
Tools For Assembling Modular Ontologies in Ontolingua

Adam Farquhar, Richard Fikes, James Rice

Knowlededge Systems Laboratory
Stanford University
Stanford, CA 94305

{axf, fikes, rice}@ksl.stanford.edu

Abstract

The Ontolingua ontology development environment
provides a suite of ontology authoring tools and a
library of modular reusable ontologies. The
environment is available as a World Wide Web
service and has a substantial user community. The
tools in Ontolingua are oriented toward authoring of
ontologies by assembling and extending ontologies
obtained from the library. In this paper, we describe
Ontolingua's formalism for combining the axioms,
definitions, and non-logical symbols of multiple
ontologies. We also describe Ontolingua's facilities
that enable renaming of non-logical symbols from
multiple component ontologies and that disambiguate
symbol references during input and output. These
features of Ontolingua support cyclic inclusion graphs
and enable users to extend ontologies in multiple ways
such as adding simplifying assumptions and extending
the domains of polymorphic operators.

Introduction

Explicit specifications of domain conceptualizations, called
ontologies, are essential for the development and use of
intelligent systems as well as for the interoperation of
heterogeneous systems. They provide the system
developer with both the vocabulary for representing
domain knowledge and a core of domain knowledge (i.e.,
the descriptions of the vocabulary terms) to be represented.
Ontology construction is difficult and time consuming.
This high development cost is a major barrier to the
building of large scale intelligent systems and to
widespread knowledge-level interactions of computer-
based agents. Since many conceptualizations are intended
to be useful for a wide variety of tasks, an important means
of removing this barrier is to specify ontologies in a
reusable and composable form so that large portions of an
ontology for a given application can be assembled from a
collection of existing ontologies held in an ontology
repository.

We have developed an ontology development environment
called Ontolingua (Gruber 1992) (Farquhar et al. 1996)
that provides a suite of ontology authoring tools and a
library of modular reusable ontologies. The environment is
available as a World Wide Web service
(http://ontolingua.stanford.edu) and has a
substantial user community at many sites. The tools in
Ontolingua are oriented toward authoring ontologies by
assembling and extending ontologies obtained from
Ontolingua's library. The design of the web-based
interface and the underlying infrastructure is detailed in
(Rice et al. 1996).
In this paper, we describe Ontolingua's formalism for
combining the axioms, definitions, and non-logical
symbols1 of multiple ontologies. We also describe
Ontolingua's facilities that enable renaming of non-logical
symbols from multiple component ontologies and that
disambiguate symbol references during input and output.
These features of Ontolingua support cyclic inclusion of
one ontology in another (e.g., A included in B included in
C included in A), which we believe to be unique to
Ontolingua, and enable users to extend included ontologies
in multiple ways such as by adding simplifying
assumptions or domain restrictions and by extending the
domains of polymorphic operators.

The Ontolingua Representation Language

The original Ontolingua language, as described in (Gruber
1993), was designed to support the design and specification
of ontologies with a clear logical semantics. To
accomplish this, Gruber extended the Knowledge
Interchange Format (KIF) (Genesereth and Fikes 1992).
KIF is a monotonic first order logic with set theory that has
a linear ASCII syntax; includes a sublanguage for defining
named functions, relations, and object constants; and
supports reasoning about relations, functions, and
expressions by including them in the domain of discourse.
Gruber extended the syntax of the KIF definition
sublanguage to provide additional idioms that frequently

1 Non-logical symbols are the names of relations,

functions, and object constants.

occur in ontologies and added a Frame Ontology to enable
ontologies to be specified in a pseudo object-oriented style
using familiar relations and functions such as Class,
Subclass-Of , Slot , Slot-Value-Type, Slot-
Cardinality, and Facet.
For the Ontolingua Server, we have extended the original
language and ontology development facilities in various
significant ways. First of all, we have developed an object-
oriented external presentation for the Ontolingua language
for use by ontology developers. The internal
representation of an ontology is always expressed as a set
of KIF axioms and a set of non-logical symbols. That is,
internally, an ontology is a first-order axiomatic logical
theory. The presentation is the manner in which these
underlying axioms and symbols are viewed and
manipulated by a user. The presentation in the Ontolingua
Server’s browsing and editing interface is tailored for
object-oriented or frame-language descriptions of a domain
of discourse. The vocabulary used in this presentation is
defined in the Frame Ontology.
A key property of the extended Ontolingua Language and
its presentation in the Ontolingua Server is that axioms
which do not fit into the frame formalism are allowed.
Such axioms are displayed as augmentations to frames or
as the content of relation and function definitions. Thus,
the frame language presentation does not restrict the
expressiveness of the ontology. This is important for a
development environment for sharable ontologies, since,
unlike an inference tool or a traditional knowledge
representation tool for which tractability is paramount, a
core objective of an ontology development environment is
to support comprehensive models of a wide range of
domains. For example, if a developer wishes to state the
disjunction that a pass grade for an exam is equivalent to
an A, B, or C, an ontology development environment must
allow that sentence to be expressed, even though many
reasoning systems may not be able to make full use of that
fact.

