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Abstract 

Research on semantic web services promises greater interoperability among software agents and web services by enabling 
content-based automated service discovery and interaction, utilizing shared ontologies published on the semantic web. 
However, services produced and described by different developers may well use different, perhaps partly overlapping sets of 
ontologies, just as it is common that relational database schemas for similar or related functions are only partly compatible. 
Once again, interoperability will depend on ontology mappings and architectures supporting the associated translation 
processes. The question we ask is, will the traditional approach of introducing mediator agents to translate messages 
between requestors and services work in such an open environment? This article reviews some of the processing assumptions 
that were made in the development of the semantic web service modeling ontology OWL-S [OWL-S] and argues that, as a 
practical matter, the translation function cannot always be isolated in mediators. Ontology mappings will need to be 
published on the semantic web just as ontologies themselves are. The translation for service discovery, service process model 
interpretation, task negotiation, service invocation and response interpretation may then be distributed to various places in 
the architecture, so that translation can be done in the specific goal-oriented informational contexts of the agents performing 
these processes. We present arguments for assigning translation responsibility to particular agents in the cases of service 
invocation, response translation and matchmaking.  

Introduction   

Semantic Web Services are to the Semantic Web what current-day web services are to the web as we know it now. Tim 
Berners-Lee, Jim Hendler and Ora Lassila’s vision of the Semantic Web [TBL01] was of a future web populated by pages 
enriched by their association with sharable semantic representations, which describe both content and, in the case of services, 
functionality. Semantic web services will publish machine interpretable descriptions of their capabilities and interaction 
models so other software agents can find and use them without prior ‘built-in’ knowledge about how to call their APIs. They 
will soon support the development of personal software agents or ‘semantic web clients’ for such things as comparative 
shopping, information discovery and travel planning, and compositions of those services. Less glamorously, but perhaps more 
importantly, these techniques may soon enable business-to-business interactions that are more dynamic, support semi-
automated service composition on the scientific computing Grid and enable mobile, wireless devices to be able to interact 
seamlessly with the services discovered as they move about.  

To fulfill these promises, published semantic service descriptions must be used in a variety of ways. Services will be 
discovered by agents matching client’s service requirements against service capabilities. Clients will invoke services by 
deducing from their descriptions the content of the messages required to request those services and interpret their responses, 
which may range from straightforward acknowledgements to indications of failure to requests for additional information. 
Finally, by using these descriptions of each service’s effects and usage constraints, agents may compose multiple services, 
roughly the way classical AI planners use planning operators. We use the word agent for these clients to emphasize the goal 
of giving them the ability to reason about the services they deal with. 

Internally, semantic web service clients must be able to determine when to “outsource” an internal goal or function to a 
remote service, select among some suggested candidate services and reason about how to interact with the selected service 
based on the service’s published description and their own internal goals and knowledge. This includes decisions about how 
to provide ancillary information the services may require, (e.g., credit information, access certificates, etc.) Since services 
may require extended interactions, service descriptions may include interaction protocols that these clients must be able to 
follow.  A noteworthy example is failure-recovery procedures.  
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A number of auxiliary semantic web agents can help in achieving these aims. Semantic matchmakers [Pao02a] that act like 
web search engines or intelligent UDDI [UDDI] web service registries may assist with automated service discovery by 
cataloging and recommending services to clients. Authentication and policy authorization services may assist both clients and 
servers to know who they are, and what kinds of interactions they can have. Ontology and mapping registries may help to 
ensure that agents have consistent and complete sets of concepts, relations and rules for service-related reasoning.  

Semantic service descriptions are developed using a mix of domain ontologies and shared, general-purpose ontologies, 
such as those defining the structures for representing service capabilities. OWL-S [OWL-S], formerly DAML-S [Da02], is a 
semantic web ontology developed by a group of researchers in DARPA’s DAML program, to address these latter, structural 
aspects of service descriptions. The World Wide Web Consortium (W3C) has formally recommended the Resource 
Description Framework (RDF) [RDF] for building web-compatible structured semantic descriptions and the Ontology Web 
Language (OWL) [OWL] for publishing ontologies (web documents) defining structured classes and relations. OWL is a 
semantic description language with a formal semantics and an XML/RDF syntax. By leveraging features of RDF, OWL 
ontologies can be shared, combined, and extended simply by publishing web documents. OWL-S is a set of ontologyies, 
developed in OWL, for writing machine readable semantic descriptions of web services such as those whose APIs are 
described using the Web Service Description Language (WSDL) [WSDL].  

