Introduction to the Semantic Web

Questions

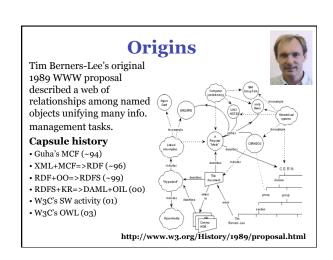
- What is the Semantic Web?
- Why do we want it?
- How will we do it?
- Who will do it?
- When will it be done?

"XML is Lisp's bastard nephew, with uglier syntax and no semantics. Yet XML is poised to enable the creation of a Web of data that dwarfs anything since the Library at Alexandria."

-- Philip Wadler, Et tu XML? The fall of the relational empire, VLDB, Rome, September 2001. "The web has made people smarter. We need to understand how to use it to make machines smarter, too."

> -- Michael I. Jordan, paraphrased from a talk at AAAI, July 2002 by Michael Jordan (UC Berkeley)

"The Semantic Web will globalize KR, just as the WWW globalize hypertext"

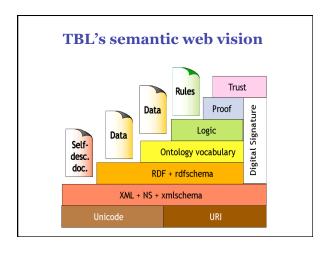

-- Tim Berners-Lee

"The multi-agent systems paradigm and the web both emerged around 1990. One has succeeded beyond imagination and the other has not yet made it out of the lab."

-- Anonymous, 2001

ЮНО

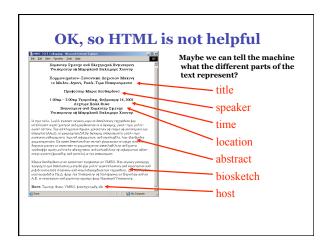
- The web is like a universal acid, eating through and consuming everything it touches.
 - Web principles and technologies are equally good for wireless/ pervasive computing
- The semantic web is our first serious attempt to provide semantics for XML sublanguages
- It will provide mechanisms for people and machines (agents, programs, web services) to come together.
 - In all kinds of networked environments: wired, wireless, ad hoc, wearable, etc.

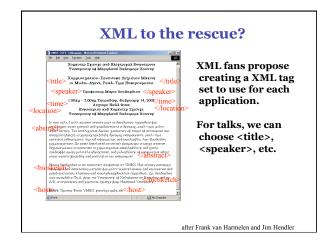


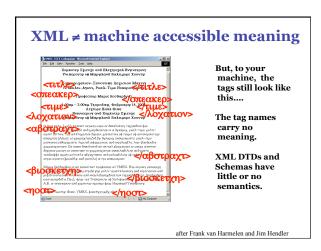
W3C's Semantic Web Goals

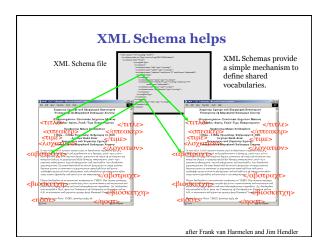
Focus on machine consumption:

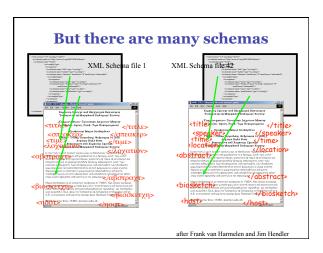
"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

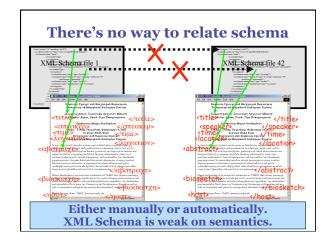

-- Berners-Lee, Hendler and Lassila, The Semantic Web, Scientific American, 2001




Semantic web stack 2006 User Interface & applications Trust Proof Unifying Logic Query: SPAROL RDF-S Data interchange: RDF XML URI Unicode