Assembling Ontologies from Modular
Components

Another major set of extensions that we have made to the
original Ontolingua language and system are a set of
facilities that explicitly support the composition of
ontologies by assembling, extending, and refining
ontologies from a library. These extensions are the
primary focus of this paper.
Our objective is to make ontologies useful in a wide range
of activities. This means that the effort required to
construct new ontologies must be minimized and the
overall effort required to construct an ontology must be
amortized over multiple uses and users. Ontolingua's new
facilities are intended to promote that minimization and
amortization by enabling ontology writers to reuse existing
ontologies in flexible and powerful ways.
The original Ontolingua language provided limited support
for defining ontological modules in the form of a DAG of

named ontologies. Our users found this simple model to be
inadequate in several ways on which we will elaborate
below. Furthermore, the module system did not have a
clearly articulated semantics, which was in sharp conflict
with the basic goals of the language. The current version
of Ontolingua, described here, has a clear formal semantics
and allows users to reuse existing ontologies from a
modular structured library by inclusion, polymorphic
refinement, and restriction.
Figure 1 shows several motivating examples that are drawn
from our ontology building experience. Example 1 shows
the simplest relation between ontologies: inclusion. The
developer of an Amco-Semiconductor product ontology
needs to represent basic information about products, prices,
services, etc. The developer does so by including the entire
contents of the Generic Product ontology from the
ontology library without modification.1

In Example 2, we see that specialized ontologies may make
simplifying assumptions that restrict the included axioms.
For example, in the Integer-Arithmetic ontology, all
numbers are restricted to be integers.
In Example 3, the author wishes to extend the addition
operator + in two distinct ways. The library contains
axioms about the addition operator in the KIF-Numbers
ontology (e.g., it is associative, commutative, has 0 as an
identity element, etc.). The author wishes to extend the
addition operator to apply to vectors in one ontology and to
apply to strings in another ontology. We refer to this
operation as polymorphic refinement.
In Example 4, we see that the inclusion relations between
ontologies may be circular. We consider two ontologies:
one for medicine and another for sports. The medical
ontology needs to refer to a variety of terms from the sports
ontology (e.g., " Roller-blading is a leading cause of wrist
fractures in teens.") and the sports ontology must also refer
to medical terms (e.g., "Weight-lifters may use anabolic
 steroids to increase muscle growth."). We must handle this
sort of relationship carefully because the ontology
designers do not want either ontology to be polluted by the
non-logical symbols from the other.
Many knowledge representation systems have addressed
these issues in one way or another. Before turning to our
solution, we will discuss some of the approaches that
others have used, illustrate some of their shortcomings, and
use them to motivate our novel design choices.
The easiest and simplest approach is to provide no explicit
support for modularizing represented knowledge — let the
author beware. For instance, the THEO system (Mitchell
et al. 1989) uses a single knowledge base and a single set
of axioms. In some sense, this enables Examples 1, 3, and
4 to be represented, but it has two key drawbacks: First, it

1 Notice that by “inclusion” here, we do not mean

“cut and paste the contents of the product
ontology into the Amco Semiconductor
ontology file”. This interpretation would result
in unfortunate version dependencies.

