
1

Some material adapted
from Upenn cis391

slides and other sources

• Dictionaries
• Functions
• Logical expressions
• Flow of control
• Comprehensions
• For loops
• More on functions
• Assignment and containers
• Strings

• Dictionaries store a mapping between a set of
keys and a set of values
• Keys can be any immutable type.
• Values can be any type
• A single dictionary can store values of

different types
• You can define, modify, view, lookup or delete

the key-value pairs in the dictionary
• Python’s dictionaries are also known as hash

tables and associative arrays

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}
>>> d[‘user’]

‘bozo’

>>> d[‘pswd’]

123

>>> d[‘bozo’]

Traceback (innermost last):

 File ‘<interactive input>’ line 1,
in ?

KeyError: bozo

2

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’] = ‘clown’

>>> d

{‘user’:‘clown’, ‘pswd’:1234}

• Keys must be unique
• Assigning to an existing key replaces its value
>>> d[‘id’] = 45

>>> d

{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

• Dictionaries are unordered
• New entries can appear anywhere in output

• Dictionaries work by hashing

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> del d[‘user’] # Remove one.

>>> d

{‘p’:1234, ‘i’:34}

>>> d.clear() # Remove all.

>>> d

{}

>>> a=[1,2]
>>> del a[1] # del works on lists, too

>>> a

[1]

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> d.keys() # List of keys, VERY useful

[‘user’, ‘p’, ‘i’]

>>> d.values() # List of values.

[‘bozo’, 1234, 34]

>>> d.items() # List of item tuples.

[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

Problem: count the frequency of each word in
text read from the standard input, print results
• Six versions of increasing complexity
• wf1.py is a simple start
• wf2.py uses a common idiom for default values
• wf3.py sorts the output alphabetically
• wf4.py downcase and strip punctuation from

words and ignore stop words
• wf5.py sort output by frequency
• wf6.py add command line options: -n, -t, -h

3

#!/usr/bin/python

import sys

freq = {} # frequency of words in text

for line in sys.stdin:

 for word in line.split():

 if word in freq:

 freq[word] = 1 + freq[word]

 else:

 freq[word] = 1

print freq

#!/usr/bin/python

import sys

freq = {} # frequency of words in text

for line in sys.stdin:

 for word in line.split():

 if word in freq:
 freq[word] = 1 + freq[word]
 else:
 freq[word] = 1
print freq

This is a common
pattern

#!/usr/bin/python

import sys

freq = {} # frequency of words in text

for line in sys.stdin:

 for word in line.split():

 freq[word] = freq.get(word,0)
print freq

key Default value
if not found

#!/usr/bin/python

import sys

freq = {} # frequency of words in text

for line in sys.stdin:

 for word in line.split():

 freq[word] = freq.get(word,0)

words = freq.keys()
words.sort()

for w in words:
 print w, freq[w]

4

#!/usr/bin/python

import sys

from operator import itemgetter

punctuation = """'!"#$%&\'()*+,-./:;<=>?
@[\\]^_`{|}~'"""

freq = {} # frequency of words in text

stop_words = {}
for line in open("stop_words.txt"):
 stop_words[line.strip()] = True

for line in sys.stdin:

 for word in line.split():

 word = word.strip(punctuation).lower()
 if not word in stop_words:

 freq[word] = freq.get(word,0) + 1

words = sorted(freq.iteritems(),
key=itemgetter(1), reverse=True)

for w in words:
 print w[1], w[0]

from optparse import OptionParser
read command line arguments and process

parser = OptionParser()
parser.add_option('-n', '--number', type="int",
default=-1, help='number of words to report')

parser.add_option("-t", "--threshold", type="int",
default=0, help=”print if frequency > threshold")

(options, args) = parser.parse_args()
...

print the top option.number words but only those

with freq>option.threshold

for (word, freq) in words[:options.number]:
 if freq > options.threshold:
 print freq, word

• The keys used in a dictionary must be
immutable objects?
>>> name1, name2 = 'john', ['bob', 'marley']

>>> fav = name2

>>> d = {name1: 'alive', name2: 'dead'}

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: list objects are unhashable

• Why is this?
• Suppose we could index a value for name2
• and then did fav[0] = “Bobby”
• Could we find d[name2] or d[fav] or …?

5

The indentation matters…
First line with less
indentation is considered to be
outside of the function definition.

No header file or declaration of types of function or arguments

def get_final_answer(filename):
 “““Documentation String”””
 line1

 line2
 return total_counter

Function definition begins with “def.” Function name and its arguments.

The keyword ‘return’ indicates the
value to be sent back to the caller.

 Colon.