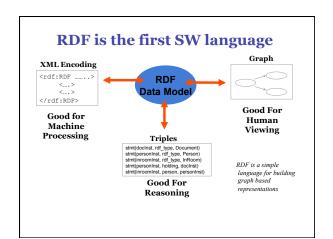


Today and tomorrow

- - We've crawled more than 3M FOAF RDF files
- We hope to be able to make effective use ontologies like Cyc in the coming decade
 - There are skeptics ...
 - It's a great research topic ...
- The SW community has a roadmap and some experimental languages ...
- Industry is still holding back...
 - They are being conservative
- We need more experimentation and exploration

Semantic Web Languages

Semantic web languages today


- Today there are, IOHO, two semantic web languages
 - RDF Resource Description Framework
 - http://www.w3.org/RDF/
 - DAML+OIL Darpa Agent Markup Language http:// www.daml.org/ (deprecated)
 - OWL Ontology Web Language http://www.w3.org/2001/sw/
- **Topic maps** (http://topicmaps.org/) are another species, not based on RDF
- Microformats, Common Logic, etc. offer other possibilities

Two Semantic Web Notions

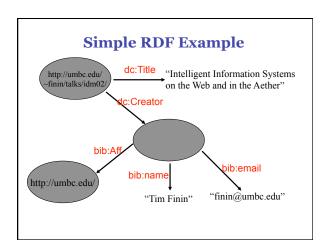
- The semantic web
 - The idea of a web of machine understandable information
 - Agnostic about the technology used to support it
 - May involve more AI (e.g., NLP)
 - Human end users in the center

• The Semantic Web

- The current vision of a semantic web as defined by the W3C community: a web of data $\,$
- Using W3C supported standards (i.e., RDF, OWL, SPARQL, XML, RIF, etc.
- By machines for machines with human oriented applications on top.

The RDF Data Model

- An RDF document is an unordered collection of statements, each with a subject, predicate and object (aka triples)
- · A triple can be thought of as a labelled arc in a graph
- Statements describe properties of web ${\bf resources}$
- A resource is any object that can be pointed to by a URI:
 - a document, a picture, a paragraph on the Web, ...
 - E.g., http://umbc.edu/~finin/cv.html
 - a book in the library, a real person (?)
 - isbn://5031-4444-3333
 - ...
- Properties themselves are also resources (URIs)


URIs are a foundation

- URI = Uniform Resource Identifier
 - "The generic set of all names/addresses that are short strings that refer to resources"
 - URLs (Uniform Resource Locators) are a subset of URIs, used for resources that can be *accessed* on the web
- URIs look like "normal" URLs, often with fragment identifiers to point to a document part:
 - $-\ http://foo.com/bar/mumble.html\#pitch$
- · URIs are unambiguous, unlike natural language terms
 - the web provides a global ${\bf namespace}$
 - We assume references to the same URI are to the same thing

What does a URI mean?

- Sometimes URIs denote a web resource
 - http://umbc.edu/~finin/finin.jpg denotes a file
 - We can use RDF to make assertions about the resource, e.g., it's an image and depicts a person with name Tim Finin, ...
- · Sometimes concepts in the external world
 - E.g., http://umbc.edu/ denotes a particular University located in Baltimore
- This is done by social convention
- Cool URIs don't change
 - http://www.w3.org/Provider/Style/URI

The RDF Graph • An RDF document is an unordered collection of triples • The subject of one triple can be the object of another · So the result is a directed, labelled graph · A triple's object can also be a literal, e.g., a string.