In this article, we review the basic elements of OWL-S and its intended use model, and then discuss the role that ontology 
mapping and translation must play in interactions between clients and services that use different domain ontologies. We will 
argue why, in practice, we expect particular agents will need to be responsible for translating the content of messages 
produced at different stages of their interaction, and why it may at times be difficult for mediators to relieve the functional 
agents (services and clients) of this responsibility.  

Communities Sharing Ontologies and Ontology Mappings on the Semantic Web 

Although this article is about semantic translation of service requests, OWL-S is useful even if clients and services use the 
same ontologies. Clearly, service interactions are simpler when one doesn’t have to translate the meaning of messages sent 
between agents, so one might ask why not just share a single consistent set of ontologies? When ontologies are shared within 
a community of people and software services, then major barriers to efficient and timely information sharing are removed. 
This is why businesses and governments have spent millions of dollars in recent years trying to unify ontologies and database 
schemas to the largest extent possible. Unfortunately, these efforts have also demonstrated that there are also costs associated 
with ontology or schema merging that grow with the number of disparate systems and modeling perspectives being combined. 
At some point, the level of detail in the unified representational model is greater than that needed by any of the individual 
applications, increasing the complexity of maintaining all of them. The alternative, as suggested by Uschold [Usch02], among 
others, is to share ontologies within tightly integrated communities, while allowing for mediated interaction with other 
communities. Each community can develop some of their own ontologies, and share or extend other widely shared concepts, 
maintaining locally more detailed models within communities with special responsibilities.  

When two communities are going to interact, their ontology developers must define (at least partial) mappings between the 
ontologies each uses, and extend the original ontologies where needed so that messages between them can be translated into 
the recipients native ontology. Although there is a sizable literature on automated and semi-automated techniques for 
developing mappings (See [Rah01, Noy02, Kal03] for surveys), we anticipate it will require at least some involvement of 
people familiar with each of the ontologies involved for some time to come. RDF and OWL are designed to enable semantic 
web communities to share a syntactic language for defining ontological terms and communicating semantic descriptions. We 
submit, though, that ontology mappings

1
 will also need to be published using a similarly standardized language, and agents 

will also need to interpret these mappings when communicating with ‘foreign’ agents. OWL, as a terminological description 
language, is not powerful enough to describe all of the kinds of mappings between the concepts that it can be used to define. 
In our own recent work, we have used first-order logical rules [Dou02, Dou03] to define these mappings, and previously 
explored the controlled application of second order rules to generate translation programs [Bu03b]. In this paper, we focus on 
the question of how to use mappings, once published, to interact with services that use different ontologies.  

The OWL-S Ontologies for Semantic Web Services 

OWL-S is a collection of “upper ontologies” for describing web services from two primary perspectives, 
advertising/discovery and planning/execution. It does not address (or need to address) specific domain issues (e.g. product 
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taxonomies, taxonomies of types of inputs, etc.) as these ontologies can developed, shared and adapted by communities of 
service providers. OWL-S’ service models consist of three abstract components. The service profile ontology is used to 
describe service ‘advertisements’ suitable for use by a semantic web service matchmaker. It includes an extensible set of 
properties for describing the purpose of a service (as defined in a service hierarchy), its inputs types, output types, and other 
features that might be relevant discriminators between services from the perspective of potential users of that service.  

An OWL-S matchmaker [Pa02a] accepts advertisements from services and queries from clients looking for services. It 
finds candidate services for clients by matching queries described by partial service profiles against the profiles registered by 
services

1
. Several OWL-S matchmakers have been developed, including one that extends the web service registry system 

UDDI [Pao02b].   

The OWL-S service process model includes concepts for describing in detail the interfaces and functional properties of 
atomic services, namely, their inputs, preconditions, conditional outputs and effects. It also includes a vocabulary for process 
composition so service providers can describe how clients should execute sequences of services and their associated data 
flow. The most recent release of OWL-S treat process specifications as named individuals with complex descriptions, in a 
manner consistent with the activity model in the Process Specification Language (PSL) [Sch00]. Pre-conditions, post-
conditions and effects are represented using encapsulated logical expressions.  

