Chapter 3
RDF Sntax

RDF Overview

e RDF Syntax -- the XML encoding
e RDF Syntax — variations including N3
e RDF Schema (RDFS)

e Semantics of RDF and RDFS

- Axiomatic Semantics
- Operational semantics based on rules

e Querying RDF via RQL and SPARQL

Introduction

e Problem: What does an XML document mean?
- XML is about data structures
- Their meaning (semantics) is not apparent to a
machine
e RDF is more a data model than a language
- Is realized in many different formats
e RDF define basic semantics

- RDFS and OWL define more RDF vocabulary for
building rich data models

e RDF remains domain independent

Example

<academicStaffMember> Grigoris Antoniou </academicStaffMember>
<professor> Michael Maher </professor>
<course name="Discrete Mathematics">
<isTaughtBy> David Billington </isTaughtBy>
</course>

e What does this mean?
- Are professors also academic staff members?
- If someone teaches a course, are they an academic
staff member?

e Can’t say in XML, but can say so in RDFS

Example

<course name="Discrete Mathematics">
<lecturer>David Billington</lecturer>
</course>
<lecturer name="David Billington">
<teaches>Discrete Mathematics</teaches>
</lecturer>
<teachingOffering>
<lecturer>David Billington</lecturer>
<course>Discrete Mathematics</course>
</teachingOffering>

e Embedding of elements is just a syntactic constraint
e No meaning is defined

e It's in the documentation or the mind of the viewer

e Does the machine have a mind?

Key Documents

All at http://www.w3.0org/RDF/

- RDF/XML Syntax Specification (Revised)
Dave Beckett, ed.

- RDF Vocabulary Description Language 1.0: RDF Schema
Dan Brickley, R.V. Guha, eds.

- RDF Primer
Frank Manola, Eric Miller, eds.

- Resource Description Framework (RDF): Concepts and Abstract
Syntax
Graham Klyne, Jeremy Carroll, eds.

- RDF Semantics
Patrick Hayes, ed.

- RDF Test Cases
Jan Grant, Dave Beckett, eds.

RDF is the first SW language

. Graph
XML Encoding
<rdf:RDF>
<onl>
<>
</rdf:RDF>
Good For
f\}/[ootlil-for Human
achine Viewing
Processing Triples
stmt(doclnst, rdf_type, Document)
stmt(personlnst, rdf_type, Person)
stmt(inroominst, rdf_type, InRoom)
stmt(personinst, holding, docInst) RDF is a simple
stmt(inroominst, person, personinst) language for building
Good For graph based

Reasoning representations

The RDF Data Model

e An RDF document is an unordered collection of
statements, each with a subject, predicate and object
(aka triples)

e A triple can be thought of as a labelled arc in a graph

e Statements describe properties of web resources

e A resource is any object that can be pointed to by a URI:
- adocument, a picture, a paragraph on the Web, ...
- E.g., http://umbc.edu/~finin/cv.html

- a book in the library, a real person (?) predicate,
- isbn://5031-4444-3333 @ @

e Properties themselves are also resources (URIs)

RDF Building Blocks

e Resources
- Things we can talk about, URIs
e Properties
- Special things that represent binary relations
e Literal data
- Strings, integers, dates, ... xmldatatypes
e Statements, aka triples
- Subject Predicate Object or
- Subject Property Value

URIs are a foundation

e URI = Uniform Resource Identifier
- "The generic set of all names/addresses that are short strings that
refer to resources”
- URLs (Uniform Resource Locators) are a subset of URIs, used for
resources that can be accessed on the web
e URIs look like “normal” URLSs, often with fragment
identifiers to point to a document part:
- http://foo.com/bar/mumble.htmi#pitch
e URIs are unambiguous, unlike natural language terms
- the web provides a global namespace
- We assume references to the same URI are to the same thing

What does a URI mean?

e Sometimes URIs denote a web resource
- http://lumbc.edu/~finin/finin.jpg denotes a file
- We can use RDF to make assertions about the
resource, e.g., it's an image and depicts a person with
name Tim Finin, ...
e Sometimes concepts in the external world
- E.g., http://lumbc.edu/ denotes a particular University
located in Baltimore
- This is done by social convention

e Cool URIs don’t change
- http://www.w3.org/Provider/Style/URI

Simple RDF Example

dc:Title “Intelligent Information Systems
on the Web”

http://umbc.edu/
~finin/talks/idm02/

c:Creator

ib:email

bib:name
http://umbc.edu/

“Tim Finin” “finin@umbc.edu”

