uses the well-founded semantics for negation and relies on the underlying XSB system for
this service. Negation is specified using the tnot operator. However, the current implementation
has the restriction that tnot can be applied only to Prolog predicates, not F-molecules (this re-
striction will be dropped in a future release). Thus, to negate an F-molecule, one has to introduce

5 SYNTAX OF FLORA 15

Precedence | Operator Use Associativity Arity
1 O parentheses not applied | not applied
2 . decimal point not applied | not applied
3 — minus sign right unary
+ plus sign right unary
4 . path expression left binary
5 * multiplication left binary
/ division left binary
6 - subtraction left binary
+ addition left binary
=< less than or equal to not applied binary
>= greater than or equal to not applied binary
7 =:= equal to not applied binary
=\= unequal to not applied binary
1= assignment not applied binary
is same as :=

Table 3: Operators in Non-Increasing Precedence Order and Their Associativity and Arity

(01.m1+09.m2).method

2.(3.4)

3+——2 equivalent to 3 + (—(—2))

5% —6 equivalent to 5 * (—6)

5.(—6) method “—6" applied to object “5”

an auxiliary predicate as shown below. Furthermore, this predicate must be tabled (see Section 8):

:— table aux/1.
aux(X,Y) :- a[m ->> X; a -> Y].
d[£f->Z] :- e[w->Z; v—>f(X,Y)], tnot(aux(X,Y)).

One other restriction, due to the underlying XSB system, is that all variables in negated predicates
must be bound before tnot is called.

5.9 Inheritance

F-logic identifies two types of inheritance: structural and behavioral. Structural inheritance ap-
plies to signatures only. For instance, if student::person and the program has the signature
person[name =-string] then the query ?- student[name =-X] succeeds with X = string.

Behavioral inheritance is much more complex. The problem is that it is non-monotonic. That
is, addition of new facts might change previously established inferences.

F-logic (and FLORA) distinguishes between attributes and methods that can inherit values
from superclasses and those that do not. The syntax that we used so far applies to non-inheritable
attributes only. Inheritable attributes are declared using the *=>, *=>> style arrows and defined

5 SYNTAX OF FLORA 16

using the *->, *=>> style arrows. For instance, the following is a FLORA program for the classical
Royal Elephant example:

elephant [color *=> color].
royal_elephant :: elephant.
clyde : elephant.

elephant [color *-> gray].

The question is what is the color of Clyde? Clyde’s color has not been defined in the above program.
However, since Clyde is an elephant and the default color for elephants is gray, Clyde must be gray.
Thus, we can derive:

clyde[color -> gray].

Observe that when inheritable methods are inherited from a class by its members, the attribute
becomes non-inheritable. On the other hand, when such a method is inherited by a subclass from
its superclass, then the method is still inheritable, so it can be further inherited by the members
of that subclass or by its subclasses. For instance, if we have

circus_elephant :: elephant.
then we can derive
circus_elephant [color *-> gray].

Non-monotonicity of behavioral inheritance becomes apparent when certain new information
gets added to the knowledge base. For instance, suppose that we learn that

royal_elephant [color *-> white].

Although we have previously established that Clyde is gray, this new information renders our
earlier conclusion invalid. Indeed, Since Clyde is a royal elephant, he must be white, while being
an elephant he must be gray. The conventional wisdom in object-oriented languages, however, is
that inheritance from more specific classes must take precedence. Thus, we must retract our earlier
conclusion that Clyde is gray and assume that he is white:

clyde[color -> white].

Behavioral inheritance in F-logic is discussed at length in [3]. The above problem of non-
monotonicity is just a tip of the iceberg. Much more difficult problems arise when inheritance
interacts with the regular deduction. To illustrate, consider the following program:

b[m *->> c].
a : b.
alm —>> d] :- alm ->> c].

5 SYNTAX OF FLORA 17

In the beginning, it seems that a[m ->> c] should be derived by inheritance, and so we can derive
a[m ->> d]. Now, however, we can reason in two different ways:

1. a[m ->> c] was derived based on the belief that attribute m is not defined for the object a.
However, once inherited, necessarily we must have a[m ->> {c,d}]. So, the value of attribute
m is not really that produced by inheritance. In other words, inheritance of a[m ->> c]
negates the very premise on which the original inheritance was based, so we must undo the
operation and the ensuing rule application.

2. We did derive a[m ->> d] as a result of inheritance, but that’s OK — we should not really
be looking back and undo previously made inheritance inferences. Thus, the result must be
alm ->> {c,d}].

A semantics that favors the second interpretation was proposed in [3]. This approach is based
on a fixpoint computation of non-monotonic behavioral inheritance. However, this semantics is
very hard to implement efficiently, especially using a top-down deductive engine provided by XSB.
Thus, FLORA uses a different, more cautious semantics for inheritance, which favors the first
interpretation above. The idea can be summarized using the following rules, which define how class
instances inherit from the classes they belong to. Similar rules are needed to describe how classes
inherit from superclasses.

// Inheritance rules for scalar attributes
:— table defined/2, overwritten/3.
Obj[A -> V] <- not defined(Obj,A) & Obj:Class & Class[A *-> V]
& not overwritten(Obj,Class,A) & not conflict(Obj,Class,A).
overwritten(0Obj,Class,A) <- Obj:Classl & Classl::Class
& Classi[A *-> W] & Classl \= Class

defined(0bj,A) <- 0bj[A -> V]
conflict(Obj,Class,A) <- defined(Super,A) & 0Obj:Super

& not Super::Class & not Class::Super.

