Python 2

Overview

* Dictionaries

* Functions

* Logical expressions

* Flow of control

* Comprehensions

* For loops

* More on functions

* Assignment and containers
* Strings

Dictionaries: A Mapping type

* Dictionaries store a mapping between a set of
keys and a set of values

* Keys can be any immutable type.
* Values can be any type
* A single dictionary can store values of
different types
* You can define, modify, view, lookup or delete
the key-value pairs in the dictionary

* Python'’s dictionaries are also known as hash
tables and associative arrays

Creating & accessing dictionaries

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’]

‘bozo’

>>> d[‘pswd’]

123

>>> d[‘bozo’]

Traceback (innermost last):
File ‘<interactive input>’ line 1,
in ?

KeyError: bozo

Updating Dictionaries

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}
>>> d[‘user’] = ‘clown’

>>> d

{‘user’:‘clown’, ‘pswd’:1234}

* Keys must be unique

* Assigning to an existing key replaces its value
>>> d['id’] = 45
>>> d
{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}
* Dictionaries are unordered
* New entries can appear anywhere in output

¢ Dictionaries work by hashing

Removing dictionary entries

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’ :34}

>>> d[‘user’] # Remove one.
>>> d

{‘p’:1234, ‘i’ :34}

>>> d.clear () # Remove all.
>>> d

{}

>>> alll # del works on lists, too

Useful Accessor Methods

>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’ :34}

>>> d.keys () # List of keys, VERY useful
[‘US@I', \pI, Vif]
>>> d.values () # List of values.

[‘bozo’, 1234, 34]

>>> d.items () # List of item tuples.
[(‘user’, ‘bozo’), (‘p’,1234), (‘i’,34)]

A Dictionary Example

Problem: count the frequency of each word in
text read from the standard input, print results

* Six versions of increasing complexity

* wf1.py is a simple start

» wf2.py uses a common idiom for default values
» wf3.py sorts the output alphabetically

» wf4.py downcase and strip punctuation from
words and ignore stop words

» wf5.py sort output by frequency
* wf6.py add command line options: -n, -t, -h

Dictionary example: wf1.py

#!/usr/bin/python
import sys
freq = {} # frequency of words in text
for line in sys.stdin:
for word in line.split{():
if word in freqg:
freq[word] = 1 + freg[word]
else:
fregq[word] =1
print freg

Dictionary example wf1.py

#!/usr/bin/python
import sys
freqg = {} # frequency of words in text

for line in sys.stdin: ..
This is a common

pattern

for word in line.split():

if word in freq:
freqg[word] = 1 + freq[word]
else:

Il
[

freq[word]
print freg

Dictionary example wf2.py

#!/usr/bin/python
import sys
freq = {} # frequency of words in text
for line in sys.stdin:
for word in line.split():

freq[word] = freq.get (word,

print freq

Default value
if not found

Dictionary example wf3.py

#!/usr/bin/python

import sys

freq = {} # frequency of words in text
for line in sys.stdin:

for word in line.split():
freq[word] = freqg.get (word,0)

words = freq.keys()

words.sort ()

for w in words:

print w, freq[w]

Dictionary example wf4.py

#!/usr/bin/python
import sys
from operator import itemgetter

punctuation = """'1"H#SSE\ "' () *+, ./ ;<=>?
@[\\]A_‘{|}~Vllllll
freq = {} # frequency of words in text

stop_words = {}
for line in open("stop_words.txt"):

stop_words[line.strip()] = True

Dictionary example wf5.py

for line in sys.stdin:
for word in line.split():
word = word.strip (punctuation) .lower ()
if not word in stop words:
freg[word] = freqg.get(word,0) + 1

words = sorted(freq.iteritems(),
key=itemgetter (1) , reverse=True)

for w in words:
print w[l], w[O]

Dictionary example wf6.py

from optparse import OptionParser

read command line arguments and process

parser = OptionParser ()

parser.add option('-n', '--number', type="int",
default=-1, help='number of words to report')

parser.add option("-t", "--threshold", type="int",
default=0, help="print if frequency > threshold")

(options, args) = parser.parse_args()

print the top option.number words but only those
with freg>option.threshold
for (word, freq) in words|[:options.number]:

if freq > options.threshold:

print freq, word

Why must keys be immutable?