RDF Data Model is a Graph

e Graphs only allow binary relations

e Higher arity relations must be “reified” (i.e., turned into
objects)

e Represent give(John,Mary,Book32) as three binary
relations all involving a common object, giveEvent32
- giver(giveEvent45 , John)
- recipient(giveEvent45 , Mary)
- gift(giveEvent45 , Book32)

e When using RDF, this has to be part of your vocabulary
design

e This is a price we have to pay for using a simple
representation based on binary relations

RDF Statements

e RDF has one predefined scheme (syntax and
semantics) for the reification of RDF statements
themselves

e Needed to support assertions about triples
- Document32 asserts “John gave Mary a book”
- Tom believes John gave Mary a book
- “John gave Mary a Book” has 0.33 probability

XML encoding for RDF

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:bib="http://daml.umbc.edu/ontologies/bib/">
<rdf:Description about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Information Systems on the Web </dc:Title>
<dc:creator>
<rdf:Description >
<bib:name>Tim Finin</bib:Name>
<bib:email>finin@umbc.edu</bib:Email>
<bib:aff resource="http://umbc.edu/" />
</rdf:Description>
</dc:creator>
</rdfdescription>
</rdf:RDF>

XML encoding for RDF

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:dc="http://purl.org/dc/elements/1.1/"
xmins:bib="http://daml.umbc.edu/ontologies/bib/">

<rdf:Description about="http://u .edu/~finin/talks/idm02/">

tems on the Web </dc:Title>

<dc:title>Intelligent Informatio
<dc:creator>
<rdf:Description >
<bib:name>Tim Finin
<bib:email>

) Note that the document is a single RDF element
<bib:aff resq which has attributes defining several namespaces.
</rdf:Descripf|] * One for the rdf vocabulary
</dc:creator> | ° One for the dublin core
’ * One for the bib vocabulary
</rdf:Descriptio

</rdf:RDF>

XML encoding for RDF

<rdf:RDF xmlIns:="http://www.w3.0rg(1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements
xmins:bib="http://daml.umbc.edu/ontolo:
<Description about="http://umbc.edu/~finin/t 02/">

<dc:title>Intelligent Information System: “ —
<dc: tor> * An empty prefix means that this is
c.creator the default namespace for the
<Description > document
<bib:name>Tim Finin</bib:Name> |* An); non-literal symbols without a
. e . refix are in this namespace
<bib:email>finin@umbc.edu</bib:Em ool :

ntion
<bib:aff resource="http://umbc.edu/" />
</Description>
</dc:creator>
</Description>
</rdf:RDF>

XML encoding for RDF

<rdf:RDF xmlIns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:bib="http://daml.umbc.edu/ontologies/bib/">
<rdf:Description about="http;//umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Informatio stems on the Web </dc:Title>
<dc:creator>

<rdf:Description >
<bib:name>Tim Finin</bib:N
<bib:email>finin@um| » Here’s the general way to introduce a “named
<bib:aff resource="ht| subject” about which we want to assert some

) properties and values

* We name subjects by referring to their URI

</rdf:Description>

</dc:creator> » An element in the description tag specify a property
</rdf:Description> Atz vl
</rdf:RDF>

Descriptions

e Every description makes a statement about a
resource

e There are different ways:

- an about attribute: referencing to an existing
resource
<rdf:Description rdf:about="http...”> ...

- an id attribute: creating a new resource
<rdf:Description rdf:ID="f003456"> ...

- without a name: creating an anonymous resource
<rdf:Description> ...

rdf:about versus rdf:ID

e An element rdf:Description has

- an rdf:about attribute indicating that the resource has
been “defined” elsewhere

- An rdf:ID attribute indicating that the resource is defined
e Formally, there is no such thing as “defining” an
object in one place and referring to it elsewhere
- Sometimes is useful (for human readability) to have a
defining location, while other locations state “additional”
properties
e A Description with neither produces a “blank node”

- It can not be referred to either from with or outside the
rdf document

XML encoding for RDF

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib="http://daml.umbc.edu/ontologies/bib/”
xmins:xsd=“http://www.w3.0rg/2001/XMLSchema#” >
<rdf:Description about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Information Systems on the Web </dc:Title>
<dc:creator>