// Inheritance rules for set attributes
:— table definedSet/2, overwrittenSet/3.
Obj[A ->> V] <- not definedSet(0Obj,A) & Obj:Class & Class[A *->> V]

& not overwrittenSet(0bj,Class,A)

& not conflictSet(0Obj,Class,A).
overwrittenSet (0bj,Class,A) <- Obj:Classl & Classl::Class

& Class1i[A *->> W] & Classl \= Class
definedSet (Obj,A) <- O0bj[A —->> V]
conflictSet(0bj,Class,A) <- definedSet(Super,A) & Obj:Super
& not Super::Class & not Class::Super.

Negation here is implemented using the well-founded semantics for negation [5, 6] (as indicated by
the tnot operator).

One problem with the current implementation of behavioral inheritance is that the well-founded
semantics for negation in the presence of equality is not yet sufficiently developed. Since FLORA’s

5 SYNTAX OF FLORA 18

treatment of inheritance relies on well-founded negation, interaction of equality and inheritance
becomes an issue. Fortunately, it is not hard to extend the semantics to the case when derived
equalities do not depend on negation or inheritance. In the current implementation of FLORA, it
is the responsibility of the programmer to ensure that this is the case: if a derived equality does
depend on negation, the result is unpredictable. Interaction between equality and inheritance will
be made more structured in a future release.

Inheritable attributes and path expressions. In the previous examples, path expressions
used only non-inheritable attributes. Clearly, there is no reason to disallow inheritable attributes
in such expressions. To distinguish inheritable from non-inheritable attributes in path expressions,
FLORA uses “!” and “I!”. For instance,

clyde!color means: some X, such that clyde[color *-> X]
obj!!attr means: some Y, such that objlattr *->> Y].

5.10 Type Checking

Although FLORA allows the user to specify object types through signatures, type correctness is
not being checked automatically. So, what are the signatures good for then? One answer is that
future versions of FLORA might support some forms of type checking. However, because F-logic
can natively support powerful meta-programming, even the current level of support for signatures
is useful. For instance, the programmer can write simple queries to check the types of methods
that might look suspicious. Here is one way to construct such a type-checking query:

scalar_type_incorrect(0,M,R) :- O[X -> R] , 0:C, C[X => D], tnot(R:D).
?7- scalar_type_incorrect(obj, meth, Result).

Here, we defined what it means to violate type checking using the usual F-logic semantics. The
corresponding predicate can then be queried. The “no” answer means that the corresponding
attribute does not violate the typing rules.

In this way, one can easily consruct special purpose type checkers. This feature is particularly
important when dealing with semi-structured data. (Semi-structured data has object-like structure
but normally does not need to conform to any type; or if it does, the type would normally cover
only certain parts of the object structure.)

5.11 Meta-programming in FLORA

The syntax of F-logic lends itself naturally to meta-programming. For instance, it is easy to examine
the methods and types defined for the various classes. Here are some simle examples:

// All classes where John is a member
?7- john : X.

5 SYNTAX OF FLORA 19

// All superclasses of student
?- student :: X

// All unary scalar methods defined for object John
?7- john[Me(_) -> _].

// All unary scalar methods that apply to John, i.e., for which a
// signature was declared
?7- john[Me@(_) => _].

However, a number of meta-programming primitives are still needed since they cannot be directly
expressed in F-logic. Many such features are provided by the underlying XSB system and FLORA
simply takes advantage of them:

flora ?- functor(X,f,3).
X = f(_h455,_h456,_h457)
Yes.

flora ?- compound(f(X)).
X = _h472
Yes.

flora 7?- X =.. [f,a,b].
X = f(a,b)
Yes.

These primitives are described in the XSB manual. However, FLORA provides one primitive of its
own: a meta variable that can range over methods of any arity.

A meta variable is specified by a normal variable immediately prefixed with the “@” sign, e.g.,
@Method, @Q_var, @_. Note that @Q_ represents a don’t care meta variable. The “@” sign is always
considered to be a part of the meta variable’s name. Thus, @M and M represent two different
variables.

The operator “=..” (similar to that of XSB) is used to obtain a method and its arguments from
a meta variable that is bound to a method invocation expression. Alternatively, this operator can
be used to build a method invocation expression from a list and assign the result to a meta variable.
The first element in the list is assumed to represent the method name and the rest represent the
arguments. For instance,

flora 7- @M =.. [m,al,a2].

@M = m@(al,a2)

Yes.

The left hand side of “=..” can also be a normal Prolog term. In this case, “=..” acts exactly as

in Prolog, i.e., it decomposes the term into a list or constructs a term from a list.

5 SYNTAX OF FLORA 20

metavar.flr:
:- import length/2 from basics.

01 [ml@(al)—ﬂ“l].
01 [mg@(bl,bg)—)rz] .
01hn3—+T3L

01 [m4@(61,CQ,C3)—)’F4].

02[@M—)R] -
01 [@M—)R],
QM =.. [Meth|Args],
length(Args,2).