* The keys used in a dictionary must be
immutable objects?
>>> namel, name2 = 'john', ['bob', 'marley']
>>> fav = name?2
>>> d = {namel: 'alive', name2: 'dead'}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: list objects are unhashable
* Why is this?
* Suppose we could index a value for name2
eand then did fav[0] = “Bobby”

* Could we find d[name2] or d[fav] or ...?

Functions in Python

Defining Functions

Function definition begins with “def.” Function name and its arguments.

N 3
= def get final answer (filename) :
. . w
“““Documentation String””” N
linel AN
A D
yd line2 Colon.
/
yd return total counter

The indentation matters...

First line with less

indentation is considered to be The keyword ‘return’ indicates the
outside of the function definition. value to be sent back to the caller.

No header file or declaration of types of function or arguments

Python and Types

* Dynamic typing: Python determines the data
types of variable bindings in a program
automatically

* Strong typing: But Python’s not casual about
types, it enforces the types of objects

* For example, you can'’t just append an integer
to a string, but must first convert it to a string

X

Pr

“the answer is

”

v bound to an integer.

+ vy # Python will complain!

x bound to a string

Calling a Function

* The syntax for a function call is:
>>> def myfun(x, y):
return x * y
>>> myfun (3, 4)
12

e Parameters in Python are Call by Assignment

+ Old values for the variables that are parameter
names are hidden, and these variables are
simply made to refer to the new values

* All assignment in Python, including binding
function parameters, uses reference semantics.

Functions without returns

* All functions in Python have a return value,
even if no return line inside the code

* Functions without a refurn return the special
value None

* None is a special constant in the language

* None is used like NULL, void, or nil in other
languages

» None is also logically equivalent to False
* The interpreter doesn’t print None

Function overloading? No.

* There is no function overloading in Python
* Unlike C++, a Python function is specified by
its name alone

The number, order, names, or types of its arguments
cannot be used to distinguish between two functions
with the same name

» Two different functions can’t have the same
name, even if they have different arguments

* But: see operator overloading in later slides

(Note: van Rossum playing with function overloading for the future)

Default Values for Arguments

* You can provide default values for a function’s
arguments

* These arguments are optional when the
function is called

>>> (b, c=3, d=“hello”):
b + ¢

>>> myfun (5,3, ”hello”)

>>> myfun (5, 3)

>>> myfun (5)

All of the above function calls return 8

Keyword Arguments

* You can call a function with some or all of its
arguments out of order as long as you specify
their names

* You can also just use keywords for a final
subset of the arguments.

>>> (a, b, c):

a-b

>>> myfun (2, 1, 43)
1

>>> myfun (c=43, b=1l, a=2)
1

>>> myfun (2, c=43, b=1)
1

Functions are first-class objects

Functions can be used as any other datatype, eg:
» Arguments to function
* Return values of functions
» Assigned to variables
* Parts of tuples, lists, etc

>>> square (x) :
X*x
>>> applier(q, x):
q(x)

>>> applier (square, 7)
49

Lambda Notation

* Python uses a lambda notation to create

anonymous functions
>>> applier (z: z * 4, 7)
28

* Python supports functional programming
idioms, including closures and continuations

Lambda Notation

Not everything is possible...
>>> f = lambda x,y : 2 * x + y
>>> f

<function <lambda> at 0x87d30>
>>> £(3, 4)

10

>>> v lambda x: x*x(100)

>>> v

<function <lambda> at 0x87df0>

>>> v (100)

Traceback (most recent call ast) :
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in <lambda>
TypeError: 'int' object is not callable

Example: composition

>>> def square(x):

return x*x
>>> def twice(f):

return lambda x: f (f(x))
>>> twice
<function twice at 0x87db0>
>>> quad = twice (square)
>>> quad
<function <lambda> at 0x87d30>
>>> quad (5)
625

Example: closure

>>> def counter (start=0, step=1):
x = [start]
def inc():
x[0] += step
return x[0]

return inc

>>> cl = counter()

>>> c2 = counter (100, -10)
>>> ¢l ()

1

>>> c2()

90

Logical Expressions

True and False

 True and False are constants in Python.