<rdf:Description >
<bib:name>Tim Finin</bib:N

<bib:email>finin@um

) * dc:title is the property (or predicate)
<bib:aff resource="ht

* It's value is the literal string “Intelligent Information

</rdf:Description> Systems on the Web”
</dc:creator> « By default we assume the datatype is string
</rdf:Description> « <ex:age rdf:datatype="&xsd;integer> 22 </ex:age>
</rdf-RDF> « <ex:age> “27""xsd:integer> 22 </ex:age>

XML encoding for RDF

<rdf:RDF xmins:rdf="] * The value of creator is defined by the nested RDF
xmins:dc="http://p * The .nameless delscript'ion produces 'a “bl.ar?k node”
xmins-bib="http://d e In FhIS case, “a thing W|tl? a r.lame=“T|m Il:|n|n’" and ...”
nup:rd This style of XML encoding is called “striped”
xmins:xsd="http://w: <thing>
<rdf:Description ab, <'f.°h?:g">y>
<dc:title>Intellig e
<dc:creator>
<rdf:Description >
<bib:name>Tim Finin</bib:Name>
<bib:email>finin@umbc.edu</bib:Email>
<bib:aff resource="http://umbc.edu/" />
</rdf:Description>
</dc:creator>
</rdf:Description>
</rdf:RDF>

XML encoding for RDF

<rdfRDF xmins:rdf="1" Note the “self closing" tag .
* The value of the bib:aff property is a resource, not a
string
xmins:bib="http://d] « Every resource has a URI, every URI refers to a
xmins:xsd="http://w: resource
<description about="] * How would this be interpreted?
<bib:aff> http://umbc.edu/ </bib:aff>

xmins:dc="http://p

<dc:title>Intelligent

<dc:creator>

<description >
<bib:name>Tim Finin</
<bib:email>finin@umb u</bib:Email>
<bib:aff resource="http://lumbc.edu/" />
</description>
</dc:creator>
</description>
</rdf:RDF>

N triple representation

oRDF can be encoded as a set of triples.
<subject> <predicate> <object> .

<http://Jumbc.edu/~finin/talks/idm02/> <http://purl.org/dc/elements/1.1/Title>
"Intelligent Information Systems on the Web" .
_:j10949 <http://daml.umbc.edu/ontologies/bib/Name> "Tim Finin" .
_:j10949 <http://daml.umbc.edu/ontologies/bib/Email> "finin@umbc.edu"” .
_1j10949 <http://daml.umbc.edu/ontologies/bib/Aff> <http://lumbc.edu/> .
_:j10949 <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type><Description> .
<http://Jumbc.edu/~finin/talks/idm02/> <http://purl.org/dc/elements/1.1/Creator> _:;j10949 .
<http://Jumbc.edu/~finin/talks/idm02/> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

<Description> .

Note the gensym for the anonymous node _:j10949

Triple Notes

o RDF triples have one of two forms:
- <URI> <URI> <URI>
- <URI> <URI> <quoted string>

e Triples are also easily mapped into logic
- <subject> <predicate> <object> becoming:
e <predicate>(<subject>,<object>)
o With type(<S>,<0>) becoming <O>(<S>)
- Example:
e subclass(man,person)
e sex(man,male)
e domain(sex,animal)
e man(adam)
e age(adam,100)

e Triples are easily stored and managed in DBMS
- Flat nature of a triple a good match for relational DBs

; Note: we’re not
; showing the actual
; URIs for clarity

N3 notation for RDF

e N3 is a compact notation for RDF that is easier
for people to read, write and edit.

e Aka notation 3, developed by TBL himself.

e Translators exist between N3 and the XML
encoding, such as the web form on
- http://www.w3.org/Designlssues/Notation3.html

e So, it’s just “syntactic sugar”

eBut, XML is largely unreadable and even harder
to write

N3 Example

@prefix rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns# .

@prefix dc: http://purl.org/dc/elements/1.1/ .
@prefix bib: http://daml.umbc.edu/ontologies/bib/ .

< http://lumbc.edu/~finin/talks/idm02/ >
dc:title "Intelligent Information Systems on the Web" ;
dc:creator
[bib:Name "Tim Finin“ ;

bib:Email finin@umbc.edu ;

bib:Aff: "http://umbc.edu/"] . thing
_—

anonymous node

prop, = value ;
Note special [...] syntax for an prop, = value ;

prop,, = value .