XML encoding for RDF

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:bib="http://daml.umbc.edu/ontologies/bib/"> <description about="http://umbc.edu/~finin/talks/idm02/"> <dc:title>Intelligent Information Systems on the Web and in the Aether</dc:Title> <dc:creator> <description>

bib:Name>Tim Finin</bib:Name>

bib:Email>finin@umbc.edu</br> <bib:Aff resource="http://umbc.edu/" /> </description> </dc:Creator> </description> </rdf:RDF>

N triple representation

- RDF can be encoded as a set of triples. <subject> <predicate> <object> .
 - $$$ \begin{array}{l} <& \text{http://umbc.edu/-finin/talks/idmo2/> <http://purl.org/dc/elements/1.1/Title>} \\ & \text{"Intelligent Information Systems on the Web and in the Aether"} \;. \end{array}$

 - _:j10949 "Tim Finin" .
 _:j10949 http://daml.umbc.edu/ontologies/bib/Email "finin@umbc.edu" .
- _:j10949 http://daml.umbc.edu/ontologies/bib/Aff http://www.w3.org/1999/02/22-rdf-syntax-ns#type Description .
- __inoy49_sittp://www.sa.gr999/02/22-tri-syinta-ins-type-Descripton/ chttp://umbc.edu/-finin/talks/idmo2/> chttp://purl.org/dc/elements/1.1/ Creator> __i10949 . chttp://umbc.edu/-finin/talks/idmo2/> chttp://www.w3.org/1999/02/22-rdf-syntax-ns#type> <Description> .

Note the gensym for the anonymous node _:j10949

Triple Notes

- · RDF triples have one of two forms:
 - <URI> <URI> <URI>
 - <URI> <URI> <quoted string>
- Triples are also easily mapped into logic
 - <subject> <object> becoming:
 - <p
 - With type(<S>,<O>) becoming <O>(<S>)
 - Example:
 - subclass(man,person)
 - sex(man,male)
 - : showing the actual · domain(sex,animal) ; URIs for clarity
 - man(adam)
 - age(adam,100)
- · Triples are easily stored and managed in DBMS

; Note: we're not

- Flat nature of a triple a good match for relational DBs

N₃ notation for RDF

- N3 is a compact notation for RDF that is easier for people to read, write and edit.
- Aka Notation 3, developed by TBL himself.
- Translators exist between N3 and the XML encoding, such as the web form on
 - http://www.w3.org/DesignIssues/Notation3.html
- · So, it's just "syntactic sugar"
- · But, XML is largely unreadable and even harder to write

N₃ Example

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# . @prefix dc: http://purl.org/dc/elements/1.1/.

@prefix bib: http://daml.umbc.edu/ontologies/bib/.

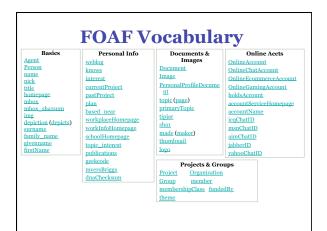
http://umbc.edu/~finin/talks/idmo2/

dc:title "Intelligent Information Systems on the Web and in the Aether";

dc:creator

[bib:Name "Tim Finin";

bib:Email "finin@umbc.edu"


bib:Aff: "http://umbc.edu/"].

A usecase: FOAF

- · FOAF (Friend of a Friend) is a simple ontology to describe people and their social networks.
 - See the foaf project page: http://www.foaf-project.org/
- · We recently crawled the web and discovered over 1,000,000 valid RDF FOAF files.
 - Most of these are from the http://liveJournal.com/ blogging system which encodes basic user info in foaf
 - See http://apple.cs.umbc.edu/semdis/wob/foaf/

- <foaf:name>Tim Finin</foaf:name> <foaf:mbox_sha1sum>2410...37262c252e</foaf:mbox_sha1sum>
- <foaf:homepage rdf:resource="http://umbc.edu/~finin/"/> <foaf:img rdf:resource="http://umbc.edu/~finin/images/passport.gif"/>

FOAF: why RDF? Extensibility!