• Dynamic typing: Python determines the data
types of variable bindings in a program
automatically

• Strong typing: But Python’s not casual about
types, it enforces the types of objects

• For example, you can’t just append an integer
to a string, but must first convert it to a string

 x = “the answer is ” # x bound to a string

 y = 23 # y bound to an integer.

 print x + y # Python will complain!

• The syntax for a function call is:
 >>> def myfun(x, y):
 return x * y
 >>> myfun(3, 4)
 12

• Parameters in Python are Call by Assignment
• Old values for the variables that are parameter

names are hidden, and these variables are
simply made to refer to the new values

• All assignment in Python, including binding
function parameters, uses reference semantics.

6

• All functions in Python have a return value,
even if no return line inside the code

• Functions without a return return the special
value None
• None is a special constant in the language
• None is used like NULL, void, or nil in other

languages
• None is also logically equivalent to False
• The interpreter doesn’t print None

• There is no function overloading in Python
• Unlike C++, a Python function is specified by

its name alone
The number, order, names, or types of its arguments
cannot be used to distinguish between two functions
with the same name

• Two different functions can’t have the same
name, even if they have different arguments

• But: see operator overloading in later slides
(Note: van Rossum playing with function overloading for the future)

• You can provide default values for a function’s
arguments

• These arguments are optional when the
function is called

>>> def myfun(b, c=3, d=“hello”):
 return b + c

>>> myfun(5,3,”hello”)

>>> myfun(5,3)

>>> myfun(5)

All of the above function calls return 8

• You can call a function with some or all of its
arguments out of order as long as you specify
their names

• You can also just use keywords for a final
subset of the arguments.
>>> def myfun(a, b, c):
 return a-b

>>> myfun(2, 1, 43)

 1

>>> myfun(c=43, b=1, a=2)

 1

>>> myfun(2, c=43, b=1)

 1

7

Functions can be used as any other datatype, eg:
• Arguments to function
• Return values of functions
• Assigned to variables
• Parts of tuples, lists, etc

>>> def square(x):

 return x*x

>>> def applier(q, x):

 return q(x)

>>> applier(square, 7)

49

• Python uses a lambda notation to create
anonymous functions
>>> applier(lambda z: z * 4, 7)

 28

• Python supports functional programming
idioms, including closures and continuations

Not everything is possible…
>>> f = lambda x,y : 2 * x + y

>>> f

<function <lambda> at 0x87d30>

>>> f(3, 4)

10

>>> v = lambda x: x*x(100)

>>> v

<function <lambda> at 0x87df0>

>>> v(100)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 1, in <lambda>

TypeError: 'int' object is not callable

>>> def square(x):

 return x*x

>>> def twice(f):

 return lambda x: f(f(x))

>>> twice

<function twice at 0x87db0>

>>> quad = twice(square)

>>> quad

<function <lambda> at 0x87d30>

>>> quad(5)

625

8

>>> def counter(start=0, step=1):

 x = [start]

 def _inc():

 x[0] += step

 return x[0]

 return _inc

>>> c1 = counter()

>>> c2 = counter(100, -10)

>>> c1()

1

>>> c2()

90

• True and False are constants in Python.
• Other values equivalent to True and False:

• False: zero, None, empty container or object
• True: non-zero numbers, non-empty objects

• Comparison operators: ==, !=, <, <=, etc.
• X and Y have same value: X == Y
• Compare with X is Y :

— X and Y are two variables that refer to the
identical same object.

• You can also combine Boolean
expressions.
• True if a is True and b is True: a and b
• True if a is True or b is True: a or b
• True if a is False: not a

• Use parentheses as needed to
disambiguate complex Boolean
expressions.

9

• Actually and and or don’t return True or False
but value of one of their sub-expressions,
which may be a non-Boolean value

• X and Y and Z
•  If all are true, returns value of Z
• Otherwise, returns value of first false sub-expression

• X or Y or Z
•  If all are false, returns value of Z
• Otherwise, returns value of first true sub-expression

• And and or use lazy evaluation, so no further
expressions are evaluated

• An old deprecated trick to implement a simple
conditional
 result = test and expr1 or expr2

• When test is True, result is assigned expr1
• When test is False, result is assigned expr2
• Works almost like C++’s (test ? expr1 : expr2)

• But if the value of expr1 is ever False, the trick
doesn’t work

• Don’t use it; made unnecessary by conditional
expressions in Python 2.5 (see next slide)

• x = true_value if condition else
false_value

• Uses lazy evaluation:
• First, condition is evaluated
• If True, true_value is evaluated and

returned
• If False, false_value is evaluated and

returned
• Standard use:

x = (true_value if condition else
false_value)

10

if x == 3:
 print “X equals 3.”
elif x == 2:
 print “X equals 2.”
else:
 print “X equals something else.”
print “This is outside the ‘if’.”