The OWL-S process model ontology is also based in part on traditional representations of classical AI planning operators, 
as exemplified by the PDDL language used in the annual AI planning competition [Fox03]. The premise here is that the 
reasoning required to identify and invoke an appropriate service is essentially the same as selecting from among a set of 
planning operators to achieve a goal, and then executing it. Input parameters represent the information required to invoke the 
service, and output parameters represent the information that is returned by the service.  Preconditions, and conditional 
service effects, whose ranges are logical formulas, are to be interpreted by the client reading the service description as 
additional constraints on the inputs it must provide, with the effects also describing how the service changes the state of the 
world in a way hopefully consistent with the client agent’s goals.  Many planning systems have been used to implement OWL-
S service clients, including [McIl02,  Pao03, Wu03].  

There is good news and bad news about applying traditional planning algorithms to the semantic web service problem. The 
bad news is that the assumption that the state of the world is completely known at all times is obviously wrong. In fact, a large 
fraction of the actions taken on the web are to gain information [McD02a]. The good news is that there are a number of 
planners that can handle simple contingent planning with partial state knowledge and information acquisition goals (See 
survey by Weld [We99]), and the standard notation for action definitions actually fits the web pretty well. Actions are invoked 
and monitored by messages, and the effect of a message often does consist of changing a few things discretely. Our own work 
has been based on extending the estimated regression planner, Optop [McD02b, McD03], to do contingent planning with 
OWL-S process models.  

The last part of the OWL-S model, the service grounding, describes the relationships between the inputs and outputs of 
atomic processes and the elements of a particular message transport model. Specifically, the grounding ontology represents 
mappings of process parameters onto portions of WSDL message specifications. The OWL-S notion of an atomic process can 
be viewed as an abstract representation of a WSDL operation that provides additional semantics for it. Although WSDL is 
rapidly becoming the standard XML language for describing web services, it has no internal means for specifying the 
semantics of a services message patterns. WSDL message parameters have XML datatypes, whose semantics must be 
interpreted by the client program, by virtue of its programmer having read the accompanying documentation. 

The OWL-S ontology thus adds the semantic elements necessary for agents to reason dynamically about the relationship 
between their internal goals and the types of information required to formulate service requests and interpret service 
responses. Once the information required to create a request has been identified, OWL-S provides a mapping to WSDL (the 
grounding) to enable the request to be turned into a SOAP or HTML format.  

OWL-S Usage Model 

The basic use model envisioned for OWL-S, illustrated in Figure 1, consists of the following steps, not all of which are 
required in all cases. Services first advertise themselves by sending their service profiles to a matchmaker and publishing 
service process models on the web so clients can read them (1). Agents requiring a service to achieve goals pose queries to 
                                                           
1
 This matching process is not a straightforward subsumption test, as one might expect. As [Pao02a] shows, it is asymmetrical. 
A good match is one where the inputs the client can subsume those required, while the outputs the service claims it can return 
subsumes those required by the client. 
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the matchmaker consisting of a (partial or abstract) description the service it requires, including non-functional or quality of 
service requirements (2). The matchmaker compares these abstract descriptions to its library of service profiles and returns 
(URI references) for candidates that could be used (3). Each agent then reads the candidates’ published service descriptions 
and selects one to use. The agent determines how to make a request to the selected service by unifying its goals and 
preferences with the effects specified in the service process model, in order to determine a semantically valid set of inputs to 
the server. These inputs are then mapped onto a WSDL input message pattern using the OWL-S service grounding, and the 
resulting message is sent (6).  

The service receives the request, and determines whether it can perform the request. It may acknowledge the request, send a 
error, request additional information, or  (generally, on completion,) send a reply stating the service results (7). Whatever 
reply is sent is parsed using a WSDL error or output message template. This message is then mapped (using the process 
output grounding) into a semantic descriptions of the output parameters of the OWL-S process, from which the agent 
determines which of the published process’ effects occurred and whether the agent’s goal has been accomplished (8).  

 

 
Figure 1: Basic OWL-S Semantic Web Service use model. 

