
Neural Networks for
Machine Learning
History and Concepts

Overview

•The neural network computing model has a
long history

•Evolved over 75 years to solve its inherent
problems, becoming the dominant model
for machine learning in the 2010s

•Neural network models typically give better
results than all earlier ML models

•But they are expensive to train and apply
•The field is still evolving rapidly

2

3

How do
animal brains
work?

Neurons have body, axon and many dendrites
•In one of two states: firing and rest
•They fire if total incoming stimulus > threshold

Synapse: thin gap between axon of one neuron
and dendrite of another

•Signal exchange

Neuron and myelinated axon, with signal flow from inputs at
dendrites to outputs at axon terminals

https://en.wikipedia.org/wiki/Neuron

McCulloch & Pitts

•First mathematical model of biological
neurons, 1943

•All Boolean operations can be implemented
by these neuron-like nodes

•Competitor to Von Neumann model for
general purpose computing device

•Origin of automata theory

Artificial neural network

• Model still used today!
• Set of nodes with inputs and outputs
• Node performs computation via an activation function
• Weighted connections between nodes
• Connectivity gives network architecture
• NN computations depend on connections, weights, and

activation function

Common Activation Functions

Choice of activation function depends on
problem and available computational power

defines the output of that node given an input

https://en.wikipedia.org/wiki/Activation_function

Rosenblatt’s perceptron (1958-60)
• Single layer network of nodes
• Real valued weights +/-
• Supervised learning using a

simple learning rule

Mark 1 perceptron computer, Cornell
Aeronautical Lab, 1960

• Essentially a linear classifier
• Widrow & Hoff (1960-62)

added better learning rule
using gradient descent

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Gradient_descent

Single Layer Perceptron

•See the full 1958 NYT article above here
•Rosenblatt: it can learn to compute functions

by learning weights on inputs from examples

https://en.wikipedia.org/wiki/Perceptron
https://www.csee.umbc.edu/courses/undergraduate/471/spring18/01/resources/MBC-Rosenblatt-Perceptron-NYT-article.jpg.pdf

Setback in mid 60s – late 70s
•Perceptrons, Minsky and Papert, 1969
•Described serious problems with

perceptron model
– Single-layer perceptrons cannot represent (learn) simple

functions that are not linearly separable, such as XOR
– Multi-layers of non-linear units may have greater power but

there is no learning rule for such nets
– Scaling problem: connection weights may grow infinitely
– First two problems overcame by latter effort in 80s, but

scaling problem persists

•Death of Rosenblatt (1964)
•AI focused on programming intelligent systems

on traditional von Neuman computers

https://en.wikipedia.org/wiki/Perceptrons_(book)

Not with a perceptron L

Consider Boolean operators (and, or, xor)
with four possible inputs: 00 01 10 11

11

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

Training examples are not linearly separable
for one case: sum=1 iff x1 xor x2

Renewed enthusiasm 1980s
•Use multi-layer perceptron
• Backpropagation for multi-layer feed forward nets,
with non-linear, differentiable node functions
– Rumelhart, Hinton, Williams, Learning representations by

back-propagating errors, Nature, 1986.
• Other ideas:

– Thermodynamic models (Hopfield net, Boltzmann
machine …)

– Unsupervised learning
•Applications to character recognition, speech

recognition, text-to-speech, etc.

https://en.wikipedia.org/wiki/Backpropagation
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

MLP:
Multilayer

Perceptron

• ≥ 1 “hidden layers” between inputs & output
• Can compute non-linear functions (why?)
• Training: adjust weights slightly to reduce error

between output y and target value t; repeat
• Introduced in 1980s, still used today

https://en.wikipedia.org/wiki/Multilayer_perceptron

14

15

Backpropagation Explained

Click on image (or
here) for a simple
interactive demo in
your browser of how
backpropagation
updates weights in a
neural network to
reduce errors when
processing training
data

https://www.csee.umbc.edu/courses/undergraduate/471/spring21/02/resources/backprop_explained_scroll.html
https://en.wikipedia.org/wiki/Backpropagation

But problems remained …
•It’s often the case that solving a problem

just reveals a new one that needs solving
•For a large MLPs, backpropagation takes

forever to converge!
•Two issues:

– Not enough compute power to train the model
– Not enough labeled data to train the neural net

•SVMs dominate, since they converge to
global optimum in O(n^2)

17

GPUs solve compute
power problem
•GPUs (Graphical Processing

Units) became popular in
the 1990s to handle computing needed for better
computer graphics

•GPUs are SIMD (single instruction, multiple data)
processors

•Cheap, fast, and easy to program
•GPUs can do matrix multiplication vary fast

18

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/SIMD

Need lots of data!