is impossible to restrict definitions (Example 2). Second,
by eliminating modularity, it makes understanding and
evaluating ontologies extremely difficult. Authors using
systems like this often resort to lexical conventions to
discriminate between symbols (e.g., +, vector_+, string_+).
Without automated support, such conventions are difficult
to enforce. Furthermore, enforcing them may not even be
desirable. In Example 3, the axioms in the vectors
ontology are about the same + operator as the axioms in
KIF-Numbers.
A fairly common extension is to allow a directed acyclic
graph (DAG) of inclusion relations between “theories”
such as provided by Genesereth’s Epikit (Genesereth
1990). That mechanism supports modularity, restrictions,
and incompatible augmentations. It has two drawbacks:
First, no cycles are allowed among theories. As we have
seen, it is both natural and desirable to have cyclic
relationships between terms in ontologies. 1 Second, in its
simple form, this mechanism results in unnecessary name
conflicts. For instance, an ontology for scientific course
work might include ontologies for chemistry and
academics, both of which define tests, but in different
ways. There must be a way of discriminating between
tests in chemistry and tests in academics.
The LOOM system (MacGregor 1990) provides a DAG of
inclusion relationships, but extends the simple approach by
allowing references to non-logical symbols in ontologies
that have not been included. Referencing a symbol in an
unincluded ontology, however, does not include all of the
axioms from that ontology, but only minimal type
information. This conflates the declarative semantics, as
defined by the axioms, with pragmatic information about
which axioms to apply during problem solving.
There are two aspects to our solution: (1) an ontology
inclusion operator added to the internal representation
giving explicit support to the assembly of component
ontologies, and (2) mechanisms for renaming and
disambiguating references to non-logical symbols from
multiple component ontologies during input and output.

1 Indeed, we initially wanted to avoid the

additional complexity introduced by allowing
circular references, but our users demanded it.
For any particular example in which circular
references occur, it is always possible to create
a new ontology, (e.g., sports-medicine) that
contains the subset of the ontologies in the
cycle. This is not a practical solution, however,
because it may require the entire structure of the
ontology library to be changed to add a single
axiom. This would make it impossible to have
a general-purpose library of reusable
ontological fragments.

Adding Ontology Inclusion to the
Representation Formalism

In order to encourage the reuse of existing ontologies, the
Ontolingua Server provides a facility for including one
ontology in another as follows. Each ontology is
considered to be specified by a vocabulary of non-logical
symbols2 and a set of axioms. Formally, including an
ontology A in an ontology B requires specifying a
translation of the vocabulary of A into the vocabulary of B,
applying that translation to the axioms of A, and adding the
translated axioms to the axioms in the specification of B.
We say that the axioms in the resulting set are "the axioms
of ontology B" so that if B is later included in some other
ontology C, the ontology C will include translated versions
of both the axioms in the specification of B and the axioms
of A. Thus, when we say “the axioms of ontology O”, we
mean the union of the “axioms in the specification of O”
and the axioms of any ontology (transitively) included by
O. This notion of inclusion defines a directed graph of
inclusion relationships that can contain cycles. We allow
ontology inclusion to be transitive and say that ontology A
is included in ontology B if there is a path in the ontology
inclusion graph from A to B.
Ontolingua eliminates symbol conflicts among ontologies
in its internal representation by making the symbol
vocabulary of every ontology disjoint from the symbol
vocabulary of all other ontologies. That is, in the internal
representation, the symbol N in the vocabulary of ontology
A is a different symbol from symbol N in ontology B. Thus,
each ontology provides a local name space for the symbols
defined in that ontology.3

Given that symbol vocabularies are disjoint, Ontolingua
can assume in its internal representation that the translation
used in all inclusion relationships is the identity translation.
Therefore, in the internal representation, including an
ontology A in an ontology B simply means adding the
axioms of A to the axioms of B.
Note that in this model of ontology inclusion, cyclic
inclusion graphs are not a problem since the only effect of
ontology inclusion is the union of sets of axioms.

2 Note that by the term "non-logical symbol" we

do not mean the LISP data structure called
symbol. Non-logical symbols in Ontolingua are
not implemented as LISP symbols, and
although some of the ensuing discussion of
symbol disambiguation will sound reminiscent
of the LISP package system, that system is not
adequate to implement the disambiguation
algorithm we describe.

3 The names of ontologies, themselves, are
considered to be global and are not part of the
ontological vocabulary.

Ontolingua allows users to state explicit inclusion
relationships between ontologies and implicitly creates
inclusion relationships based on symbol references in
axioms. That is, if an ontology A contains an axiom that
references a symbol in the vocabulary of an ontology B,
then the system implicitly considers B to be included in A.
This inclusion rule ensures that the axioms specifying the
"meaning" (i.e., restricting the possible interpretations) of
the referenced symbol are a part of the ontology in which
the reference occurs. A more refined rule could include
only those axioms that could affect the possible
interpretations of the symbol, but we have not developed
such a rule.