* Other values equivalent to True and False:
* False: zero, None, empty container or object
* True: non-zero numbers, non-empty objects

* Comparison operators: ==, |=, <, <=, efc.
* X and Y have same value: X ==
* Compare with X Y:

—X and Y are two variables that refer to the
identical same object.

Boolean Logic Expressions

*You can also combine Boolean
expressions.

e True ifais True and b is True: a b
e True if ais True or b is True: a b
* True if a is False: a

* Use parentheses as needed to
disambiguate complex Boolean
expressions.

Special Properties of and & or

e Actually and and or don’t return True or False
but value of one of their sub-expressions,
which may be a non-Boolean value

*X Y z
« If all are true, returns value of Z
» Otherwise, returns value of first false sub-expression

°*X Y Z
« |f all are false, returns value of Z
» Otherwise, returns value of first true sub-expression

* And and or use lazy evaluation, so no further
expressions are evaluated

The “and-or” Trick

* An old deprecated trick to implement a simple
conditional
result = test exprl expr2

* When test is True, result is assigned expr1
* When test is False, result is assigned expr2
» Works almost like C++’s (test ? exprl : expr2)

e But if the value of expr1 is ever False, the trick
doesn’t work

e Don’t use it; made unnecessary by conditional
expressions in Python 2.5 (see next slide)

Conditional Expressions in Python 2.5

°*x = true value condition
false value

* Uses lazy evaluation:
e First, condition is evaluated

* If True, true value is evaluated and
returned

* If False, false value is evaluated and
returned
e Standard use:

x = (true value condition
false value)

Control of Flow

if Statements

X ==
“X equals 3.”

x == 2:
“X equals 2.”

“X equals something else.”
“This is outside the ‘if’.”

Be careful! The keyword ifis also used in the
syntax of filtered list comprehensions. Note:

* Use of indentation for blocks
* Colon (:) after boolean expression

while Loops

>>> x = 3
>>> x < b:
%, "still in the loop"
x =x + 1
3 still in the loop
4 still in the loop
>>> x = 6
>>> x < 5:
%, "still in the loop"

>>>

break and continue

*You can use the keyword break inside a
loop to leave the while loop entirely.

*You can use the keyword continue inside
a loop to stop processing the current
iteration of the loop and to immediately
go on to the next one.

assert

* An assert statement will check to make
sure that something is true during the
course of a program.

« If the condition if false, the program stops
—(more accurately: the program
throws an exception)

(number of players < 5)

10

List
Comprehension

Python’s higher-order functions

* Python supports higher-order functions that
operate on lists similar to Scheme’s

>>> def square(x):
return x*x
>>> def even(x):
return 0 == x % 2
>>> map (square, range(10,20))
[100, 121, 144, 169, 196, 225, 256, 289, 324, 361]
>>> filter (even, range(10,20))
[10, 12, 14, 16, 18]
>>> map (square, filter (even, range(10,20)))
[100, 144, 196, 256, 324]

* But many Python programmers prefer to use
list comprehensions, instead

List Comprehensions

* A list comprehension is a programming
language construct for creating a list based on
existing lists
» Haskell, Erlang, Scala and Python have them

* Why “comprehension”? The term is borrowed
from math’s set comprehension notation for
defining sets in terms of other sets

* A powerful and popular feature in Python
» Generate a new list by applying a function to every

member of an original list

* Python’s notation:

[expression for name in list]

List Comprehensions

* The syntax of a list comprehension is
somewhat tricky

[x-10 for x in grades if x>0]

» Syntax suggests that of a for-loop, an in
operation, or an if statement
* All three of these keywords (‘for’, ‘in’, and ‘if’)

are also used in the syntax of forms of list
comprehensions

[expression for name in list]

11

List Comprehensions

Note: Non-standard
colors on next few
slides clarify the list
comprehension syntax.

