
•1

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester1

Protégé-OWL Tutorial

Session 1: Primitive Classes

Nick Drummond

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester2

This session

►Review: OWL Basics

► Intro: Protégé-OWL

► Interface: Creating Classes

►Tools: The Reasoner

►Concept: Disjointness

► Interface: Creating Properties

►Concept: Describing Classes

► Interface: Creating Restrictions

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester3

Review of OWL (30 secs)

OWL…

► is a W3C standard – Web Ontology Language

► comes in 3 flavours (lite, DL and full)
► we are using OWL DL (Description Logic)

► DL = decidable fragment of First Order Logic (FOL)

► is generally found in XML/RDF syntax

► is therefore not much fun to write by hand

So, we have tools to help us

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester4

Starting Protégé-OWL

1. Select “OWL Files”
2. Select “New”

Run Protégé from Start Menu



•2

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester5

Protégé OWL plugin

Protégé tabs

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester6

Protégé OWL plugin: Tabs

Used in this tutorial

Changing the GUI

Populating the model

Top-level functionality
Extensions (visualisation)

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester7

Classes Tab

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester8

Classes Tab:
Asserted Class Hierarchy

Subsumption hierarchy (superclass/subclass)
Structure as asserted by the ontology engineer

Create and Delete classes (actually subclasses!!)
Everything is a subclass of owl:Thing
Search for class



•3

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester9

Classes Tab: Class Editor

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester10

Classes Tab: Class Editor

Class annotations (for class metadata)
Class name and documentation

Properties 
“available” to 

Class

Disjoints 
widget

Conditions Widget
Class-specific tools (find usage etc)

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester11

Create a Class Hierarchy

1. Click the “Create Class” button
(this is above the class hierarchy)
A new class will be created as a subclass of owl:Thing

2. Type in a new name “DomainConcept” over the default
(return updates the hierarchy)

3. Create another class called “Pizza” using the same method
You will notice that Pizza has been created as a subclass of 
DomainConcept as this was the class selected when the button was 
pressed. You can also right-click any class and select “Create Class”

4. Create two more subclasses of DomainConcept “PizzaTopping” and 
“PizzaBase”.
Any mistakes, use the “Delete Class” button next to “Create Class”

5. Create subclasses of PizzaTopping: CheeseTopping, 
VegetableTopping and MeatTopping

Start with your empty ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester12

Save Your Work

1. Select File Save
A dialog (as shown) will pop up

2. Select a file using a file selector by clicking the button on the top 
right
You will notice that 2 files are created
.pprj – the project file

this just stores information about the GUI
and the workspace

.owl – the OWL file
this is where your ontology is stored in
RDF/OWL format

3. Select OK

OWL = easy to make mistakes – save regularly



•4

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester13

Create an odd PizzaTopping

1. Create a subclass of VegetableTopping
called “MeatyVegetableTopping”
You will notice that the Conditions Widget has VegetableTopping
listed – this means it is an asserted superclass of 
MeatyVegetableTopping

2. Add MeatTopping as another parent of 
MeatyVegetableTopping using the 
“Add Named Class” button on the
conditions widget
MeatyVegetableTopping can now be
seen underneath both parents in the
asserted class hierarchy
We have asserted that MeatyVegetableTopping
has 2 parents

Start with your existing ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester14

Reasoning

► We’ve just created a class that doesn’t really make sense –
what is a Meaty Vegetable Topping?

► We’d like to be able to check the logical consistency of our 
model

► Later we’d also like to make automatic inferences about the 
subsumption hierarchy. A process known as classifying
► ie Moving classes around in the hierarchy based on their logical definition

► Generic software capable of these tasks are known as 
reasoners (although you may hear them being referred to as 
Classifiers)

► RACER is a reasoner

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester15

Running Racer

1. Run racer.exe from wherever it was installed

A cmd window will open and two “service 
enabled” messages will appear in the ouput

Racer is now ready for use as an http server 
using a standard interface called DIG

NB. Alternative DIG reasoners like FaCT can also be used

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester16

Accessing the Reasoner

Classify taxonomy
(and check consistency)

Just check consistency
(for efficiency)

Compute inferred types
(for individuals)



•5

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester17

Reasoning about our Pizzas

1. Classify your ontology
We could just use the “Check Consistency”
button but we’ll get into the habit of doing a
full classification as we’ll be doing this later

The reasoner dialog will pop up while the
reasoner works

2. When the reasoner has finished,
press OK
You will see an inferred hierarchy appear,
which will show any movement of classes in the hierarchy

If the reasoner has inferred anything about our model, this is reported in the 
reasoner dialog and in a seperate results window.
Not much appears to have happened – why has the reasoner not 
picked up on this odd class?