 

Viewed abstractly, this process bears some resemblance to the web service use model envisioned for UDDI-WSDL-SOAP, 
except that it is does not involve a programmer querying UDDI, reading the WSDL models found there, and implementing 
those interfaces. The client software agent is responsible for the interaction with the matchmaker, the interpretation of which 
candidate services are most appropriate, the determination of the information required to invoke each service, and the 
interpretation and response to messages returned by the service.  

Variations on this execution model for OWL-S have been implemented by a number of academic and industrial researchers 
(e.g., [Gai03, Pao03, Sab03, Sir04]). These implementations have finessed the ontology translation issue by assuming a 
shared set of ontologies. However, as suggested above, we cannot assume that agents always share ontologies.  Translation 
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will be required to achieve the broad interoperability envisioned for semantic web services, and so we need an architecture for 
that supports it.   

Service Invocation Reasoning Across Different Ontologies 

The central questions we will discuss here are: where does translation fit into an architecture supporting the OWL-S use 
model, and how do the goals and knowledge of specific agents influence the decision about which agents can or should do 
translation? The traditional approach to inserting translators into distributed architectures is to insert a middle agent between 
client C and server S to translate messages from language LC into language LS and vice versa.  We will argue that this only 
works when the sender can construct a well-formed message, and the target ontologies and ontology mappings are known. It 
doesn’t work, or work well, when a translator needs information that is local to a client or service provider, rather than just the 
ontologies used by the agent receiving the translation.  

Consider the difference between a client’s internal goal and a well-formed request to a service. For example, to request a 
purchase, a service may require specific information about the requestor (e.g., login id, valid means of payment), and the 
manner of accomplishing the goal (e.g., shipping method). The request message must be constructed dynamically by 
reasoning about the relationship between internal client goals and the required input parameters specified in a published 
service description. The first translation task is therefore the translation of domain elements of the service description from 
the ontologies used in the published service description into ontologies used by the client.  We have developed a model 
showing how the client can handle this translation task as part of its service request planning reasoning, by reading the service 
description in its original form along with the ontology mappings needed to interpret the constraints on each information 
requirement. In an environment with all of these axioms, its own plan development reasoning will effectively translate the 
parts of the overall service description necessary to locate the needed information in its own knowledge base.  

Figure 2 sketches a typical situation where a personal semantic web agent, which we will call ‘MyAgent,’ is tasked by user 
Mark to buy a book about XML from an unspecified book sales service on the web. MyAgent knows a number of things 
about Mark, and it knows how to contact commercial semantic web services. MyAgent first queries a matchmaker to find a 
suitable service and discovers there is one called Books4Sale, with an OWL-S process model as shown. The Books4Sale 

process model states that, when correctly invoked, it has the effect that the client will own an Item with the specified title and 

author. MyAgent can plan to achieve its goal by determining a set of inputs to this service that will produce an effect 
matching its goal, and then using the accompanying OWL-S service grounding to execute the action by formulating a WSDL 
message that can be passed to the Books4Sale service.  

The Books4Sale process model specifies as required inputs an Item title and author, a credit card number and 

expiration date, and a shipping address, described using terms from its domain ontologies. It produces as output an order 
confirmation number and shipping tracking number (not shown).  The problem is that MyAgent uses an ontology (MyStuff) 

different than that used by Books4Sale. MyStuff includes a class Book with properties ‘by’ for the author and ‘name’ for the 

title that is used to represent the object of its goal. Furthermore, Items in the Books4Sale service ontology represent different 
sets of books (identified internally by ISBNs), each with an associated quantity in stock, while instances of the MyStuff class 

Book represent individual books, each assigned an inventory number by the owner when purchased. These differences 
illustrate the kinds of problems that arise when various developers design ontologies for related but different purposes.  
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Books4Sale.comMyAgent
Current Goal:

(Owns :owner Mark 

:item <Book :name “XML for Dummies”

:by  “Fat Parens”>))

KB:

(User MyAgent 

<Person Mark :fullname “MarkB”…>)

(Owns Mark <VHS :name “X Files”>))

(ccardOf Mark 

<MC cc1 :ccno “9876” :exp 03/03>)