Figure 2: Using Meta Variables

Consider the example in Figure 2. The rule there “copies” the definitions of methods of arity
1 and 2 from object ol to 02. To do the same without the meta-variable would require two rules
(and more, if we were to copy the methods of higher arities). To see how this works in FLORA, try
the following:

flora ?- rundemo(metavar).
Yes.

flora 7- o02[@M->R].
@M = m2@(b1,b2)

R =12

Yes.

Currently, a meta variable can appear only where a method invocation is allowed or on the left
side of the “=..” operator. For instance, john[@M—Salary]|, 0;.@QM1.05[@M2—»r]. Thus, unlike
the regular variables, meta variables represent method invocations and not object. Because of this,
you cannot directly pass meta-variables as arguments to predicates and methods. However, you
can always convert a meta-variable into a regular variable (e.g., @M=. .N), pass the regular variable
as a parameter, and then convert it back into a meta-variable, as shown below:

/* Get some method invocation, convert to normal var, pass on to foo/1 */

?7- mary[@Meth -> V], @Meth =.. Param, foo(Param).

/* Convert Param to meta var for method invocations, test object property */
f(Param) :- @M =.. Param, abc[@M ->> 123].

6 COMPILED CODE VS. DYNAMIC CODE 21

6 Compiled Code vs. Dynamic Code

A FLORA program consists of facts and rules all of which take part in the derivation of new facts
and object properties. However, there is a distinction between static facts and rules and dynamic
ones. The former are immutable, while the latter can be added or deleted at will.

Conceptually, the runtime environment of FLORA is partitioned into two areas: static and
dynamic. Static code is generated using the predicate flcompile(file), and is loaded into
the static runtime environment by flconsult(file), flload(file), or [filel. Dynamic code
can be compiled by dyncompile(file) and loaded into the dynamic runtime environment by
dynconsult(file), dynload(file), or <file>. we have shown the syntax of these predicates in
Section 2.

The above predicates can also be called from within a FLORA program, but except for [filel
and <file>, all of them must first be imported from flrutils (see Section 7 for details).

Note 1: When a file is compiled and loaded into the dynamic area, all queries that appear in that
file are ignored.

Note 2: The same FLORA program can be compiled statically and dynamically, and FLORA puts
the two compiled versions into different files. When the program is loaded into the dynamic part
of the code, the loader is looking for a dynamically compiled version of the program; when it is
loaded into the static part of the code, the loader tries to find a statically compiled version. In
particular, it is not possible to load statically what has been compiled dynamically, and vice versa.

Although static and dynamic code resides in different areas, the rules and facts in both these
areas are considered as a whole and executed together.

A small example should help illustrate this. Suppose there are two programs, static.flr and
dynamic.flr, as shown in Figure 3. Start XSB in the directory where both static.flr and dynamic.flr
reside. Then start FLORA shell and type:

flora ?- flconsult(static).
Yes.

flora 7- dynconsult(dynamic).
Yes.

flora 7- D:department[coursesOffered->>C].

D = cse
C = cse220
D = cse
C = cse310
D = cse

C = cseb30

6 COMPILED CODE VS. DYNAMIC CODE 22

static.flr:

department[faculty==professor; coursesOffered==string].
professor|[teaches@(string,number)==string).

X : department[coursesOffered—»C] :- X..faculty[teaches@(S,Y)—+C].

cse : department[faculty —»smith)].
smith : professor.
smith[teaches@(fall,1998)—»cse220).
smith[teaches@(spring,1999)—»cse310].
smith[teaches@(spring,1999)—»cse530).

dynamic.flr:
math : department|faculty—»john].
john : professor.

john[teaches@(spring,1999) —»math230].
john[teaches@(spring,1999)—»math101].

Figure 3: Static Code vs. Dynamic Code

D = math

C = math101
D = math

C = math230
Yes.

It can be seen that the two parts of the code work in union. The difference comes when we are
trying to modify the code dynamically, e.g., by deleting or adding facts.

FLORA provides the users with several predicates to modify the runtime database. These
predicates can be executed either from the static area or the dynamic area. However, only the
facts that reside in the dynamic area can be asserted or retracted. (In the furture, FLORA might
support asserting and retracting rules in the dynamic area). The database modification predicates
supported by FLORA are explained below:

e assert(Py,...,Py): asserts a list of facts into the dynamic area. P; (i =1...n) can be any
F-logic molecule or user defined predicate, e.g.,

assert(david:professor[teaches@(fall, 1999)—cse505]).

6 COMPILED CODE VS. DYNAMIC CODE 23

e retract(Pi,...,Pn|Ci,...,Cn) retracts the ground facts corresponding to Py,...,P, for which
the conjunction of Py,...,P,,Cy,...,Cy succeeds. Cy,...,C, can be considered as the conditions
qualifying the facts to be retracted. For instance,

retract(john[teaches@(S,Y)—»C]|smith[teaches@(S,Y)—C])

retracts the teaching information about john when it duplicates smith’s (i.e., when John and Smith
appear to have taught the same course during the same semester). In contrast,

retract(john[teaches@Q(S,Y)—»C|, smith[teachesQ(S,Y)—C])

retracts the teaching records of both John and Smith when they duplicate each other.