Resolving Symbol References in Assembled
Ontologies

The inclusion operation added to the Ontolingua Server's
internal representation formalism provides a powerful,
simple, and unambiguous way for ontologies to be
assembled and reused. However, in order to eliminate
ambiguity, it requires symbols to be given clumsy extended
unique names that may be unknown to the user. Moreover,
it does not allow a user to perform important operations
such as renaming symbols from included ontologies or
selectively controlling which symbols are to be imported
from included ontologies or exported to other ontologies.
Ontolingua solves these problems with additional
capabilities that are a part of its facilities for converting
symbol references in input/output text to and from the
internal symbol representation.
A non-logical symbol is assumed to be defined in some
ontology and to have a name that is distinct from any other
symbol defined in the same ontology. The ontology in
which a symbol is defined is called that symbol's home
ontology. Similarly, each ontology has a name that
uniquely distinguishes it from any other ontology.
The Ontolingua Server interprets a symbol reference in an
input stream or produces a symbol reference in an output
stream from the perspective of a given ontology. For
example, if a symbol named N is defined in ontology A and
a different symbol named N is defined in ontology B, then
from the perspective of A, the input text "N" is interpreted
as “the symbol named N defined in A”, whereas from the
perspective of B, the input text "N" is interpreted as "the
symbol named N defined in B".
The default perspective from which any given symbol
reference is to be interpreted is established unambiguously
by the Ontolingua Editor or the ontology source file, but it
can be explicitly specified by attaching a suffix to the
symbol name consisting of the character "@" following by
the name of an ontology. So, for example, the symbol
named N interpreted from the perspective of ontology A can
be unambiguously and globally referred to as "N@A". A
symbol reference that includes the @«ontology name»
suffix is said to be a fully qualified reference. Fully
qualified references enable symbols defined in any
ontology to be referenced in any other ontology.

The @«ontology name» suffix can be omitted from
symbol references an Ontolingua input stream and is
omitted from symbol references produced by Ontolingua in
its output streams when the symbol name itself is
unambiguous from the intended perspective. Such a
symbol is said to be recognized by name from the
perspective. A symbol is always recognized by name from
the perspective of its home ontology (i.e., the ontology in
which it is defined). Determining when a symbol can be
recognized by name in an ontology other than its home
ontology requires additional machinery, which we will now
describe.
The Ontolingua Server's input/output facility provides a
symbol renaming mechanism that allows a user to assign a
name to a symbol which is local to the perspective of a
given ontology. The symbol is then recognized by name
from the perspective of the ontology in which it is
renamed. A renaming is specified by a rule that includes
an ontology name, a symbol reference, and a name that is
to be used as the local name of the given symbol from the
perspective of the given ontology. Given such a renaming
rule, Ontolingua will recognize the local name as a
reference to the given symbol when processing input in the
given perspective, and will use the local name to refer to
the given symbol when producing output from that
perspective. So, for example, a renaming rule might
specify that in ontology A , the local name for
auto@vehicles is to be car. This facility enables an
ontology developer to refer to symbols from other
ontologies using names that are appropriate to a given
ontology and to specify how naming conflicts among
symbols from multiple ontologies are to be resolved.
A symbol is said to be recognizable by name in an
ontology if the name unambiguously identifies a symbol
from the perspective of that ontology. In order for the test
for ambiguity to be well defined, the space of symbols to
be considered by the test must be specified. If that symbol
space is too large (e.g., all the symbols in all the ontologies
in the Ontolingua ontology library), then names will rarely
be unambiguous. Thus, what we need are mechanisms for
specifying a restricted symbol space that is appropriate for
ontologies assembled from component ontologies. We
provide three such mechanisms as follows.
The first mechanism for restricting the symbols considered
during name recognition enables a symbol to be designated
as private to its home ontology and therefore not
renameable nor recognizable by name in any other
ontology. The Ontolingua Server provides user commands
for designating symbols as being public or private.
However, the system considers symbols to be public by
default so that users can ignore the public/private
distinction until they encounter or want to define private
symbols.1

The second mechanism for restricting the symbols
considered during name recognition associates with each

1Users can change the default on a per-ontology

basis.