(ccardOf Mark 

<VISA cc2 :ccno “1234” :exp ..>)

(Residence Mark 

<Address :line1 “44 Sunny Ln” …>)

Using ontologies:

mylife.owl, mystuff.owl, owl-s.owl

econ101.owl

Econ101.owl Defines OWNS, axioms for PURCHASE transactions

Owl-S.owl Defines Service Profile, Process, Grounding

Econ101.owl Defines OWNS, axioms for PURCHASE transactions

Owl-S.owl Defines Service Profile, Process, Grounding

imports

Publishes:

Process: BuyBook
LocalVars: ?item : <Item>, 

?ccard : <CreditCard> 

Inputs:

B4STitle : string = ?item.title

B4SAuthor: string = ?item.author

B4SQty: int = ?item.qty

B4Sccname: string = ?ccard.name

B4Sccnum: string = ?ccard.idno

B4Sshipto: a postalAddress

Effects:

(Owns :owner ?client :item ?item)

(Shipped :item ?item 

:addr ?B4Sshipto

:carrier ?B4Scarrier)

(DebitCC :cc ?ccard :amt ?item.cost))

Using ontologies:

Books4Sale.owl 

(uses Inventory.owl, econ101.owl,

ccard.owl, shipping.owl, owl-s.owl…)

imports

mystuff-inventory-map.owl

Book ~> Item (qty 1)

name � title

by � author

mystuff-inventory-map.owl

Book ~> Item (qty 1)

name � title

by � author

mylife-ccard-map.owl

CC ~> CreditCard

Holder.fullname � name

ccno � idno

mylife-ccard-map.owl

CC ~> CreditCard

Holder.fullname � name

ccno � idno
usesuses

 

Figure 2: Book Buying Example 

 

MyStuff Bridging relation Inventory 

Book InstanceClass-SetClass Item 

Book.name Equivalent Property Item.title 

Book.by Equivalent Property Item.author 

Book.pubDate Equivalent Property Item.PubDate 

Book.purchDate - N/A -  

Book.itemno - N/A - Item.ISBN 

 Cardinality(inst) = 1 >>   Item.qty 

Table 1: Mappings between MyStuff.owl and Books4Sale.owl 
 

Table 1 summarizes the partial mappings between terms in the two ontologies. The two concepts can be related for the 
purposes of the transaction as long as the key descriptive properties of the class Book (needed as service inputs) have 
mappings to the corresponding descriptive properties of Item, and the bridging axioms capture the condition that an 
Inventory:Item description with qty =1 can refer to the same entity as a description of a MyStuff:Book. 

By expressing these mapping rules as additional axioms in the planner’s knowledge base, the required inputs to the 
BuyBook process associated with the client’s goal can be identified by the planner during goal regression. The identification 
of these inputs hinges on two things:  

1. The client can match its goal(s) to (a translation of) some of the proposed process’ effect(s), unifying items 
referenced as arguments to these goals with the variables in those effects, and .  

2. The type restrictions and preconditions specified for input variables referenced in these effects translate to conditions 
in the client’s ontology consistent with the objects specified in the client’s goals.  
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In short, as in classical planning, the process’ effects must unify with the client’s goal, and the process’ pre-conditions must 
be able to be satisfied by the client. The catch is that this goal regression reasoning will only succeed if the constraints are 
translated into the client’s ontology, either in advance by translating the whole service description or incrementally by the 
planner by backward chaining in the presence of the necessary ontology-mapping rules.  

On the semantic web, translating a service process model like BuyBook need not be done by a middle agent if the 
necessary ontology mappings are available directly. Each client can find and read any ontologies that it does not have which 
are referenced in messages. If the semantic web architecture were to support mechanisms for finding and loading ontology 
mappings, then the client could relate descriptions in unfamiliar ontologies to its own knowledge planning processes. Taken 
together with its own axioms, these mapping rules enable it to complete its reasoning whenever the ontology mappings cover 
all terms used in a service’s parameter type constraints, preconditions and effects.   

Figure 3 shows schematically the situation within the client after loading the service description, the published ontologies it 
references and mappings of terms in those ontologies to those of the client. There are sets of ontologies used internally by the 
client (OCi) and by the service (OSi), and some shared ones (OShared), like OWL-S. There are also published mappings (M) that 
relate terms in some of the ontologies of the two partners. The client is thus able to extend its reasoning to elements of the 
service ontology OSi for which  mappings are known, reasoning about those parts of the merged ontology as if the client 
shared them with the server.  