Special built-in predicates like arithmetic comparison operators cannot be retracted. If P;
happens to be one of those special predicates, FLORA compiler will interpret it as an additional
condition C; and generate a warning. For example,

retract(john[teaches@(S,Y)—C], Y =< 1999)

is equivalent to
retract(john[teaches@Q(S,Y)—C]| Y =< 1eq1999);

e retractall(Py,...,Py|Ci,...,Cq) retracts all ground facts corresponding to Py, ..., P, for which
the conjunction of Py,...,P;,Cq,...,C, succeeds. The difference between retract and retractall
is that: retract retracts facts one by one and fails if it is unable to retract any facts, whereas
retractall always succeeds no matter what facts reside in the database. Actually, retractall is
implemented using retract with the following schema (where the arguments are omitted):

retractall :- retract, fail.
retractall.

e erase(Py,...,Py|Cy,...,Cy) retracts all ground facts similarly to retract. However, in addi-
tion, it traces the object reference links and retracts all ground facts referenced along those paths.

To see the effects of erase, continue the example of Figure 3:

flora ?- erase(cse[faculty->>smith]).
No.

Here, FLORA returns “no” because the fact cse[faculty->>smith] is located in the static area
and thus cannot be retracted.

flora 7- erase(math[faculty->>john]).
Yes.

Here, the removal of math[faculty->>john] proceeds without a hitch, because this fact resides in
the dynamic area. More interestingly, all the information about John is also gone as well! This can
be seen from the following queries:

6 COMPILED CODE VS. DYNAMIC CODE 24

flora ?- P:professor[teaches@(Semester,Year)->>Course].

P = smith
Semester = fall
Year = 1998
Course = cse220

P = smith
Semester = spring
Year = 1999
Course = cse310

P = smith
Semester = spring
Year = 1999
Course = cseb30
Yes.

flora 7?- P:professor.
P = smith
Yes.

Note that when erasing O : 05y or Oq :: O, only the object references that originate from Oy are
followed. For other F-logic facts, such as O1[method— O3], O1[method—>0s], only the object ref-
erences that originate at Qo are followed.

e eraseall(Py,...,P,[Cs,...,Cy) erases all ground facts corresponding to Py,...,P, for which
the conjunction of Py,...,P,,Cyq,...,Cy succeeds. Like retractall, eraseall always succeeds and
is implemented using erase via the following schema:

eraseall :- erase, fail.
eraseall.

Asserting, retracting, and tabling. To implement object properties, FLORA relies on a feature
of XSB called tabling (see Section 8 for more details). Unfortunately, tabling and retract do not
mix well. The problem is that results from previous queries are cached in tables, and retract does
not delete facts from tables. Thus, you might get the following counterintuitive result:

flora 7- assert(o[m->1]).

Yes.

flora ?- o[m->1].

Yes.

flora 7- retract(o[m->1]), o[m->1].
Yes.

7 FLORA MODULES AND INTERACTION WITH XSB 25

The reason for the wrong positive answer here is that the cache remembers that the query o [m->1]
is true. So, when the same query is asked after retract, a wrong result is returned from the cache.
Similarly, tabling might interact poorly with assert:

flora ?- o[m->1].

No.

flora ?7- assert(o[m->1]), o[m->1].
No.

The reason for the wrong result here is, again, that the cache remembers that o[m->1] is false,
which is no longer correct after the assert operation.

In a future release, FLORA will provide a workaround for these problems (and it is even possible
that a future release of XSB will start doing the right thing in these situations. For now, the only
remedy is to use a call to abolish all tables, which would drop all tables. However, at present,
the only safe way to do this is by executing abolish all tables as a separate query.

7 JFLORA Modules and Interaction with XSB

Besides static area and dynamic area, FLORA also has a module system that is integrated with the
XSB’s own module system. In this section we discuss how FLORA programs can talk with each
other and how they can talk to XSB.

Calling FLORA from FLORA. FLORA modules communicate with each other by importing/exporting
either ground F-logic signatures or normal Prolog predicates. With the rest of XSB, FLORA mod-
ules communicate using the normal Prolog predicates only (because bare XSB does not speak
F-logic).

To illustrate, consider the two FLORA modules module!.flr and module2.flr in Figure 4. Let us

start XSB in the directory where both modulel.flr and module2.fir reside, and type the following
from the FLORA shell:

flora 7- flcompile(module2).
. FLORA messages omitted ...
Yes.

flora ?- [modulel].
Yes.

flora 7- X=count{Year; john.salary@(Year) < mary.salary@(Year)}.
X=2
Yes.

What you see here is that modulel is loaded and the query is posed. However, modulel only
contains information about John. Mary’s information is kept in module2. However, modulel

7 FLORA MODULES AND INTERACTION WITH XSB 26

modulel.flr:

:- import employee[salary@(number)=-number| from module2.

john : employee.
john[salary@(1994)—70].
john[salary@(1995)—80].
john[salary@(1996)—70].
john[salary@(1997)—50].
john[salary@(1998)—80].

module2.fir:

:- export employee[salary@(number)=-number].

employee[salary@(number)=number].
mary : employee.
mary[salary@(1994)—60].
mary[salary@(1995)—60].
mary[salary@(1996)—7
mary[salary@(1997)—80].
mary[salary@(1998)—90].