Example of University Courses

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:xsd="http://www.w3.0rg/2001/XLMSchema#"
xmins:uni="http://www.mydomain.org/uni-ns">

<rdf:Description rdf:about="949318">
<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:title>
<uni:age rdf:datatype="&xsd:integer">27<uni:age>
</rdf:Description>

Example of University Courses (2)

<rdf:Description rdf:about="CIT1111">
<uni:courseName>Discrete Maths</uni:courseName>
<uni:isTaughtBy>David Billington</uni:isTaughtBy>
</rdf:Description>

<rdf:Description rdf:about="CIT2112">
<uni:courseName>Programming llI</uni:courseName>
<uni:isTaughtBy>Michael Maher</uni:isTaughtBy>
</rdf:Description>

</rdf:RDF>

Data Types for Literals

e Data types are used in programming langu-
ages to allow interpretation
e In RDF, typed literals are used

e You can specify this with a special M syntax

(“David Billington”,
http://www.mydomain.org/age,
“27"Mhttp://www.w3.0rg/2001/
XMLSchemattinteger)

e or using the rdf.datatype attribute

<uni:age rdf.datatype="&xsd:integer">27<uni:age>

Data Types for Literals

e M_notation indicates the type of a literal

e In practice, the most widely used data typing
scheme will be the one by XML Schema

- But the use of any externally defined data
typing scheme is allowed in RDF documents

e XML Schema predefines a large range of data
types
- E.g. Booleans, integers, floating-point
numbers, times, dates, etc.

XMLSchema Datatypes

tall complex types)

[T 1 I
[string]boolcan] t\rm/|T)| mm—t IONdlel\m .ry|dmmnl |ncm|un1l=rmnce :

http://www.w3.0org/TR/xmlschema-2/

The rdf:resource Attribute

e The relationships between courses and lecturers
(in the example) were not formally defined but
existed implicitly through the use of the same
name

e The use of the same name may just be a
coincidence for a machine

e We can denote that two entities are the same
using the rdf:resource attribute

e By design, RDF explicitly rules out the “unique
name assumption” common in many KR systems

The rdf:resource Attribute

<rdf:Description rdf:about="CIT1111">

<uni:courseName>Discrete Mathematics</
uni:courseName>

<uni:isTaughtBy />
</rdf:Description>

<rdf:Description >
<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:title>
</rdf:Description>

Referencing Externally Defined Resources

e Refer to the externally defined resource
CIT1111 using
http://www.mydomain.org/uni-ns#CIT1111
as the value of rdf:about

e Assuming that www.mydomain.org/uni-ns is the
URI where the definition of CIT1111 is found
e A description with an ID defines a fragment URI,

which can be used to reference the defined
description

Nested Descriptions: Example

<rdf:Description rdf:about="CIT1111">

<uni:courseName>Discrete Maths</uni:courseName>

<unizisTaughtBy>
<rdf:Description rdf:ID="949318">
<uni:name>David Billington</uni:name>
<uni:titte>Associate Professor</uni:title>
</rdf:Description>
</uni:isTaughtBy>
</rdf:Description>

Nested Descriptions

e Descriptions may be defined within other
descriptions

e Other courses, such as CIT3112, can still refer to
the new resource with ID 949318

e Although a description may be defined within
another description, its scope is global

RDF types

<rdf:Description rdf:about="CIT1111">
<rdf:type rdf:resource="&uni:Course"/>
<uni:courseName>Discrete Mathematics</uni:courseName>
<uni:isTaughtBy rdf:resource="949318"/>

</rdf:Description>

<rdf:Description rdf:about="949318">
<rdf:type rdf:resource="&uni:Lecturer"/>
<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:titie>

</rdf:Description>

e RDF has a trivial type system
e RDFS and OWL extend it greatly

RDF types, another syntax

<rdf:Description rdf:ID="CIT1111">

<rdf:type rdf:resource="http://www.mydomain.org/
uni-ns#course"/>

<uni:courseName>Discrete Maths</uni:courseName>
<uni:isTaughtBy rdf:resource="#949318"/>
</rdf:Description>

<rdf:Description rdf:ID="949318">

<rdf:type rdf:resource="http://www.mydomain.org/
uni-ns#lecturer"/>

<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:titie>
</rdf:Description>

RDF types, yet another Syntax

<uni:course rdf:ID="CIT1111">
<uni:courseName>Discrete Mathematics</uni:courseName>
<uni:isTaughtBy rdf:resource="949318"/>