- FOAF vocabulary provides 50+ basic terms for making simple claims about people
- FOAF files can use other RDF terms too: RSS, MusicBrainz, Dublin Core, Wordnet, Creative Commons, blood types, starsigns, ...
- RDF guarantees freedom of independent extension
 - OWL provides fancier data-merging facilities
- **Result:** Freedom to say what you like, using any RDF markup you want, and have RDF crawlers merge your FOAF documents with other's and know when you're talking about the same entities.

 After Dam Brickler, dambriden 3.org

No free lunch!

Consequence:

- We must plan for lies, mischief, mistakes, stale data, slander
- Dataset is out of control, distributed, dynamic
- · Importance of knowing who-said-what
 - Anyone can describe anyone
 - We must record data provenance
 - Modeling and reasoning about trust is critical
- · Legal, privacy and etiquette issues emerge
- · Welcome to the real world

After Dan Brickley, danbri@w3.org

More RDF Vocabulary

- RDF has terms for describing lists, bags, sequences, etc.
- RDF also can describe triples through reification
- Enabling statements about statements :john bdi:believes :s.
 - _:s rdf:type rdf:Statement.
 - _:s rdf:subject <http://yd.example.com/catalog/widgetX>.
 - _:s rdf:predicate cat:salePrice .
 - _:s rdf:object "19.95".

RDF is being used!

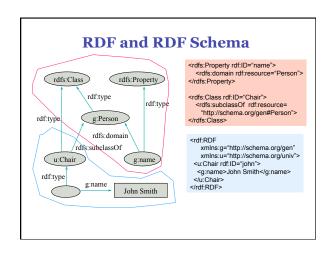
- · RDF has a solid specification
- · RDF is being used in a number of web standards
 - <u>CC/PP</u> (Composite Capabilities/Preference Profiles)
 - P3P (Platform for Privacy Preferences Project)
 - RSS (RDF Site Summary)
 - RDF Calendar (~ iCalendar in RDF)
- And in other systems
 - Netscape's Mozilla web browser, open directory (http://dmoz.org/)
 - Adobe products via XMP (eXtensible Metadata Platform)
 - Web communities: LiveJournal, Ecademy, and Cocolog
 - In Microsoft's VISTA: Connected Services Framework uses an RDF database and SPARQL

RDF Schema (RDFS)

- RDF Schema adds taxonomies for classes & properties
 - subClass and subProperty
- and some metadata.
 - domain and range constraints on properties
- Several widely used KB tools can import and export in RDFS

Stanford Protégé KB editor

- Java, open sourced
 extensible, lots of plug-ins
 provides reasoning & server capabilities


RDFS Vocabulary

RDFS introduces the following terms and gives each a meaning w.r.t. the rdf data model

- · Terms for classes

 - <u>rdfs:Class</u> rdfs:subClassOf
- · Terms for properties
 - rdfs:domain
 - rdfs:range
- rdfs:subPropertyOf
 Special classes
- rdfs:Resource
- rdfs:Literal
- rdfs:Datatype

- · Terms for collections
 - rdfs:member
 - rdfs:Container
 - rdfs:ContainerMembershi pProperty
- · Special properties
 - rdfs:comment
 - rdfs:seeAlso
 - rdfs:isDefinedBy
 - rdfs:label

- An RDF ontology plus some RDF statements may imply additional RDF statements.
- · This is not true of XML.
- Note that this is part of the data model and not of the accessing or processing code.

@prefix rdfs; .
@prefix : <genesis.nd>.
parent rdfs:domain person;
rdfs:range person.
mother rdfs:subProperty parent;
rdfs:domain woman;
rdfs:range person.
eve mother cain.

parent a property.
person a class.
woman subClass person.
mother a property.
eve a person;
a woman;
parent cain.
cain a person.