Figure 4: Example FLORA Modules

imports this information from module2, and the imported information takes part in the query
evaluation process.

The import/export directives can take a list of predicate/arity pairs (as XSB does) and/or
ground F-logic signatures (no variables are allowed in the signatures that are imported or exported).
For example,

: —import tc/2, student[grade@(string)= number]|, p/1 from foo.

is allowed, but
: —import student[GQ(string)=>number| from foo.

1s not.

When a FLORA module imports from another module, say, module foo.flr, the latter must
already be compiled, or else a runtime error will be issued. Furthermore, a FLORA module can
not import and export the same signature. These restrictions result from the limitations of the
underlying XSB module system.

Import directives can appear in both static and dynamic code. However, all export directives (as
well as queries, as mentioned earlier) are ignored when a FLORA module is compiled as dynamic
code and/or is dynamically loaded into the dynamic area. This is, again, due to the current
limitations of the XSB module system.

7 FLORA MODULES AND INTERACTION WITH XSB 27

mix.flr:
:- import findall/3 from setof.

edge(a,b).
edge(b,c).
edge(c,b).

string[reachableTo=»string].

X : activeNode[reachableTo—Y] :- edge(X,Y).
X : activeNode[reachableTo—Y] :- edge(X,Z), Z[reachableTo—Y].

tc(X,Y) :- X[reachableTo—Y].

show(X) :-
X :activeNode,
write(X),
write(’ [reachableTo—»{"),
findall(Y,tc(X,Y),L),
writelist(L),
writeln(’}]?).

writelist([X]) :- write(X).
writelist([X7, X2|Xs]) :- write(X7), write(’,”), writelist([X2|Xs]).

Figure 5: Mixing FLORA code with XSB code

Calling XSB from FLORA. Since FLORA supports import/export directives much the same way
as XSB does, FLORA modules have full access to the underlying XSB’s functionality. In general, a
FLORA program can call any XSB predicate that is exported by some XSB module. This is done
by importing this predicate in the FLORA program.

FLORA programs can freely mix F-logic statements and XSB predicates defined in other XSB
modules as long as these XSB predicates are properly imported and are used correctly.

Consider the example in Figure 5 and suppose that the following queries are entered at the
FLORA prompt:

flora ?- [mix].
Yes.

flora 7- show(a), show(b).
a[reachableTo->>{b,c}]
blreachableTo->>{b,c}]

8 FLORA AND TABLING 28

Yes.

Observe that in Figure 5 we created a new predicate, tc, and used ¢t as an argument to
findall (which is a standard Prolog predicate; see the XSB manual). It seems more natural to
write findall(Y, X[reachableTo—»Y]|,L) instead. This more natural syntax will be supported in
the future, but it does not work at the present time. The reason is that FLORA compiler always
treats F-logic molecules as oid’s, if they appear as predicate arguments. However, in findall, we
want the molecules in the second argument to be treated as logical formulas that evaluate to true
or false. This will be supported in a future release via a special compiler directive.

Since FLORA can use most of the services provided by XSB, reading the XSB manual is highly
recommended in order to be productive. Some services, such as I/O, are of obvious importance.
However, there are many other useful packages, which provide pattern matching capabilities, inter-
action with the OS, foreign C interface, etc.

Calling FLORA from XSB. Programs written in FLORA can be used by XSB program as well.
Of course, XSB does not understand FLORA syntax directly, but they share the same common
denominator: Prolog predicates. Thus, a FLORA module can define a predicate, export it, and
XSB programs can then import and call it. Full power of F-logic syntax can be used in such
a definition. The predicate syntax is needed only at the final stage, to create a communication
channel to XSB.

XSB programs can even compile and consult FLORA programs. To this end, they must have
the import statements of the following form:

:— import bootstrap_flora/0 from flora.
:— import flcompile/1 from flrutils.

:— import flconsult/1 from flrutils.
?7- bootstrap_flora.

The statement bootstrap_flora is a non-interactive equivalent of the command flora shell.
It makes all the FLORA facilities available without actually starting the shell (which is what one
really wants while calling FLORA programs from other programs). Once the bootstrap_flora
statement has been executed, we can call, say, flconsult (foobar) from within XSB programs to
compile (if necessary) and load the FLORA program foobar.flr.

8 JFLORA and Tabling

Tabling is a technique that enhances top-down evaluation with a mechanism that remembers the
calls previously made during query evaluation. This technique is known to be essentially equivalent
to the Magic Sets method for bottom-up evaluation. However, tabling combined with top-down
evaluation has the advantage of being able to utilize highly optimized compilation techniques de-
veloped for Prolog. The result is a very efficient deductive engine.

8 FLORA AND TABLING 29

XSB lets the user specify which predicates must be tabled. The FLORA compiler automatically
tables the predicates used to flatten F-logic molecules. However, the user is responsible for telling
the system which other predicates must be tabled. (Normally, these are predicates defined by the
user.) FLORA programs accepts the same tabling directives as XSB does (Section 9 lists all the
compiler directives).

It is important to keep in mind that XSB does not do reordering of objects and predicates
during joins. Instead, all joins are performed left-to-right. The programmer, thus, must write
program clauses in such a way as to ensure that smaller predicates and classes appear early on
in the join. Also, even though XSB tables the results obtained from previous queries, the current
tabling engine has several limitations. In particular, when a new query comes in, XSB tries to
determine if this query is “similar” to one that already has been answered (or is in the process of
being evaluated). Unfortunately, the current notion of similarity used by XSB is fairly weak, and
many unnecessary recomputations might result. This problem will be corrected in a future release.