</uni:course>

<uni:lecturer rdf:ID="949318">
<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:titie>
</uni:lecturer>

e This abbreviated syntax is very common

10

Abbreviated Syntax

e So we have two simplification rules:

1.Childless property elements within description
elements may be replaced by XML attributes

2.For description elements with a typing
element we can use the name specified in the
rdf:type element instead of rdf:Description

e These rules create syntactic variations of the
same RDF statement

- They are equivalent according to the RDF
data model, although they have different XML
syntax

Abbreviated Syntax: Example

<rdf:Description rdf:ID="CIT1111">

<rdf:type rdf:resource="http://www.mydomain.org/
uni-ns#course"/>

<uni:courseName>Discrete Maths</
uni:courseName>

<uni:isTaughtBy rdf.resource="#949318"/>
</rdf:Description>

Application of First Simplification Rule

<rdf:Description rdf:ID="CIT1111"
uni:courseName="Discrete Maths">

<rdf:type rdf:resource="http://
www.mydomain.org/uni-ns#course"/>

<unicisTaughtBy rdf:resource="#949318"/>
</rdf:Description>

Application of 2nd Simplification Rule

<uni:course rdf:ID="CIT1111"
uni:courseName="Discrete Maths">

<uni:isTaughtBy rdf:resource="#949318"/>
</uni:course>

1

Container Elements

e Collect a number of resources or attributes about
which we want to make statements as a whole

e E.g., we may wish to talk about the courses given
by a particular lecturer

e The content of container elements are named
rdf:_1, rdf:_2, etc.
- Alternatively rdf:li

e Containers seem a bit messy in RDF, but are
needed

Three Types of Container Elements

e rdf:Bag an unordered container, allowing multiple
occurrences
- E.g. members of the faculty board, documents
in a folder
e rdf:Seq an ordered container, which may contain
multiple occurrences
- E.g. modules of a course, items on an agenda,
an alphabetized list of staff members (order is
imposed)
o rdf:Alt a set of alternatives

- E.g. the document home and mirrors,
translations of a document in various languages

Example for a Bag

<uni:lecturer
rdf:ID="949352" uni:name="Grigoris Antoniou"

uni:title="Professor">
<uni:coursesTaught>
<rdf:Bag>
<rdf:_1 rdf:resource="#CIT1112"/>
<rdf:_2 rdf:resource="#CIT3116"/>
</rdf:Bag>
</uni:coursesTaught>
</uni:lecturer>

Example for Alternative

<uni:course rdf:ID="CIT1111"
uni:courseName="Discrete Mathematics">
<uni:lecturer>
<rdf:Alt>
<rdf:li rdf:resource="#949352"/>
<rdf:li rdf:resource="#949318"/>
</rdf:Alt>
</uni:lecturer>
</uni:course>

12

Rdf:ID Attribute for Container Elements

<uni:lecturer rdf:ID="949318"
uni:name="David Billington">
<uni:coursesTaught>
<rdf:Bag rdf:ID="DBcourses">
<rdf._1 rdf:resource="#CIT1111"/>
<rdf._2 rdf:resource="#CIT3112"/>
</rdf:Bag>
</uni:coursesTaught>
</uni:lecturer>

RDF Container Elements

e rdf:Bag
- unordered
- may contain multiple occurrences
e rdf:Seq
- ordered
- may contain multiple occurrences
o rdf:Alt
- a set of alternatives
e Content of container elements are named rdf:_1,
rdf:_2, ...
e Containers seem a bit messy in RDF, but are needed

RDF Container Example

<rdf:RDF xmIns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:uni="http://www.mydomain.org/#">

<uni:lecturer rdf:about="949352" uni:name="Grigoris Antoniou” uni:title="Professor">

<uni:coursesTaught>
<rdf:Bag>
<rdf:_1:rdf:resource="CIT1112"/>
<rdf:_2:rdf:resource="CIT1113"/>
</rdf:Bag>
</uni:coursesTaught>
</uni:lecturer>

<uni:course rdf:about="CIT1111" uni:courseName="Discrete Mathematics">
<uni:lecturer>
<rdf:Alt>
<rdf:_1:rdf:resource="949352"/>
<rdf:_2:rdf:resource="949318"/>
<Irdf:Alt>
</uni:lecturer>
</uni:course>
</rdf:RDF>

Bags and Seqs are never full!

e RDF’s semantics is “open world”, so...