Be careful! The keyword if is also used in the
syntax of filtered list comprehensions. Note:
•  Use of indentation for blocks
•  Colon (:) after boolean expression

>>> x = 3
>>> while x < 5:

 print x, "still in the loop"

 x = x + 1

3 still in the loop

4 still in the loop

>>> x = 6

>>> while x < 5:

 print x, "still in the loop"

>>>

• You can use the keyword break inside a
loop to leave the while loop entirely.

• You can use the keyword continue inside
a loop to stop processing the current
iteration of the loop and to immediately
go on to the next one.

• An assert statement will check to make
sure that something is true during the
course of a program.
• If the condition if false, the program stops

— (more accurately: the program
throws an exception)

 assert(number_of_players < 5)

11

• Python supports higher-order functions that
operate on lists similar to Scheme’s
>>> def square(x):

 return x*x

>>> def even(x):

 return 0 == x % 2

>>> map(square, range(10,20))

[100, 121, 144, 169, 196, 225, 256, 289, 324, 361]

>>> filter(even, range(10,20))

[10, 12, 14, 16, 18]

>>> map(square, filter(even, range(10,20)))

[100, 144, 196, 256, 324]

• But many Python programmers prefer to use
list comprehensions, instead

• A list comprehension is a programming
language construct for creating a list based on
existing lists
• Haskell, Erlang, Scala and Python have them

• Why “comprehension”? The term is borrowed
from math’s set comprehension notation for
defining sets in terms of other sets

• A powerful and popular feature in Python
• Generate a new list by applying a function to every

member of an original list
• Python’s notation:

[expression for name in list]

• The syntax of a list comprehension is
somewhat tricky

[x-10 for x in grades if x>0]

• Syntax suggests that of a for-loop, an in
operation, or an if statement

• All three of these keywords (‘for’, ‘in’, and ‘if’)
are also used in the syntax of forms of list
comprehensions

[expression for name in list]

12

>>> li = [3, 6, 2, 7]
>>> [elem*2 for elem in li]

[6, 12, 4, 14]

[expression for name in list]
•  Where expression is some calculation or operation

acting upon the variable name.
•  For each member of the list, the list comprehension

1.  sets name equal to that member,
2. calculates a new value using expression,

•  It then collects these new values into a list which is
the return value of the list comprehension.

Note: Non-standard
colors on next few
slides clarify the list
comprehension syntax.

[expression for name in list]

• If list contains elements of different types, then
expression must operate correctly on the
types of all of list members.

• If the elements of list are other containers,
then the name can consist of a container of
names that match the type and “shape” of the
list members.

>>> li = [(‘a’, 1), (‘b’, 2), (‘c’, 7)]

>>> [n * 3 for (x, n) in li]

[3, 6, 21]

[expression for name in list]

• expression can also contain user-defined
functions.

>>> def subtract(a, b):
 return a – b

>>> oplist = [(6, 3), (1, 7), (5, 5)]

>>> [subtract(y, x) for (x, y) in oplist]

[-3, 6, 0]

[expression for name in list]

List comprehensions can be viewed as
syntactic sugar for a typical higher-order
functions

[expression for name in list]
map(lambda name . expression, list)

[2*x+1 for x in [10, 20, 30]]
map(lambda X . 2*x+1, [10, 20, 30])

13

• Filter determines whether expression is
performed on each member of the list.

• For each element of list, checks if it satisfies the
filter condition.

• If the filter condition returns False, that element
is omitted from the list before the list
comprehension is evaluated.

[expression for name in list if filter]

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem*2 for elem in li if elem > 4]

[12, 14, 18]

• Only 6, 7, and 9 satisfy the filter condition
• So, only 12, 14, and 18 are produce.

[expression for name in list if filter]

Including an if clause begins to show the
benefits of the sweetened form

[expression for name in list if filt]
map(lambda name . expression, filter(filt, list))

[2*x+1 for x in [10, 20, 30] if x > 0]
map(lambda x . 2*x+1,
 [10, 20, 30],
 filter(lambda x . x > 0 , [10, 20, 30])

• Since list comprehensions take a list as input
and produce a list as output, they are easily
nested

>>> li = [3, 2, 4, 1]

>>> [elem*2 for elem in
 [item+1 for item in li]]

[8, 6, 10, 4]

• The inner comprehension produces: [4, 3, 5, 2]
• So, the outer one produces: [8, 6, 10, 4]

[expression for name in list]

14

[e1 for n1 in [e1 for n1 list]]
map(lambda n1 . e1,
 map(lambda n2 . e2, list))

[2*x+1 for x in [y*y for y in [10, 20, 30]]]
map(lambda x . 2*x+1,
 map(lambda y . y*y, [10, 20, 30]))

• Python’s list comprehensions provide a natural
idiom that usually requires a for-loop in other
programming languages.
• As a result, Python code uses many fewer

for-loops
• Nevertheless, it’s important to learn about

for-loops.