ontology a set of names that are blocked in the ontology
from being recognized as symbols from another ontology.
Such names are said to shadow (hide) symbols from other
ontologies. The Ontolingua Server provides user
commands for editing the set of shadowing names
associated with each ontology.
The third mechanism for restricting the symbols considered
during name recognition associates with each ontology a
set of ontologies which are sources of symbols that can be
recognized by name in that ontology. User commands are
available in the Ontolingua Server for editing the set of
such source ontologies, and Ontolingua automatically adds
to this set any ontology which is explicitly included. Thus,
by default, all (transitively) included ontologies are sources
of symbols to be recognized by name.
The algorithm for recognizing a name N as a symbol
reference in a given ontology A checks whether there is a
symbol defined in A named N, then checks whether there is
a symbol renamed to N in A, and then, if N is not shadowed
in A, recursively attempts to recognize N as a public symbol
in an ontology which is a source of recognized symbols for
A.
Ontolingua uses the shadowing mechanism to prevent
ambiguities from occurring in references to symbols
defined in other ontologies by automatically blocking any
name which would be ambiguous in the ontology. In
particular, given ontologies A and B, and a situation in
which there is a symbol that is recognized by name N in A,
the system automatically shadows N in A when:

• A new symbol is defined that would be
recognized by name N in A;

• A symbol is renamed to N in A;

• There is a symbol which is recognized by
name N in B which is different from the
symbol that is recognized by name N in A,
and B becomes a source of recognized names
for A;

Note that although this automatic maintenance of
shadowing names assures that recognition of symbol
names is independent of the order of operations that
occurred before the name is read from an input stream (or
entered into an output stream), it does not change the
interpretation of names read before an operation is done.
That is, names in input streams are interpreted with respect
to the state of the system at the time the name is read.

Discussion

To summarize, consider how Ontolingua supports ontology
inclusion, circular dependencies, and polymorphic
refinement by reconsidering the examples from Figure 1.
The developer of the Amco-Semiconductor products
ontology would explicitly establish the ontology inclusion
relationship in Example 1 either as part of the definition of
that ontology or as an editing operation after the ontology
has been defined. When the Generic-Products ontology

is included in the Amco-Semiconductor products ontology,
the system automatically adds the Generic-Products
ontology to the Amco ontology's set of sources of
recognized names. As a result, public symbols from the
Generic-Products ontology, such as Service-
Agreement, whose names do not conflict with other
recognized names in the perspective of the Amco ontology
would then be recognized in the Amco ontology and
therefore could be referred to from the perspective of that
ontology by their names (e.g., Service-Agreement)
without the @Generic-Products suffix.
Examples 2 and 3 illustrate the restriction in one case and
the extension in another case of a function (i.e., "+")
defined in an included ontology. In example 2, the author
of the Integer-Arithmetic ontology restricts numbers to
be integers in that ontology by augmenting the definition of
class Number in the Integer-Arithmetic ontology so that
it is a subclass of Integer. That augmentation results in
the addition of the following axiom to the Integer-
Arithmetic ontology:

(=> (Number ?x) (Integer ?x))

The + function defined in ontology KIF-Numbers is then
restricted to apply only to integers in the Integer-
Arithmetic ontology.
In example 3, the function + is extended to become a
polymorphic operator. The author of the Vectors
ontology explicitly includes KIF-Numbers in Vectors and
augments the definition of + with the following axiom to
make + equivalent to VectorAdd when the arguments are
vectors:
(=> (and (Vector ?x) (Vector ?y)) (= (+

?x ?y) (VectorAdd ?x ?y)))

Note that since KIF-Numbers is explicitly included in
Vectors, the name + in this axiom is recognized as
referring to the symbol named + defined in KIF-Numbers.
Similarly, the author of the Strings ontology explicitly
includes KIF-Numbers in Strings and augments the
definition of + with the following axiom to make +
equivalent to Concat when the arguments are strings:
(=> (and (string ?x) (string ?y)) (= (+

?x ?y) (Concat ?x ?y)))