It is also important to be aware that when XSB (and FLORA) evaluate a program, all tabled
predicates are partially materialized and all the computed tuples are stored in XSB tables. Thus, if
you change the set of facts, the existing tables must be discarded in order to allow XSB to recompute
the results. This is accomplished by issuing the predicate abolish all tables/0 described in the
XSB manual.

Furthermore, tabling sometimes has undesirable side effects in “real-world” programming, es-
pecially when writing methods with non-logical side effects (e.g., writing or reading a file). If a
tabled predicate has such side effects, then the first time the predicate is called the side effect will
be performed, but the second time the call simply returns with success or failure (depending on
the outcome of the first call). Thus, if the predicate was intended to perform the side effect each
time it is called, it will not operate correctly.

ATl this is, of course, old news to XSB programmers, but is there anything FLORA-specific in
this? It turns out that yes, and the problem is not immediately apparent. In the object-oriented
style, people tend to define methods with side effects and attach them to objects. However, because
FLORA tables everything that comes from F-molecules, methods with side effects are subject to
the same problem as described above. The current interim solution is to use predicates instead of
methods whenever side effects are needed. In a future release, FLORA will have special syntax for
methods with side effects, so this restriction will be lifted.

No discussion of a logic programming language is complete without a few words about the
infamous Prolog cut (!). Although Prolog cut has been (mostly rightfully) excommunicated by as far
as Database Query Languages are concerned, it is sometimes indispensable when doing “real work”,
like pretty-printing FLORA programs or implementing a pattern matching algorithm. To facilitate
this kind of tasks, FLORA lets the programmer use cuts. However, the current implementation of
XSB has a limitation that Prolog cuts cannot “cut across tabled predicates.” Without trying to
pretend to be experts, we refer the reader to the XSB manual for details on this obscure problem.
The XSB team is considering correcting this problem in a future release.

For now, enjoy your cut. If you get an error message telling something about cutting across the
tables — you know that you may have cut too much :-). The basic rule that can keep you out of
trouble is: do not put a cut in the body of a rule after any F-molecule. However, it is (usually)

9 FLORA COMPILER 30

OK to to put a cut before any F-molecule. It is even OK to have a cut in the body of a rule that
defines an F-molecule (again, provided that the body has no F-molecule to the left of that cut).

9 FLoOrA Compiler

Like XSB compiler, FLORA compiler can take compilation directives. All such directives must
begin with :- (while all queries must begin with ?-). The following is a list of all the compiler
directives supported by FLORA:

Tabling Directive Tabling directive can be either “:- auto_table.”, which lets XSB automat-
ically decide which predicates should be tabled, or “:- table p_a_list.”, where p_a_list is a
coma-separated list of predicate/arity pairs specifying those predicates to be tabled. Note that the
tabling directive is needed only for the user-defined predicates inside FLORA modules. The internal
FLORA predicates that are used to implement F-logic atoms are tabled automatically.

Import Directive Import directive is of the form “:- import sig p.a_list.”, wheresig p_a_list
is a list of ground F-logic signatures and/or predicate/arity pairs.

Export Directive Export directive is of the form “:- export sig pa list.”, where sig_p_a_list
is a list of ground F-logic signatures and/or predicate/arity pairs. All export directives are ignored
if a FLORA module is compiled as dynamic code and/or is loaded dynamically.

Equality Maintenance Directive Equality maintenance directive has the form “:- eqlevel (N).”

where the level number N specifies the degree to which FLORA will try to maintain the equalities
among objects derived during query evaluation. Currently, only two levels of equality maintenance
are supported: 0 (no equality maintenance) and 1 (full equality maintenance).

Equality maintenance directives can appear in several places in a FLORA program. However, if
eqlevel (1) is requested somewhere in the module, FLORA will compile the module with equality
maintenance level 1.

Note that equality level 1 should not be specified unnecessarily, since it can slow FLORA down by
an order of magnitude. The default equality maintenance level is 0. However, if FLORA compiler
detects a path expression in a rule head, which requires Skolemization (which, for correctness,
requires full equality maintenance), it automatically switches to the equality level 1. Therefore,
path expressions in the rule head must be avoided if at all possible.

Equality maintenance can also be requested when FLORA modules are compiled using predi-
cates such as flcompile and flconsult (which must be imported from the module flrutils).
For instance, flcompile (benchmark, [eqlevel(1)]) will compile benchmark.flr with equality
maintenance level 1. If equality maintenance is given both in the flcompile command and inside
the flora module being compiled, the highest level will be selected by the compiler.

10 FLORA DEBUGGER 31

Here is the full list of compilation and loading predicates, all imported from flrutils, that can
be used in conjunction with FLORA:

flcompile(File, Directives) — compile File with compilation Directives.
flcompile(File) — same with default directives.

flconsult(File, Directives) — consult File with compilation Directives.
flconsult(File) — same with default directives.

dyncompile(File, Directives)— like flcompile/2, but compiles as FLORA dynamic code.
dyncompile(File) — same with default directives.

dynconsult (File, Directives)— like flconsult/2, but consults as FLORA dynamic code.
dynconsult(File) — same with default directives.

flload(File) — load File.{flr,P,0} as static code.

dynload(File) — load File.{flr,P,0} as dynamic code.