N₃ example Here's how you declare a namespace. @prefix rdfs: https://document. @prefix rdfs: https://document. @prefix rdfs: https://document. "person is a class" The "a" sontax is Parson." Note the ; syntax. Person a reffer (Note the ; syntax. "eve is a woman who :Person a rdfs:Class. :Woman a rdfs:Class; rdfs: "sister is a property from :eve a :Woman; :age "100" person to woman :sister a rdf:Property; rdfs:domai "eve has "eve believes that her age is 100". The braces introduce a ri "the spouse of the sister eve is 99". rdfs:range:Woman. :eve :sister [a :Woman; :age 98] "the spouse of the sister of eve is 99". :eve :believe {:eve :age "100"}. [is :spouse of [is :sister of :eve]] :age :eve.:sister.:spouse :age 99:

Is RDF(S) better than XML?

Q: For a specific application, should I use XML or RDF? A: It depends...

- XML's model is
 - a tree, i.e., a strong hierarchy
 - applications may rely on hierarchy position
 - relatively simple syntax and structure
 - not easy to combine trees
- RDF's model is
 - a loose collections of relations
 - applications may do "database"-like search
 - not easy to recover hierarchy
 - easy to combine relations in one big collection
 - great for the integration of heterogeneous information

From where will the markup come?

- · A few authors will add it manually.
- · More will use annotation tools.
 - SMORE: Semantic Markup, Ontology and RDF Editor
- Intelligent processors (e.g., NLP) can understand documents and add markup (hard)
 - Machine learning powered information extraction tools show promise
- Lots of web content comes from databases & we can generate SW markup along with the HTML
 - See http://ebiquity.umbc.edu/

From where will the markup come?

- In many tools, part of the metadata information is present, but thrown away at output
 - e.g., a business chart can be generated by a tool...
 - ...it "knows" the structure, the classification, etc. of the chart
 - ...but, usually, this information is lost
 - ...storing it in metadata is easy!
- - E.g., Adobe's use of its XMP platform

Problems with RDFS

- RDFS **too weak** to describe resources in sufficient detail, e.g.:
- -No localised range and domain constraints

 Can't say that the range of hasChild is person when applied to persons and elephant when applied to elephants
- -No *existence/cardinality* constraints

 Can't say that all *instances* of person have a mother that is also a person, or that persons have exactly 2 parents
- -No *transitive, inverse or symmetrical* properties Can't say that isPartOf is a transitive property, that hasPart is the inverse of isPartOf or that touches is symmetrical
- We need RDF terms providing these and other features.

DAML+OIL = RDF + KR

- •DAML = Darpa Agent Markup Language
 - DARPA program with 17 projects & an integrator developing language spec, tools, applications for SW.
- •OIL = Ontology Inference Layer
- An EU effort aimed at developing a layered approach to representing knowledge on the web.

• Process

- Joint Committee: US DAML and EU Semantic Web Technologies participants
- DAML+OIL specs released in 2001
- See http://www.daml.org/
- Includes model theoretic and axiomatic semantics

W3C's Web Ontology Language (OWL)

- DAML+OIL begat OWL.
- OWL released as W3C recommendation 2/10/04
- See http://www.w3.org/2001/sw/WebOnt/ for OWL overview, guide, specification, test cases, etc.
- Three layers of OWL are defined of decreasing levels of complexity and expressiveness
 - **OWL Full** is the whole thing
 - **OWL DL** (Description Logic) introduces restrictions
 - OWL Lite is an entry level language intended to be easy to understand and implement

OWL ↔ RDF

- An OWL ontology is a set of RDF statements
 - OWL defines semantics for certain statements
 - Does **NOT** restrict what can be said -- documents can include arbitrary RDF
 - But no OWL semantics for non-OWL statements
- Adds capabilities common to description logics:
 - cardinality constraints, defined classes (=> classification), equivalence, local restrictions, disjoint classes, etc.
- · More support for ontologies
 - Ontology imports ontology, versioning, ...
- · But not (yet) variables, quantification, & rules
- A complete OWL reasoning is significantly more complex than a complete RDFS reasoner.