As before, since KIF-Numbers is explicitly included in
Strings, the name + in this axiom is recognized as
referring to the symbol named + defined in KIF-Numbers.
When the author of Extended-Arithmetic includes both
Vectors and Strings in Extended-Arithmetic, + in that
ontology polymorphically applies to numbers, vectors, and
strings.
The polymorphic refinement of + in Example 3 is a case in
which some of the subtle properties of implicit ontology
inclusion become apparent. If the Extended-Arithmetic
ontology does not explicitly include the Vectors and
Strings ontologies, then references to +@vectors and
+@strings in Extended-Arithmetic will cause numbers to
be implicitly included in Extended-Arithmetic, but will
not cause Vectors or Strings to be included since both
+@vectors and +@strings refer to a symbol whose home

ontology is Numbers. If the + operator is intended to apply
to vectors, strings, and numbers in the Extended-
Arithmetic ontology, then the author of that ontology is
expected to explicitly include the Vectors and Strings
ontologies (and optionally the Numbers ontology).
Finally, the circular dependencies in the Medicine and
Sports ontologies of Example 4 could be established and
presented by not explicitly including these ontologies in
each other, and using fully qualified names to refer to
symbols from the perspective of the other ontology. For
example, in the Medicine ontology, roller-blading
would be referred to as roller-blading@sports, and in
the Sports ontology, steroid-tests would be referred to
as steroid-tests@Medicine. The reference to roller-
blading in the Medicine ontology will cause the axioms
of the home ontology of the symbol roller-
blading@Sports to be implicitly included in the Medicine
ontology, but will not cause name input from the
perspective of the Medicine ontology to be misinterpreted
as names from the Sports ontology. The public symbols
from the Sports ontology will not be recognized in the
Medicine ontology because since the inclusion is implicit,
the Sports ontology does not become a source of
recognized names for the Medicine ontology).

Conclusions

We have described mechanisms in the Ontolingua ontology
development that support authoring of ontologies by
assembling and extending reusable ontologies obtained
from an on-line library. We described a formalism for
combining the axioms, definitions, and non-logical
symbols of multiple ontologies. We also described
Ontolingua's facilities that enable renaming of non-logical
symbols from multiple component ontologies and that
disambiguate symbol references during input and output.
These features of Ontolingua support cyclic inclusion
graphs and enable users to extend ontologies in multiple
ways such as adding simplifying assumptions and
extending the domains of polymorphic operators. They
include default settings that provide intuitive system
behavior in most situations without any effort on the part of
the developer, while providing detailed controls when
needed by the sophisticated user.

Acknowledgements

This research was supported by the Defense Advanced
Research Projects Agency under contract N66001-96-C-
8622. We would also like to acknowledge the valuable
contributions of Sasa Buvac, Angela Dappert, Robert
Engelmore, Wanda Pratt, and the users of Ontolingua.

Bibliography

Farquhar, A., Fikes, R., & Rice, J. The Ontolingua
Server: a Tool for Collaborative Ontology
Construction. Proceedings of the Tenth
Knowledge Acquisition for Knowledge-Based
Systems Workshop. Banff, Canada. November 9-
14, 1996.

Genesereth, M. R. (1990). The Epikit Manual.
Epistemics, Inc. Palo Alto, CA.

Genesereth, M. R. and R. E. Fikes. (1992).
Knowledge Interchange Format, Version 3.0
Reference Manual. Logic-92-1. Computer Science
Department, Stanford University.

Gruber, T. R. (1992). Ontolingua: A mechanism
to Support Portable Ontologies. KSL 91-66.
Stanford University, Knowledge Systems
Laboratory.

MacGregor, R. (1990). LOOM Users Manual.
ISI/WP-22. USC/Information Sciences Institute.

Mitchell, T. M., J. Allen, P. Chalasani, J. Cheng,
O. Etzioni, M. Ringuette, and J. C. Schlimmer.
(1989). Theo: A Framework for Self-Improving
Systems: National Science Foundation, Digital
Equipment Corporation.

Rice, J., A. Farquhar, P. Piernot, and T. Gruber.
(1996). Using the Web Instead of a Window
System. In Conference on Human Factors in
 Comput ing Sys tems (CHI96):103-110.
Vancouver, CA: Addison Wesley.

Vect
 "+"

Example 1: Inclusion
Generic-Products
 Product
 Service-Agreement

Amco-Semiconductor
 Operational Amplifier
 Subclass-of: Product

Example 4: Circularity
Medicine
 Roller-blading is a likely
 cause of wrist fractures

Sports
 Weight lifters often take
 anabolic-steroids

Example 2: Restriction
KIF-Numbers
 "+" is commutative
 and associative

Integer-Arithmetic
 All numbers
 are integers