10 JFLoRA Debugger

FLORA debugger is essentially a presentation layer on top of the XSB debugger, so familiarity with
the latter is highly recommended (XSB Manual, Part I). Here we sketch only a few basics.

The debugger has two facilities: tracing and spying. Tracing allows the user to watch the
program being executed step by step, and spying allows one to tell FLORA that it must pose when
execution reaches certain predicates or object methods. The user can trace the execution from then
on. At present, only the tracing facility has been implemented.

To start tracing, you must issue the command flora trace at the FLORA prompt. It is also
possible to put the subgoal flora trace in the middle of the program. In tat case, tracing will
start after this subgoal gets executed. This is useful when you know where exactly you want to
start tracing the program. To stop tracing, type flora notrace.

During tracing, the user is normally prompted at the four ports of subgoal execution: Call
(when a subgoal is first called), Exit (when the call exits), Redo (when the subgoal is tried with
a different binding on backtracking), and Fail (when a subgoal fails). At each of the prompts,
the user can issue a number of commands. The most common ones are listed below. See the XSB
manual for more.

e carriage return (creep): to go to the next step
e s (skip): execute this subgoal non-interactively; prompt again when the call exits (or fails)
e S (verbose skip): like s, but also show the trace generated by this execution

e 1 (leap): stop tracing and execute the remainder of the program
The behavior of the debugger is controled by the predicate debug_ctl. For instance, executing

debug_ctl(profile, on) at the FLORA prompt tells XSB to measure the CPU time it takes to
execute each call. This is useful for tuning your program for performance. Other useful controls

11 EMACS SUPPORT 32

are: debug_ctl(prompt, off), which causes the trace to be generated without user intervention;
and debug ctl(redirect, foobar), which redirects debugger output to the file named foobar.
The latter feature is usually useful only in conjunction with the aforesaid prompt-off mode. See
the XSB manual for additional information on debugger control.

11 Emacs Support

Editing and debugging FLORA programs can be greatly simplified with the help of flora-mode,
a special Emacs editing mode designed specifically for FLORA programs. Flora-mode provides
support for syntactic highlighting, automatic indentation, and the ability to run FLORA programs
right out of the Emacs buffer.

11.1 Instalation
To install flora-mode, you must perform the following steps. Put the file
XSB/packages/flora/emacs/flora.el
found in your XSB distribution on the load path of Emacs or XEmacs (whichever you are using).
The best way to work with Emacs is to make a separate directory for Emacs libraries (if you do
not have one), and put flora.el there. Such a directory can be added to emacs search path by
putting the following command in the file ~/.emacs (or ~/.xemacs, if you are running one of the
newer versions of XEmacs):
(setq load-path (cons "your—directory" load-path))
It is also a good idea to compile emacs libraries. To compile flora.el, use this:

emacs -batch -f batch-byte-compile flora.el

If you are using XEmacs, use xemacs instead of emacs above — the two emacsen often use incom-
patible byte code.

Finally, you must tell X/Emacs how to recognize FLORA program files, so Emacs will be able
to invoke the Flora major mode automatically when you are editing such files:

(setq auto-mode-alist (cons ’("\\.flr$" . flora-mode) auto-mode-alist))
(autoload ’flora-mode "flora" "Major mode for editing Flora programs." t)

To enable syntactic highlighting of Emacs buffers (not just for FLORA programs), you can do
the following:

e In Emacs: select Help.Options.Global Font Lock on the menubar. To enable highlingting
permanently, put

11 EMACS SUPPORT 33

(global-font-lock-mode t)
in “/.emacs.

e In XEmacs: select Options.Syntax Highlighting.Automatic in the menubar. To enable
this permanently, put

(add-hook ’find-file-hooks ’turn-on-font-lock)

in “/.emacs or ~/.xemacs (whichever is used by your XEmacs).

11.2 Functionality

Menubar menu. Once flora editing mode is installed, it provides a number of functions. First,
whenever you edit a FLORA program, you will see the “Flora” menu in the menubar. This menu
provides commands for controlling the Flora process (i.e., XSB with the FLORA shell). You can
start and stop this process, type queries to it, and you can tell it to consult regions of the buffer
you are editing, the entire buffer, or some other file.

Because Emacs provides automatic file completion and allows you to edit what you typed, per-
forming these functions right out of the buffer takes much less effort than typing the corresponding
commands on XSB command line.

Keyboard functions. In addition to the menu, flora-mode lets you execute most of the menu
commands using the keyboard. Once you get the hang of it, keyboard commands are much faster
to invoke:

Consult file: Ctl-c Ctl-f
Consult file dynamically: Ctl-u Ctl-c Ctl-f
Consult buffer: Ctl-c Ctl-b
Consult buffer dynamically: Ctl-u Ctl-c Ctl-b
Consult region: Ctl-c Ctl-r

Consult region dynamically: Ctl-u Ctl-c Ctl-r

When you invoke any of the above commands, a FLORA process is started, unless it is already
running. However, if you want to invoke this process explicitly, type

ESC x run-flora

You can control the FLORA process using the following commands:

Interrupt Flora Process: Ctl-c Ctl-c
Quit Flora Process: Ctl-c Ctl-d
Restart Flora Process: Ctl-c Ctl-s

Interrupting FLORA is equivalent to typing Ct1-c at the FLORA prompt, quitting the process stops
XSB, and restarting the process shuts down the old XSB process and starts a new one with FLORA
shell running.