 

OC1

OShared

OC2

O2

OS1MC2-S1MC2-S1

Client Ontologies Service Ontologies

 

Figure 3: Ontology Merging by loading published ontologies and mappings 

 

Once the client is able to interpret the information requirements of the service, and determine how to satisfy those 
requirements, it can generate the service request. It may even be possible to construct a valid request with an incomplete set of 
mappings, if the missing mappings cover optional service inputs. For example, if Books4Sale also used the Item class to 
represent other goods besides books that it sold, but with required different service parameters to specify those items, then the 
fact that there were no mappings to the MyStuff ontology to translate those service parameters could be ignored. In contrast, a 
separate translation agent, called to translate the full service description for the client might fail because no complete mapping 
between the ontologies was available.  Furthermore, when the client is responsible for translation, there is the possibility of 
getting assistance from the user to identify whether the missing mapping information is relevant, or perhaps even to supply the 
mapping.  

Elsewhere [Dou02, Dou03] we described an implemented approach to translation based on this model that can be used to 
translate datasets (OWL/RDF files). This system (OntoMerge) works by reading the source and target ontologies into a first-
order inference engine (OntoEngine), along with a set of bridging axioms or articulation rules [Mitr00] that act as translation 
rules between terms of the two ontologies. The ontologies can be loaded together without clashing because of the distinct 
URIs used to identify terms in each model, and these URIs are then linked through references in bridging axioms. If the 
bridging axioms are bi-directional, translation can be performed in either a push or pull fashion. With the push approach, a 
dataset is translated by asserting its content and forward chaining to find implications expressed in the target ontology. Similar 
techniques based on applying sets of rewrite rules have been described in [Mitr00, Cha00], although the latter system uses 
more syntactic transformational rewrite rules. These techniques are useful for translating fully specified messages, such as 
query or service responses.  

With OntoMerge, however, you can also use a ‘pull’ approach, in which queries are expressed in the target ontology, and 
OntoMerge backchains to find the answers given the assertions made in the source ontology. We have used this ‘pull’ 
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approach in the reasoner of the OPTOP planner to demonstrate the planning of service invocation requests even when the 
services are described using OWL-S and ‘foreign’ domain ontologies.  As the planner reasons about how to satisfy its own 
goals (by unifying them with service effects) and infer whether the service’s preconditions can be met, its backward chaining 
naturally utilizes the bridging axioms to locate the information required for service inputs. For example, after loading the 
bridging axioms of Table 1, OPTOP determines that the title and author inputs to BuyABook can be unified with the ‘name’ 
and ‘by’ fields of the book specified as its internal goal.  

Identifying values for non-goal related inputs  

The reason direct translation of client goals is not sufficient to request services is that services require inputs that are not 
directly parts of those goals. Many other pieces of information, such as a login ID and password may be required. If such 
required inputs are simple facts known to the client, then these facts can be found by the client during precondition evaluation 
using the technique outlined above, since required inputs can be treated like knowledge preconditions of the process.  But 
consider the credit card and shipping information required in our sample book buying process. The knowledge precondition 
for a shipping address is to know the address to which the purchase should be shipped (a service effect), and this may depends 
on such things as whether it is intended as a gift or not. Decisions of this kind are common when dealing with unfamiliar web 
services, although when dealing with commercial services there are a number of common types of required information that 
can be anticipated even when the specific service to be used is unfamiliar. For example, since purchasing anything requires 
some form of payment, one can anticipate the need to decide among the client’s available credit cards, and implement a 
decision criteria based on the cost and purpose of the items and the available balances of the cards. Whether to buy a warranty 
is another common question. Less common, more item specific requirements would include special wrapping preferences,  
non-standard shipping methods, or whether to buy item-specific optional accessories, etc. 

