

with Bayesian

 Belief Networks
Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- BBNs encode causal associations between facts and events the propositions represent
- Useful for many AI problems
- Diagnosis
- Expert systems
- Planning
- Learning

Judea Pearl

- UCLA CS professor
- Introduced Bayesian networks in the 1980s
- Pioneer of probabilistic approach to Al reasoning
- First to formalize causal modeling in empirical sciences
- Written many books on the topics, including the popular 2018 Book of Why

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
source
- Nodes have prior probabilities or conditional probability tables (CPTs)

Recall Bayes Rule

$$
P(H, E)=P(H \mid E) P(E)=P(E \mid H) P(H)
$$

$$
P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
$$

Note symmetry: can compute probability of a hypothesis given its evidence as well as probability of evidence given hypothesis

Simple Bayesian Network

$$
S \in\{\text { no,light, heavy }\} \underset{C \in\{\text { smoking } \longrightarrow \text { Cancer }}{\longrightarrow}
$$

Simple Bayesian Network

$S \in\{$ no, light, heavy $\}$ Smoking \longrightarrow Cancer
 Nodes represent

 variables- Smoking variable represents person's degree of smoking and has three possible values (no, light, heavy)
- Cancer variable represents person's cancer diagnosis and has three possible values (none, benign, malignant)

Simple Bayesian Network

$$
S \in\{\text { no, light, heavy }\} \text { Smoking } \longrightarrow \underset{C \in\{\text { none, benign, malignant }\}}{\longrightarrow}
$$

- tl;dr: smoking effects cancer
- Smoking behavior effects the probability of cancer outcome

Directed links represent "causal" relations

- Smoking behavior considered evidence for whether a person is likely to have cancer or not

Simple Bayesian Network

Prior probability of S

$P(S=$ no $)$	0.80
$P(S=$ light $)$	0.15
$P(S=$ heavy $)$	0.05

$C \in\{$ none,benign,malignant $\}$
Nodes without in-links have prior probabilities

Joint distribution of S and C

Nodes with in-links have joint probability distributions	Smoking=	no	light	heavy
	C=none	0.96	0.88	0.60
	C=benign	0.03	0.08	0.25
	C=malignant	0.01	0.04	0.15

More Complex Bayesian Network

More Complex Bayesian Network

Nodes represent variables

- Does gender cause smoking?
- Influence might be a better term
- In the US men are more likely to
 immediate "causal" relations smoke

More Complex Bayesian Network

More Complex Bayesian Network

More Complex Bayesian Network

More Complex Bayesian Network

Can we predict likelihood of lung tumor given values of other 6 variables?

- Model has 7 variables
- Complete joint probability distribution has 7 dimensions!
- Too much data required (:)
- BBN simplifies: nodes have a CPT with data on itself \& parents in graph

Independence

Age

Age and Gender are independent*

No path between

$$
P(A, G)=P(G) * P(A)
$$

them in the graph

$$
\begin{aligned}
& P(A \mid G)=P(A) \\
& P(G \mid A)=P(G) \\
& P(A, G)=P(G \mid A) P(A)=P(G) P(A) \\
& P(A, G)=P(A \mid G) P(G)=P(A) P(G)
\end{aligned}
$$

Conditional Independence

Cancer is independent of Age and Gender given Smoking

$$
P(C \mid A, G, S)=P(C \mid S)
$$

If we know value of smoking, there is no need to know values of age or gender

Conditional Independence

Cancer is independent of Age and Gender given Smoking

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models $\left(2^{3}+2^{2}\right)$ rather than $16\left(2^{4}\right)$

Conditional Independence: Naïve Bayes

Serum Calcium and Lung
Tumor are dependent (their presence is correlated)

Serum Calcium is independent of Lung Tumor given Cancer

$$
\begin{aligned}
& P(L \mid S C, C)=P(L \mid C) \\
& P(S C \mid L, C)=P(S C \mid C)
\end{aligned}
$$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

Explaining Away

Exposure to Toxics and
Smoking are independent
Exposure to Toxics is dependent on Smoking, given Cancer
$P(E=$ heavy | $C=$ malignant $)>P(E=$ heavy
| C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of Occam's Razor (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents

The major benefit of the BBN model!