Owl is based on Description Logic

- DL is a family of KR languages that might be described as "Logic meets Objects"
- A DL is characterized by a set of constructors that allow one to build complex **concepts** and **roles** from atomic ones
- Concepts correspond to classes; interpreted as sets of objects
- **Roles** correspond to relations; interpreted as binary relations on objects
- Axioms assert facts about concepts, roles and individuals
- · Distinguished by:
 - Formal semantics for a decidable fragment of FOL
 - Sound and complete decision procedures for key problems
 - Many implemented systems, some highly optimized

OWL Class Constructors

Constructor	DL Syntax	Example
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer
complementOf	$\neg C$	⊣Male
oneOf	$\{x_1 \dots x_n\}$	{john, mary}
allValuesFrom	$\forall P.C$	∀hasChild.Doctor
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer
maxCardinality	$\leq nP$	≤1hasChild
minCardinality	$\geqslant nP$	≽2hasChild

borrowed from Ian Horrocks

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	{President_Bush} ≡ {G_W_Bush}
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	{john} ⊑ ¬{peter}
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	hasChild ≡ hasParent⁻
transitiveProperty	$P^+ \sqsubseteq P$	ancestor ⁺ ⊑ ancestor
functionalProperty	$\top \sqsubseteq \leq 1P$	T ⊑ ≼1hasMother
inverseFunctionalProperty	$\top \Box \leq 1P^-$	T ⊑ ≤1hasSSNT

 $borrowed\ from\ Ian\ Horrocks$

OWL Language

- · Three species of OWL
 - OWL Full is union of OWL syntax and RDF
- OWL DL restricted to FOL fragment (\cong DAML+OIL)
- OWL Lite is "simpler" subset of OWL DL
- · Semantic layering
 - OWL DL \cong OWL full within DL fragment
- · OWL DL based on SHIQ Description Logic
- OWL DL Benefits from many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimised)

OWL Lite Features

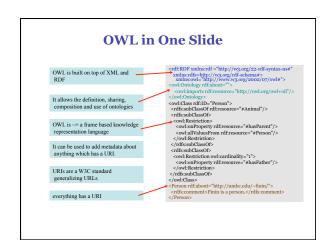
- RDF Schema Features
 Class, rdfs:subClassOf , Individual
 rdf:Property, rdfs:subPropertyOf
 rdfs:domain , rdfs:range
 Equality and Inequality
- sameClassAs , samePropertyAs , sameIndividualAs differentIndividualFrom Restricted Cardinality

- minCardinality, maxCardinality (restricted to 0 or 1) cardinality (restricted to 0 or 1)

- carainating (restricted to or 1)
 Property Characteristics
 inverseOf, TransitiveProperty, SymmetricProperty
 FunctionalProperty(unique), InversePunctionalProperty
 allValuesFrom, someValuesFrom (universal and existential local range restrictions)
 Datatypes
 Following the decisions of RDF Core.

- Header Information
 imports , Dublin Core Metadata , versionInfo

OWL Features


- · Class Axioms
 - oneOf (enumerated classes)
 - disjointWith
 - sameClassAs applied to class expressions
- rdfs:subClassOf applied to class expressions
 Boolean Combinations of Class Expressions
 unionOf

 - intersection Of
 - complementOf
- Arbitrary Cardinality
 minCardinality
 maxCardinality

 - cardinality
- · Filler Information
 - $has Value \ {\tt Descriptions} \ {\tt can include \ specific \ value \ information}$

OWL Ontologies

- The owl:Ontology class describes an ontology
- · An ontology file should be one instance of owl:Ontology
- Ontology properties include
 - owl:imports, owl:versionInfo, owl:priorVersion
 - owl:backwardCompatibleWith, owl:incompatibleWith
 - rdfs:label, rdfs:comment can also be used
- · Deprecation control classes:
 - owl:DeprecatedClass, owl:DeprecatedProperty types