12 FUTURE ENHANCEMENTS 34

Indentation. Flora editing mode understands some aspects of the FLORA syntax, which enables
it to provide correct indentation of program lines (in many cases). In the future, flora mode will
know more about the syntax, which will let it provide even better support for indentation.

The most common use of FLORA indentation facility is by typing the TAB-key. If flora-mode
manages to understand where the cursor is, it will indent the line accordingly. Another way is to
put the following in your emacs startup file (*/.emacs or ~/.xemacs):

(setq flora-electric t)

In this case, whenever you type the return key, the next line will be indented automatically.

12 Future Enhancements

FLORA is work in progress. We are still experimenting with features and nothing is cast in stone.
So, although we do not intend to make the life of FLORA users harder than it already is, we cannot
give a guarantee of backward compatibility. The following enhancements and features are among
currently planned:

Syntax enhancements: At present, the not operator can be applied to predicates only. This
restriction will be removed in the future, so it will be possible to negate arbitrary F-molecules.

A future version of FLORA will support a no-op. So, it will be possible to write F-molecules
without worrying about the semicolon, i.e., a[m->b;;c->d;]. It will be also possible to have
extraneous commas: head :- bil,,b2,.

Equality: In a future release, equality maintenance will most likely be more restrictive: only the
objects that are explicitly equated via an equality predicate in the head of a rule will be
allowed to be equated. Any other derived equality will be treated as an error (or a very stern
warning).

Aggregates: FLORA will provide builtin functions that will directly apply to the outcome of the
aggregates collectbag and collectset. This will make it possible to do grouping once and
then compute multiple aggregates over the groups.

Work areas: At present, FLORA supports only one dynamic work area. A future version of
FLORA will support multiple dynamic work areas.

If-then-else: FLORA will provide the equivalent of the if-then-else construct, to make programs
more readable.

Transaction logic: FLORA will be enhanced with Transaction Logic syntax.

Additional compiler directives: An F-molecule and a path expression have two meanings: as
an oid and as a truth value. Currently, an F-molecule or a path expression that occurs inside
a predicate is interpreted as an object. This is not always desirable, however. For instance,
in findall, it is more appropriate to evaluate F-molecules that occur in the second argument
to truth values. This can be done with compiler directives like:

REFERENCES 35

:- arguments findall(oid,truth,oid)

meaning that the first and the third arguments should be evaluated to their oids and the
second argument should be evaluated to a truth value.

FLORA will also allow database declarations, like those used in the XSB database interface.

References

[1] J. Frohn, G. Lausen, and H. Uphoff. Access to objects by path expressions and rules. In VLDB,
pages 273284, 1994.

[2] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the
ACM SIGMOD International Conference on the Management of Data, pages 393-402, New
York, June 1992. ACM.

[3] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based lan-
guages. Journal of the ACM, 42:741-843, July 1995.

[4] B. Ludéscher, R. Himmerdéder, G. Lausen, W. May, and C. Schlepphorst. Managing semistruc-
tured data with FLORID: A deductive object-oriented perspective. Information Systems, 23(8),
1998.

[5] A. Van Gelder. The alternating fixpoint of logic programs with negation. In ACM Principles
of Database Systems, pages 1-10, New York, 1989. ACM.

[6] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620-650, 1991.

Index

abolish_all_tables, 25, 29
aggregates

avg, 12

collectbag, 12

collectset, 12

count, 12

max, 12

min, 12

sum, 12
aggregation

aggregate operator, 12

grouping, 12
arithmetic expression, 13
atom

data, 6

in F-logic, 6

in XSB, 10

isa, 6

signature, 6
attribute

inheritable, 15

non-inheritable, 15

calling FLORA from FLORA, 25

calling FLORA from XSB, 28
calling XSB from FLORA, 26
character list, 11
class, 6
instance, 6
subclass, 6
closure axioms, 5
code
compiled, 21
dynamic, 21
static, 21
comment, 10
compiler directive, 30
equality maintenance, 30
export, 30
import, 30
tabling, 30
cut in FLORA, 29
cutting across tables, 29

36

debugging, 31
escaped character, 10

F-molecule, 7
FLIP, 1
float, 11
FLORID, 1, 5

id-term, 6

inheritance
behavioral, 15
non-monotonic, 15
structural, 15

integer, 11

meta-variable, 19
method, 6
scalar, 6
self, 8
set-valued, 6
single-valued, 6
module, 25
in FLORA, 25
export directive, 26
import directive, 26

number, 11

object constructor, 6
object identifier, 6
oid, 6

path expression, 7
in rule body, 7
in rule head, 9

reference, 9
object value of, 9
truth value of, 9

signature

in F-logic, 6, 25
string, 10, 11
subclass, 6

INDEX

symbol, 10

tabling, 28
tracing, 31
type checking, 18

well-founded semantics, 17

37