Another non-descendant

A variable is conditionally independent of its non-descendants given its parents

Cancer is independent of Diet given Exposure to Toxics and Smoking

BBN Construction

The knowledge acquisition process for a BBN involves three steps

KA1: Choosing appropriate variables
KA2: Deciding on the network structure
KA3: Obtaining the conditional probability table data

KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively exhaustive, mutually exclusive values

- They should be values, not probabilities

Smoking

Heuristic: Knowable in Principle

Example of good variables

- Weather: \{Sunny, Cloudy, Rain, Snow\}
- Gasoline: \$ per gallon \{<2, 2-3, 3-4, >4\}
- Temperature: $\{\geq 100$ F , < 100 F\}
- User needs help on Excel Charts: \{Yes, No\}
- User's personality: \{dominant, submissive\}

KA2: Structuring

Network structure corresponding
 to "causality" is usually good. Initially this uses designer's knowledge and intuitions but can be checked with data

May be better to add suspected links than to

 leave outBut bigger CPT tables mean more joint data must be collected

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its parents
- For variables w/o parents, we have prior probabilities
$S \in\{$ no, light, heavy $\}$
$C \in\{$ none, benign, malignant $\}$

smoking priors	
no	0.80
light	0.15
heavy	0.05

	smoking		
cancer	no	light	heavy
none	0.96	0.88	0.60
benign	0.03	0.08	0.25
malignant	0.01	0.04	0.15

KA3: The numbers

- Second decimal usually doesn't matter
- Relative probabilities are important

E, Assess probabilities for: I-TypingSpeed_avg					- $\square_{\text {a }}$
I-TypinaSpeed					
	E-Arousal	Fast	Normal	Slow	
	Passive	20	28	. 52	
	Neutral	. 33	. 33	. 33	
	Excited	. 56	27	. 16	
QK	Cancel				

-Zeros and ones are often enough

- Order of magnitude is typical: 10^{-9} vs 10^{-6}
- Sensitivity analysis can be used to decide accuracy needed

Three kinds of reasoning

BBNs support three main kinds of reasoning:
-Predicting conditions given predispositions
"You are likely to get cancer since you are a heavy smoker"

- Diagnosing conditions given symptoms
"You're likely to have cancer given your high serum calicium level"
- Explaining a condition by predispositions
"Your cancer was probably caused by your exposure to lead"
To which we can add a fourth:
- Deciding on an action based on condition probabilities "We should remove the lung tumor which might be cancerous"

Predictive Inference

predispositions

Predictive and diagnostic combined

Explaining away

- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up
- If we then observe heavy smoking, the probability of exposure to toxics goes back down

Some software tools

- Netica: Windows app for working with Bayesian belief networks and influence diagrams
- A commercial product, free for small networks
- Includes graphical editor, compiler, inference engine, etc.
- To run in OS X or Linus you need Crossover
- Hugin: free demo versions for Linux, Mac, and Windows are available
- Various Python packages
- Aima-python code in probability4e.py

Chest Clinic

Distributed by Norsys Software CorF

Dyspnea is difficult or labored breathing

Same BBN model in Hugin app

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
-View decision making in terms of
- Beliefs/Uncertainties
- Alternatives/Decisions
- Objectives/Utilities

Decision Problem

Should I have my party inside or outside?

Value Function

A numerical score over all possible states allows a BBN to be used to make decisions

Location?	Weather?	Value
in	dry	$\$ 50$
in	wet	$\$ 60$
out	dry	$\$ 100$
out	wet	$\$ 0$

Using \$ for the value helps our intuition

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast
-Forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
-Assign utility measure to each of four situations: (rain|no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: decision and utility
- Decision node computes expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- Utility node computes utility value given its parents, e.g., a decision and weather
- Assign utility to each situations: (rain|no rain) x (umbrella, no umbrella)
- Utility value assigned to each is probably subjective
File Edit Layout Modify Table Network Cases Report Style Window Help

I 03 - Umbrella.dne

File Edit Table Window Help
远 回

File Edit Layout Modify Table Network Cases Report Style Window Help

	\leqslant	$\bigcirc \square \bigcirc$

I 03 －Umbrella．dne

File Edit Layout Modify Table Network Cases Report Style Window Help

I 03 －Umbrella．dne

I 03 －Umbrella．dne