•2000s introduced big
data

•Cheaper storage
•Parallel processing

(e.g., MapReduce, Hadoop, Spark)
•Data sharing via the Web

– Lots of images, many with captions
– Lots of text, some with labels

•Crowdsourcing systems (e.g., Mechanical
Turk) provided a way to get more labels 19

https://en.wikipedia.org/wiki/Amazon_Mechanical_Turk

New problems are surfaced

• 2010s was a decade of domain applications
• These came with new problems, e.g.,

– Images are too high dimensional!
– Variable-length problems cause gradient problems
– Training data is rarely labeled
– Neural nets are uninterpretable
– Training complex models required days or weeks

• This led to many new “deep learning” neural
network models

20

Deep Learning
•Deep learning refers to models going beyond

simple feed-forward multi-level perceptron
– Though it was used in a ML context as early as 1986

• “deep” refers to the models having many
layers (e.g., 10-20) that do different things

21The VGG16 CNN model for image processing

https://en.wikipedia.org/wiki/Deep_learning
https://neurohive.io/en/popular-networks/vgg16/

Neural Network Architectures
Current focus on large networks with
different “architectures” suited for different
kinds of tasks
•Feedforward Neural Network
•CNN: Convolutional Neural Network
•RNN: Recurrent Neural Network
•LSTM: Long Short Term Memory
•GAN: Generative Adversarial Network
•Transformers: generating output sequence

from input sequence

•Connections allowed from a node in layer i
only to nodes in layer i+1
i.e., no cycles or loops

•Simple, widely used architecture, provides a
good baseline

downstream nodes
tend to successively
abstract features from
preceding layers

Feedforward Neural Network

https://en.wikipedia.org/wiki/Feedforward_neural_network

HTTP://PLAYGROUND.TENSORFLOW.ORG/

http://playground.tensorflow.org/

CNN: Convolutional Neural Network

• Good for 2D image processing: classification, object
recognition, automobile lane tracking, etc.

• Successive convolution layers learn higher-level features
• Classic demo: learn to recognize hand-written digits from

MNIST data with 70K examples

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/MNIST_database

RNN: Recurrent Neural Networks
• Good for learning over sequences of data,

e.g., a sentence of words
• LSTM (Long Short Term Memory) a popular

architecture

gif from Adam Geitgey

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

GAN: Generative Adversarial Network

•System of two neural networks competing
against each other in a zero-sum game
framework

•Provides a kind of unsupervised learning that
improves the network

•Introduced by Ian Goodfellow et al. in 2014
•Can learn to draw samples from a model that

is similar to data that we give them

27

https://en.wikipedia.org/wiki/Generative_adversarial_network

Transformer

• Introduced in 2017
• Used primarily for natural language

processing tasks
• NLP applications ”transform” an

input text into an output text
– E.g., translation, text summarization,

question answering

• Uses encoder-decoder architecture
• Popular pretrainted models available,

e.g. BERT and GPT

28

https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/BERT_(language_model)
https://en.wikipedia.org/wiki/GPT-3

Deep Learning Frameworks (1)
•Popular open-source deep learning frame-

works use Python at top-level; C++ in backend
– TensorFlow (via Google)
– PyTorch (via Facebook)
– MxNet (Apache)
– Caffe (Berkeley)

•TensorFlow and PyTorch now dominate; both
make it easy to specify a complicated network

https://www.tensorflow.org/
https://pytorch.org/
https://en.wikipedia.org/wiki/Apache_MXNet
https://en.wikipedia.org/wiki/Caffe_(software)

Deep Learning Frameworks (2)
See this article for a good comparison

PyTorch vs TensorFlow for Your Python Deep Learning Project

https://realpython.com/pytorch-vs-tensorflow/

Deep Learning Frameworks (3)
•Keras: popular API works with TensorFlow 2.0,

provides good support at architecture level

https://keras.io/

Keras
•“Deep learning for humans”
•A popular API works with TensorFlow 2.0,

provides good support at architecture level
•Keras now (v2.4) only supports TensorFLow
•Supports CNNs and RNNs and common

utility layers like dropout, batch
normalization and pooling

•Coding neural networks used to be a LOT
harder; Keras makes it easy and accessible!

•Documentation: https://keras.io/
32

https://en.wikipedia.org/wiki/Keras
https://keras.io/

Keras: API works with TensorFlow 2.0

https://keras.io/

NNs Good at Transfer Learning

•Neural networks effective for transfer learning
Using parts of a model trained on a task as an initial
model to train on a different task

•Particularly effective for image recognition

34

https://en.wikipedia.org/wiki/Transfer_learning

Good at Transfer Learning
•For images, the initial stages of a model learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

35source:http://ruder.io/transfer-learning/

http://ruder.io/transfer-learning/

Fine Tuning a NN Model

•Special kind of transfer learning
– Start with a pre-trained model
– Replace last output layer with a new one
– Fix all but last layer by marking as trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task to classify pix of 10 common

pets
36

Conclusions

•Quick intro to neural networks & deep learning
•Learn more by

– Take UMBC’s CMSC 478 machine learning class
– Try scikit-learn’s neural network models
– Explore Keras as : https://keras.io/
– Explore Google’s Machine Learning Crash Course
– Work through examples

•and then try your own project idea

https://catalog.umbc.edu/preview_course_nopop.php?catoid=15&coid=44919
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://keras.io/
https://developers.google.com/machine-learning/crash-course/