• Take care! The keywords for and in are also
used in the syntax of list comprehensions, but
this is a totally different construction.

• A for-loop steps through each of the items in a
collection type, or any other type of object
which is “iterable”
for <item> in <collection>:
<statements>

• If <collection> is a list or a tuple, then the loop
steps through each element of the sequence

• If <collection> is a string, then the loop steps
through each character of the string
for someChar in “Hello World”:
 print someChar

15

for <item> in <collection>:
<statements>

• <item> can be more than a single variable name
• When the <collection> elements are themselves

sequences, then <item> can match the structure
of the elements.

• This multiple assignment can make it easier to
access the individual parts of each element
for (x,y) in [(a,1),(b,2),(c,3),(d,4)]:
 print x

• Since a variable often ranges over some
sequence of numbers, the range() function
returns a list of numbers from 0 up to but not
including the number we pass to it.

• range(5) returns [0,1,2,3,4]
• So we could say:
for x in range(5):
 print x

• (There are more complex forms of range() that
provide richer functionality…)

>>> ages = { "Sam" : 4, "Mary" : 3, "Bill" : 2 }
>>> ages
{'Bill': 2, 'Mary': 3, 'Sam': 4}
>>> for name in ages.keys():
 print name, ages[name]
Bill 2
Mary 3
Sam 4
>>>

16

• We’ve seen multiple assignment before:

>>> x, y = 2, 3

• But you can also do it with sequences.
• The type and “shape” just has to match.

>>> (x, y, (w, z)) = (2, 3, (4, 5))

>>> [x, y] = [4, 5]

• Assignment creates a name, if it didn’t exist
already.

 x = 3 Creates name x of type integer.
• Assignment is also what creates named

references to containers.
 >>> d = {‘a’:3, ‘b’:4}

• We can also create empty containers:
 >>> li = []

 >>> tu = ()

 >>> di = {}

• These three are empty, but of different types

Note: an empty container
is logically equivalent to
False. (Just like None.)

Why create a named reference to empty
container?

• To initialize an empty list, e.g., before using
append

• This would cause an unknown name error if
a named reference to the right data type
wasn’t created first

>>> g.append(3)

Python complains here about the unknown name ‘g’!
>>> g = []

>>> g.append(3)

>>> g
[3]

17

• A number of methods for the string class
perform useful formatting operations:

>>> “hello”.upper()
‘HELLO’

• Check the Python documentation for many
other handy string operations.

• Helpful hint: use <string>.strip() to strip
off final newlines from lines read from files

• The operator % allows strings to be built out of
many data items a la “fill in the blanks”
• Allows control of how the final output appears
• For example, we could force a number to display with

a specific number of digits after the decimal point
• Very similar to the sprintf command of C.

>>> x = “abc”
>>> y = 34
>>> “%s xyz %d” % (x, y)
‘abc xyz 34’

• The tuple following the % operator used to fill in
blanks in original string marked with %s or %d.

• Check Python documentation for codes

• You can print a string to the screen using print
• Using the % operator in combination with print,

we can format our output text
>>> print “%s xyz %d” % (“abc”, 34)
abc xyz 34

• Print adds a newline to the end of the string. If you
include a list of strings, it will concatenate them with a
space between them
>>> print “abc” >>> print “abc”, “def”
abc abc def

• Useful trick: >>> print “abc”, doesn’t add newline
just a single space

18

• Join turns a list of strings into one string

 <separator_string>.join(<some_list>)

 >>> “;”.join([“abc”, “def”, “ghi”])

 “abc;def;ghi”

• Split turns one string into a list of strings

 <some_string>.split(<separator_string>)

 >>> “abc;def;ghi”.split(“;”)

 [“abc”, “def”, “ghi”]

• Note the inversion in the syntax

• Split and join can be used in a list compre-
hension in the following Python idiom:

>>> " ".join([s.capitalize() for s in "this is a test ".split()])
'This Is A Test‘
>>> # For clarification:
>>> "this is a test" .split()
['this', 'is', 'a', 'test']
>>> [s.capitalize() for s in "this is a test" .split()]
['This', 'Is', 'A', 'Test’]

• The builtin str() function can convert an
instance of any data type into a string.

• You define how this function behaves for user-
created data types

• You can also redefine the behavior of this
function for many types.

>>> “Hello ” + str(2)

“Hello 2”