Start with your existing ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester18

Disjointness

► OWL assumes that classes overlap

MeatTopping VegetableTopping

= individual

► This means an individual could be both a MeatTopping and a 
VegetableTopping at the same time

► We want to state this is not the case

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester19

Disjointness

► If we state that classes are disjoint

MeatTopping VegetableTopping

= individual

► This means an individual cannot be both a MeatTopping and 
a VegetableTopping at the same time

► We must do this explicitly in the interface

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester20

ClassesTab: Disjoints Widget

Add siblings as disjoint
Add new disjoint Remove disjoint siblings

List of disjoint classes



•6

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester21

Make Classes Disjoint

1. Select the Pizza class
The disjoints widget is currently empty

2. Click the “Add all siblings…” button
The “Add siblings to disjoints dialog pops up

3. Select the “Mutually between all siblings” option and OK
PizzaTopping and PizzaBase appear in the disjoints widget

4. Select the PizzaTopping class
Pizza and PizzaBase are already in the disjoints widget
Note that the same applies for PizzaBase

5. Add disjoints between subclasses of PizzaTopping

Close the inferred hierarchy

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester22

Running the Reasoner again

1. Classify your ontology

You will see MeatyVegetableTopping highlighted
in red in both hierarchies – this highlights that a
class is inconsistent

You will also see messages in both
the reasoner dialog and a results
window appear at the bottom of the
screen which describes the results
of the reasoner

Start with your existing ontology

MeatyVegetableTopping turns out to be inconsistent

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester23

Why is 
MeatyVegetableTopping
inconsistent?

► We are asserting that a MeatyVegetableTopping is a subclass of 
two classes we have stated are disjoint

► The disjoint means nothing can be a MeatTopping and a 
VegetableTopping at the same time

► This means that the class of MeatyVegetableTopping can never 
contain any individuals

► The class is therefore inconsistent
► This is what we expect!

► It can be useful to create classes we expect to be inconsistent to 
“test” your model – often we refer to these classes as “probes” –
generally it is a good idea to document them as such to avoid later 
confusion

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester24

Create More Sensible 
PizzaToppings

1. Create subclasses of CheeseTopping:
MozzarellaTopping, ParmesanTopping

2. Make these subclasses all disjoint from one another
3. Create subclasses of VegetableTopping and make them disjoint:

TomatoTopping, MushroomTopping
4. Save to another file using File Save As…

Start with your existing ontology



•7

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester25

What have we got?

► We’ve created a tree of disjoint classes

► Disjoints are inherited down the tree
eg something that is a TomatoTopping cannot be a Pizza

because its superclass, PizzaTopping, is disjoint from Pizza

► You should now be able to select every class (except 
DomainConcept) and see its siblings in the disjoints widget

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester26

What are we missing?

► This is not a semantically rich model

► Apart from “is kind of” and “is not kind of”, we currently don’t 
have any other information of interest

► We want to say more about Pizza individuals, such as their 
relationship with other individuals

► We can do this with properties

Pizza PizzaTopping

= individual

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester27

Properties Tab

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester28

Properties Tab:
Property Browser

Properties can be in a hierarchy

Search for property
SuperProperties of the current selected



•8

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester29

Properties Tab:
Property Browser

not used today:
- New Datatype Property (String, int etc)

New Object Property:
Associates an individual to another individual

Delete Property

- New Annotation Properties for metadata

- New SubProperty – ie create “under” the 
current selection

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester30

Create a Property

1. Switch to the Properties tab
There are currently no properties, so the list is blank

2. Create a new Object property using the button in the 
property browser

3. Call the new Property “hasTopping”
4. Create another Object Property called “hasBase”
5. Save under a new filename

Start with your existing ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester31

Associating Properties with 
Classes

► We now have two properties we want to use to describe 
Pizza individuals.