One way to handle the common options on web service requests is to give the client agent default policies for deciding 
such questions. For example, there could be a default rule that purchases should be shipped to the address of the buyer (user). 
It is a default rule since it would not apply when a specific location was specified as part of the user’s goal. Most current AI 
planning systems deal with non-goal related effects only to the extent that they try to avoid effects that negatively impact their 
plans. But many service inputs effectively ask the client to refine the goal or its object (e.g., new or used book?), or require 
the client to further specify the method by which it is achieved (e.g., selection of a shipping method). Planning systems that 
can use background goals and preference policies to make these additional distinctions will be needed to more fully automate 
web service invocation.   

These examples highlight why request translation is primarily about making the service description useful to the client 
rather than translating the request message the client produces once it knows what is required. Since one cannot anticipate all 
of these input requirements from unfamiliar services, one must translate the constraints on input parameter’s implied by 
service preconditions and effects into knowledge requirements so that the client’s decision policies can be applied correctly. 
Assuming that the basic structure of each service description is provided by the shared OWL-S ontology, then what remains is 
the domain specific elements of the model. Either the client translates individual input requirements as it plans its request, as 
we have suggested, or the service description is entirely translated for the client by a translation agent beforehand. One 
problem is that ultimately the client must also apply the service grounding to send the message, and the grounding was written 
assuming that the inputs are represented in the service provider’s ontology. Thus, after determining a valid set of request 
inputs, the client must translate these back into the service’s language, another step that would have to be done remotely. 

Another problem with the external translator approach is that it may fail if there are missing mappings, while in the former 
case the client could use a partial set of mappings to reason directly with the published description, and then ask for user help 
to decide whether and how to translate any optional parameters for which mappings were unavailable. The specific 
distinctions made by a service may lead to the discovery of missing mappings because the service ontology may make 
distinctions not known to be relevant to the client agent’s ontology developer, and mappings cannot exist where one 
community or the other does not represented the concepts or relations involved. For example, the MyStuff ontology may not 
represent the distinction between hardcover and softcover books. If that is a required input to a book buying service, the 
requirement for it would fail to be translated, and user advice would be needed. Ultimately, we will need to develop mixed-
initiative approaches to automated service interaction in such open domains that enable our client agents to get additional user 
assistance, and learn incrementally about the ontologies of unfamiliar services and their mappings into local ontologies.  

Translating Responses to Service Requests  

Thus far, we have suggested why service invocation may involve translation within a client, rather than using a middle 
agent. We now ask whether there are circumstances where knowledge local to a particular agent is needed to translate service 
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responses. Translating responses to requests or queries is perhaps the most well studied kind of translation. Here, the message 
to be translated is fully formed by one agent (the service provider) independent of the recipient’s knowledge state, and the 
translator must simply identify the mappings needed to transform the description into one in the recipient’s ontology. Most of 
the work on heterogeneous information retrieval is focused on the problem of developing the necessary ontology mappings 
for this [Rah01].  

In most cases, response translation can be done by any agent that has access to the source and target ontologies and the 
necessary articulation or mapping rules. However, there are some circumstances where the mappings cannot be represented 
precisely, such as when the classification of particular items depends not on the structure of the relations in the ontologies but 
on their specific extent. Gio Wiederhold has frequently illustrated this by explaining that different administrative offices at 
Stanford University use slightly different models for who qualifies for membership in the class ‘Employee’. One includes only 
salaried employees, while the other is broader, and includes non-salaried staff, such as Emeritus Professors like himself. The 
distinction between these classes is not modeled by systems in either office because neither database represents any attributes 
that capture the distinction. Thus, no translation rule can be written that succinctly captures the exception to the rule 
associating the two classes. The only way to translate data about particular individuals being communicated between the two 
offices is to access the set of all known employees in the target environment and test whether each person whose information 
is being transmitted is an employee. Effectively, in such situations, the translation needs to be done by the recipient, as a 
middle agent would not have all the data necessary.  

Translation Issues Associated With Dynamic Service Discovery 

The final question we consider is the architectural placement of translation functionality for queries to semantic web 
service matchmakers. Recall that matchmakers receive advertisements called service profiles from services that wish to be 
utilized, and clients looking for services find them by querying matchmakers with general descriptions of their requirements 
represented in the form of a partial or abstract service profile. Pointers to candidate services are returned for consideration 
by clients.  