>>> 1i = [3, 6, 2, 7]
>>> [elem*2 for elem in 1i]
[6, 12, 4, 14)]

[expression for name in list]

* Where expression is some calculation or operation
acting upon the variable name.

» For each member of the list, the list comprehension
1. sets name equal to that member,
2. calculates a new value using expression,

» |t then collects these new values into a list which is
the return value of the list comprehension.

[expression for name in list]

List Comprehensions

* expression can also contain user-defined
functions.

>>> def subtract(a, b):
return a - b

>>> oplist = [(6, 3), (1, 7), (5, 5)
>>> [subtract(y, x) for (x, y) in oplist]
[-3, 6, 0]

[expression for name in list]

List Comprehensions

* If list contains elements of different types, then
expression must operate correctly on the
types of all of list members.

¢ |f the elements of list are other containers,

then the name can consist of a container of
names that match the type and “shape” of the

list members.

>>> 11 = [(‘a’, 1), (‘b’, 2), (‘¢', 7)]
>>> [n * 3 for (x, n) in 11]

[3, 6, 21]

[expression for name in list]

Syntactic sugar

List comprehensions can be viewed as
syntactic sugar for a typical higher-order
functions

[expression for name in list]
map(lambda name . expression, list)

[2*x+1 for x in [10, 20, 30]]
map(lambda X . 2*x+1, [10, 20, 30])

12

Filtered List Comprehension

e Filter determines whether expression is
performed on each member of the list.

¢ For each element of list, checks if it satisfies the
filter condition.

¢ |f the filter condition returns False, that element
is omitted from the list before the list
comprehension is evaluated.

[expression for name in list if filter]

Filtered List Comprehension

>>> 1i = [3, 6, 2, 7, 1, 9]
>>> [elem*2 for elem in 11 if elem > 4]
[12, 14, 18]

* Only 6, 7, and 9 satisfy the filter condition
* So, only 12, 14, and 18 are produce.

[expression for name in list if filter]

More syntactic sugar

Including an if clause begins to show the
benefits of the sweetened form

[expression for name in list if filt]
map(lambda name . expression, filter(filt, list))

[2*x+1 for x in [10, 20, 30] if x>0]
map(lambda x . 2*x+1,

[10, 20, 30],

filter(lambda x . x > 0, [10, 20, 30])

Nested List Comprehensions

* Since list comprehensions take a list as input
and produce a list as output, they are easily
nested

>>> 11 = [3, 2, 4, 1]
>>> [elem*2 for elem in
[item+1 for item in 11]]

[8, 6, 10, 4]

* The inner comprehension produces: [4, 3, 5, 2]
* So, the outer one produces: [8, 6, 10, 4]

[expression for name in list]

13

Syntactic sugar

[e1fornTin[elfornlist]]
map(lambda n1 . e1,
map(lambda n2 . e2, list))

[2°x+1 for x in [y*y for y in[10, 20, 30]]]
map(lambda x . 2*x+1,
map(lambda vy . y*y, [10, 20, 30]))

For Loops

For Loops / List Comprehensions

* Python’s list comprehensions provide a natural
idiom that usually requires a for-loop in other
programming languages.

* As a result, Python code uses many fewer
for-loops

* Nevertheless, it's important to learn about
for-loops.

* Take care! The keywords for and in are also
used in the syntax of list comprehensions, but
this is a totally different construction.

For Loops 1

* A for-loop steps through each of the items in a
collection type, or any other type of object
which is “iterable”

for <item> in <collection>:
<statements>

e If <collection> is a list or a tuple, then the loop
steps through each element of the sequence

« If <collection> is a string, then the loop steps
through each character of the string

for someChar in “Hello World”:
print someChar

14

For Loops 2

for <item> in <collection>:
<statements>
* <jtem> can be more than a single variable name
* When the <collection> elements are themselves

sequences, then <item> can match the structure
of the elements.

