
A String is a list of characters. A String variable only contains a number, which
is an address for the location in memory of the characters. The String variable is then
said to refer (- point to an address in memory) to the actual object containing the list of
characters. Declaring a String variable does not allocate any memory for characters, it
only allocates memory to store an address, which takes the same amount of memory as
an int. All variables that have object data types contain addresses that refer to the
location in memory where the object is stored. These variables are also called
references.

When drawing by hand the memory contents of a program, the memory address
stored in a String variable is usually drawn as an arrow pointing to the list of characters
associated with that String. The picture shown below is the result of the following code:

String str; x str
int x;
x = 3; 3 ?

After declaring the String variable str, we don’t know what memory address is
stored in that variable, and no list of characters exists in memory yet, so we say we don’t
know what str refers to, and show it pointing to a question mark. One thing we can do
to create a list of characters in memory is to put a String literal in the code. If we assign
a String literal to a variable, it will make that String variable refer to that list of
characters. For example, the picture shown below is the result of the following code:

String str; str
str = "Hello"; 'H' 'e''l' 'l' 'o'

The characters are stored in a set of contiguous (- side-by-side) memory
locations in an object called an array (- non-resizable list of data, all of the same data
type, stored in contiguous memory locations). The arrays used by Strings contain
characters. Each character is an element (- member) of the list, and each element has a
numeric index. The first element in the list has an index of zero, and each element after
that has an index that is one greater than the one before it. The length is the number of
elements.

Arrays can hold data of any type, and can have any length, but neither the data
type nor the length of an array can be changed once the array has been created. Also,
every element in an array must have the same data type. Just as with Strings, you can
have array variables. Array variables also contain a numeric address that refers to the
memory location of the actual list of data. An array can be declared as follows:

int arr[]; arr

?

This says that arr is an array variable that will refer to an array of ints. There is
no array object for arr to refer to. To change that, you can create an array object and
assign it to arr. There are two ways to create an array object. The simplest way is an
array initializer (- an expression that creates an array and gives each element a value),
which is similar to a literal. An example: arr
int arr[] = {1, 1, 2, 3, 5}; 1 1 2 3 5

To use an array initializer anywhere other than an initialization statement, a little
extra code is required:
int arr[];
arr = new int[] {1, 1, 2, 3, 5};

When using an array initializer, the length of the array that is created is equal to
the number of elements in the initializer list. Arrays can also be created without
specifying the values for the elements, but then the length needs to be specified. The
values of all of the elements in the array that is created will be the default value for the
data type stored by the array. An array can be created this way using an array
constructor:

int arr[]; arr
arr = new int[5];

0 0 0 0 0

The array constructor consists of the word new, the data type, and the length in
brackets. The default value for ints is zero.

In a String object, the values of the characters cannot be changed. In an array
object, however, elements can be changed. Array access expressions, which can be used
to get the value of an element of an array, can also be used on the left side of the equals
sign in assignment statements to change the value of an element. An array access
expression consists of the name of a reference to the array, followed by the index in
brackets. The following example continues from the previous one:

arr[1] = 3; arr
arr[arr[4]] = 1;
arr[4] = arr[1] * 2; 1 3 5 3 6
arr[arr[1] – arr[0]] = 5;
arr[3] = arr[3-2];

Finally, the length of an existing array can be determined by accessing its length
attribute. The length attribute is an instance constant. The following line of code will
print the length of the array arr from the previous example (The length of arr is 5):

System.out.println("The length of arr is " + arr.length);