► To do this, we must go back to the Pizza class and add 
some further information

► This comes in the form of Restrictions (which are a type of 
Condition)

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester32

ClassesTab:
Conditions Widget

Conditions asserted by the ontology engineer

Definition 
of the class
(later)

Description
of the class

Conditions inherited from superclasses

Add different types of condition



•9

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester33

Conditions Types

Add Named Superclass
Create Restriction (next)

Create Class Expression

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester34

Create a Restriction

1. Switch to the OWL Classes tab
2. Select Pizza

Notice that the conditions widget only contains one item, 
DomainConcept with a Class icon.
Superclasses show up in the conditions widget in this way

3. Click the “Create Restriction” button
A dialog pops up that we will investigate in a minute

4. Select “hasBase” from the Restricted Property pane
5. Leave the Restriction type as “someValuesFrom”
6. Type “PizzaBase” in the Filler expression editor
7. Click OK

A restriction has been added to the Conditions widget

Start with your existing ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester35

What does this mean?

► We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

► “If an individual is a member of this class, it is necessary that it 
has at least one hasBase relationship with an individual from the 
class PizzaBase”

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

► “Every individual of the Pizza class must have at least one base 
from the class PizzaBase”

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester36

What does this mean?

► We have created a restriction: ∃ hasBase PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

► “There can be no individual, that is a member of this class, that 
does not have at least one hasBase relationship with an 
individual from the class PizzaBase”



•10

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester37

Restrictions Popup

Restriction
Type

Restricted Property

Filler
Expression

Syntax
check

Expression
Construct
Palette

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester38

Restriction Types

“Exactly n”Cardinality=

“Only”Universal, allValuesFrom∀

“Some”, “At least one”Existential, someValuesFrom∃

“equals x”hasValue∋

“At least n”Min Cardinality≥

“At most n”Max Cardinality≤

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester39

Another Existential Restriction

1. Make sure Pizza is selected
2. Create a new Existential (SomeValuesFrom) Restriction with the 

hasTopping property and a filler of PizzaTopping

When entering the filler, you have 2 shortcut methods rather 
than typing the entire classname:

1) enter a partial name and use
Tab to autocomplete

2) use the select Class
button on the editor
palette

Start with your existing ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester40

Create a Universal Restriction

1. Create 2 disjoint subclasses of
PizzaBase
called “ThinAndCrispy” and “DeepPan” 

2. Create a subclass of Pizza called “RealItalianPizza”
3. Create a new Universal (AllValuesFrom) Restriction on 

RealItalianPizza with the hasBase property and a filler of 
ThinAndCrispy

Start with your existing ontology



•11

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester41

What does this mean?

► We have created a restriction: ∀ hasBase ThinAndCrispy
on Class RealItalianPizza as a necessary condition

► “If an individual is a member of this class, it is necessary that it 
must only have a hasBase relationship with an individual from 
the class ThinAndCrispy”

RealItalianPizza ThinAndCrispyhasBase

hasBase

hasBase

hasBase

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester42

What does this mean?

► We have created a restriction: ∀ hasBase ThinAndCrispy
on Class RealItalianPizza as a necessary condition

DeepPan RealItalianPizza ThinAndCrispyhasBase

hasBase

hasBase

hasBase

► “No individual of the RealItalianPizza class can have a base 
from a class other than ThinAndCrispy”

hasBase

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester43

Universal Warning:
Trivial Satisfaction

► If we had not already inherited: ∃ hasBase PizzaBase
from Class Pizza the following could hold

RealItalianPizza ThinAndCrispyhasBase

hasBase

hasBase

hasBase

► “If an individual is a member of this class, it is necessary that it 
must only have a hasBase relationship with an individual from 
the class ThinAndCrispy, or no hasBase relationship at all”

Trivially 
satisfied

by this 
individual

► Universal Restrictions by themselves do not state “at least one”

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester44

Summary

You should now be able to:

► identify components of the Protégé-OWL Interface

► create Primitive Classes

► create Properties

► create some basic Restrictions on a Class using 
Existential and Universal qualifiers



•12

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester45

More exercises:
Create a MargheritaPizza

1. Create a subclass of Pizza called NamedPizza
2. Create a subclass of NamedPizza called 

MargheritaPizza
3. Create a restriction to say that:

“Every MargheritaPizza must have at least one 
topping from TomatoTopping”

4. Create another restriction to say that:
“Every MargheritaPizza must have at least one 
topping from MozzarellaTopping”

Start with your existing ontology

1st Feb 2005Protege-OWL tutorial, © 2005 Univ. of Manchester46

More exercises:
Create other pizzas

1. Add more topping ingredients as subclasses of 
PizzaTopping
Use the hierarchy, but be aware of disjoints

2. Create more subclasses of NamedPizza
Menus available at the front

3. Create a restrictions on these pizzas to describe their 
ingredients

4. Save this for the next session

Start with your existing ontology