* This multiple assignment can make it easier to
access the individual parts of each element

for (x,y) in [(a,1),(b,2),(c,3),(d,4)]:
print x

For loops & the range() function

* Since a variable often ranges over some
sequence of numbers, the range() function
returns a list of numbers from 0 up to but not
including the number we pass to it.

 range(5) returns [0,1,2,3,4]

* So we could say:
for x in range(5) :

print x

* (There are more complex forms of range() that

provide richer functionality...)

For Loops and Dictionaries

>>> ages = {"Sam" : 4, "Mary" : 3, "Bill": 2 }
>>> ages
{Bill': 2, 'Mary": 3, 'Sam': 4}
>>> for name in ages.keys():
name, ages[name]
Bill 2
Mary 3
Sam 4
>>>

Assignment and Containers

15

Multiple Assignment with
Sequences

* We've seen multiple assignment before:
>>> x, y =2, 3

* But you can also do it with sequences.
* The type and “shape” just has to match.

Empty Containers 1

* Assignment creates a name, if it didn’t exist
already.

x = 3 Creates name x of type integer.

* Assignment is also what creates named
references to containers.

>>> d = {‘'a’:3, ‘b’:4}
* We can also create empty containers:

>>> 11 [] Note: an empty container
>>> tu = () is logically equivalent to

>>> di = {}) False. (Just like None.)

* These three are empty, but of different types

>>> (%, y, (w, z)) = (2, 3, (4, 5))
>>> [x, y] = [4, 5]
Empty Containers 2

Why create a named reference to empty
container?
* To initialize an empty list, e.g., before using
append
* This would cause an unknown name error if
a named reference to the right data type
wasn’t created first
>>> g.append(3)
Python complains here about the unknown name ‘g’!
>>> g = []
>>> g.append (3)
>>> g

[3]

String Operations

o

16

String Operations

* A number of methods for the string class
perform useful formatting operations:

>>> “hello” .upper ()
‘HELLO'

* Check the Python documentation for many
other handy string operations.

* Helpful hint: use <string>.strip () to strip
off final newlines from lines read from files

String Formatting Operator: %

* The operator % allows strings to be built out of
many data items a la “fill in the blanks”

* Allows control of how the final output appears

» For example, we could force a number to display with
a specific number of digits after the decimal point

* Very similar to the sprintf command of C.

>>> x = “abc”

>>>y = 34

>>> “%s xyz %d” % (X, y)

‘abc xyz 34’
* The tuple following the % operator used to fill in

blanks in original string marked with %s or %d.

* Check Python documentation for codes

Printing with Python

* You can print a string to the screen using print
* Using the % operator in combination with print,
we can format our output text
>>> “gs xyz %d” % (“abc”, 34)
abc xyz 34

* Print adds a newline to the end of the string. If you
include a list of strings, it will concatenate them with a
space between them

>>> “abc” >>> “abc”, “def”
abc abc def
e Useful trick: >>> vabe”, doesn’t add newline

just a single space

String Conversions

17

Join and Split

* Join turns a list of strings into one string
<separator_string>.join(<some_list>)

>>> “;7 Join([“abc”, “def”, “ghi”]

* Split turns one string into a list of strings
.split(<separator_string>)
>>> .split(;7)
[\\abcll , \\defll , \\ghil/]
* Note the inversion in the syntax

)

Split & Join with List Comprehensions

* Split and join can be used in a list compre-
hension in the following Python idiom:

>>>"" join([s.capitalize() for s in "this is a test ".split()])

"This Is A Test'

>>> # For clarification:

>>> "this is a test" .split()

['this', is', 'a', 'test']

>>> [s.capitalize() for s in "this is a test" .split()]

[This', 'Is', 'A', 'Test]

Convert Anything to a String

* The builtin str() function can convert an
instance of any data type into a string.

¢ You define how this function behaves for user-
created data types

* You can also redefine the behavior of this
function for many types.

>>> “Hello ” + str(2)
“Hello 2”

18