So what happens when different services use distinct ontologies to advertise their services? If a matchmaker is to maintain 
a catalog of service advertisements, then a range of possibilities must be considered. At one end of the spectrum, the 
matchmaker might use its own set of ontologies to organize the services in a single framework. At the other end of the 
spectrum, it would maintain every service profile in its original form. Call the first approach the Yahoo approach and the 
second the Google approach., since Yahoo uses a uniform taxonomy constructed by its staff, and Google indexes web pages 
based on the content of the original sources. 

With the Yahoo approach, each service advertisement must utilize concepts in the matchmaker’s ontology to describe the 
represented service. Clients must then translate their queries into abstract service descriptions using the matchmaker’s 
ontology. With OWL-S profiles, this would mean finding concept(s) for the class of service desired (e.g. a Restaurant), the 
classes of acceptable outputs (Italian food), and desired effect (e.g., Food served in-house vs. packaged for take-out) and 
quality of service (e.g., max price).  You might recognize the problem with this from using an on-line yellow pages. The client 
needs to be mindful of the expected number of answers. For example, if one wants a to find a Chinese restaurant in Rome, is it 
better to ask for a service that will provide listings of Chinese Restaurants in Rome, or just restaurants in Rome, or Chinese 
restaurants in Italy, etc. Finding a useful, targeted answer will depend on the number of candidates in each of those somewhat 
different conjunctive classes. So an effective translation of a service query could depend on both the specific mappings of 
terms into the matchmaker’s ontology and on the selection of appropriate abstractions of those terms to find a small, targeted 
set of answers. If such knowledge is routinely needed to get the best results, then an architecture where the matchmaker does 
the translation is preferable, since the matchmaker can reformulate the query in a context where knowledge about what parts 
of the registry space are sparsely populated is available.  

With the Google approach, services are allowed to describe themselves using their native ontologies. As a result we see a 
different set of motivations for having the matchmaker translate queries. Here, it is possible in the extreme case that every 
new service advertisement is described using a different set of ontologies. How can a client agent translate its own query, or 
have a middle agent do it when each query must be compared to many profiles, all represented using different ontologies? The 
only possible strategy requires matching and translation to be performed effectively simultaneously within the matchmaker.  

For each kind of semantic service matchmaking, then, there seem to be good reasons to argue that the matchmakers should 
do the translation of queries they receive. Of course, these are extreme characterizations of the ontology mismatch problems 
to be faced in connection with service discovery. It is still an open, empirical question how best to design matchmakers that 
handle a wide diversity of service description ontologies.   
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Conclusion: The Impact of Knowledge Locality on Translation Processes 

An important motivation for the development of semantic web services is their promise of greater and more dynamic 
interoperability among agents and services. If the semantic web is going to be based on the principle that a thousand 
ontologies can bloom, then it is important to look at the how translation processes will be used to enable services to 
interoperate. These questions have not been a major focus in the semantic web services research community to date.  

In this paper, we have reviewed the assumptions and motivations for the OWL-S approach to dynamic discovery and 
utilization of semantic web services, in order to frame a discussion of the multiple roles that ontology translation processes 
must play in facilitating semantic interoperability. Along the way we suggested why published ontology mappings will be 
important, and concluded that it is often better to support translation as a function within agents, rather than separate 
mediators, in semantic web service architectures.  

The question of how and where translation processing happens is critical to the design of architectures for semantic web 
services because of the many related, partially overlapping ontologies in use by different communities on the semantic web.  
For good reasons, each community wants to control its own ontologies. Our concern is with how to enable interoperability of 
services beyond tight-knit communities, so remote clients can discover and use these services to fill one-time or occasional 
needs. Semantic Web Service ontologies make it possible for clients to read published semantic service descriptions and 
reason with them. Translation of the domain terms in these descriptions will also be needed to support message exchanges.  

We have argued that translation functionality can critically depend on knowledge local to particular agents. In particular, 
we demonstrated how translating a client’s goal into a request is best done by the client using published service descriptions 
and ontology mappings, while translating a client’s query to a matchmaker is best done by the matchmaker, because the 
translation depends on the set of ontologies and profiles known to that agent. The take-away message is that the stronger the 
need is for a translator to access a localized knowledge context during translation, the more difficult it will be to locate that 
translation process in an independent middle agent.  
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