-There is no possibility "to close” the container, to say:
“these are all elements, there are no more”

-RDF is a graph, so: there is no way to exclude the
possibility that there is another graph somewhere that
describes additional members

e Collections for groups with only the specified
members are described via a predefined
collection vocabulary of the types:

—rdf:List, rdf:first, rdf:rest, rdf:nil

13

RDF Lists

CIT 2112 is exclusively taught by teachers 949111, 949352, 949381

<rdf:Description rdf:about="CIT2112">
<uni:isTaughtBy>
<rdf:List>
<rdf:first><rdf:Description rdf:about="949111"/></rdf:first>
<rdf:rest>
<rdf:List>
<rdf:first><rdf:Description rdf:about="949352"/></rdf:first>
<rdf:rest>
<rdf:List>
<rdf:first><rdf:Description rdf:about="949318"/></rdf:first>
<rdf:rest><rdf:Description rdf:about="&rdf;nil"/></rdf:rest>
</rdf:List>
</rdf:rest>
</rdf:List>
</rdf:rest> Yu Ck !
</rdf:List>
</unizisTaughtBy>
</rdf:Description>

RDF Lists Syntactic Sugar
The the rdf:parseType attribute helps

<rdf:Description rdf:about="CIT2112">
<uni:isTaughtBy rdf:parseType="Collection">
<rdf:Description rdf:about="949111"/>
<rdf:Description rdf:about="949352"/>
<rdf:Description rdf:about="949318"/>
</uni:isTaughtBy>
</rdf:Description>

Reification

e Sometimes we wish to make statements
about other statements

e We must be able to refer to a statement
using an identifier

e RDF allows such reference through a
reification mechanism which turns a
statement into a resource

Reify

e Etymology: Latin res thing
e Date: 1854

e to regard (something abstract) as a material or
concrete thing

14

Wikipedia: reification (computer science)

Reification is the act of making an abstract concept
or low-level implementation detail of a programming
language accessible to the programmer, often as a
first-class object. For example,
- The C programming language reifies the low-level
detail of memory addresses.

- The Scheme programming language reifies
continuations (approximately, the call stack).

- In C#, reification is used to make parametric
polymorphism implemented as generics a first-class
feature of the language.

Reification Example

<rdf:Description rdf:about="#949352">
<uni:name>Grigoris Antoniou</uni:name>
</rdf:Description>

reifies as

<rdf:Statement rdf:ID="StatementAbout949352">
<rdf:subject rdf:resource="#949352"/>

<rdf:predicate rdf:resource="http://
www.mydomain.org/uni-ns#name"/>

<rdf.object>Grigoris Antoniou</rdf.object>
</rdf:Statement>

Reification

e rdf:subject, rdf:predicate and rdf:object
allow us to access the parts of a statement

e The ID of the statement can be used to refer
to it, as can be done for any description

e We write an rdf:Description if we don’t want
to talk about a statement further

e We write an rdf:Statement if we wish to refer
to a statement

RDF Critique: Properties

Properties are special kinds of resources

- Properties can be used as the object in an
object-attribute-value triple (statement)

- They are defined independent of
resources

This possibility offers flexibility
But it is unusual for modelling languages
and OO programming languages

e It can be confusing for modellers

15

RDF Critique: Binary Predicates

e RDF uses only binary properties

- This is a restriction because often we use
predicates with more than 2 arguments

- But binary predicates can simulate these
e Example: referee(X,Y,Z)

- Xis the referee in a chess game between
players Y and Z

RDF Critique: Binary Predicates

e We introduce:

- a new auxiliary resource chessGame

- the binary predicates ref, player1, and player2
e We can represent referee(X,Y,Z) as:

RDF Critique: : Reification

e The reification mechanism is quite powerful

e |t appears misplaced in a simple language like
RDF

e Making statements about statements introduces a
level of complexity that is not necessary for a
basic layer of the Semantic Web

e Instead, it would have appeared more natural to
include it in more powerful layers, which provide
richer representational capabilities

RDF Critique: Graph Representation

e The simple graph or network representation
has more drawbacks

e Linear languages introduce ways to
represent this with parentheses or a way to
represent a block structure

e Scoping, for example, is clumsy at best in
RDF

e Some of these are addressed through the
notion of a named graph in RDF

16

RDF Critique: Summary

e RDF has its idiosyncrasies and is not an
optimal modeling language but

e |t is already a de facto standard
e |t has sufficient expressive power
- At least as for more layers to build on top

e Using RDF offers the benefit that information
maps unambiguously to a model

17

