
Logical
Inference 1
introduction

Chapter 9
Some material adopted from notes by Andreas

Geyer-Schulz,, Chuck Dyer, and Mary Getoor

9.4.1

Overview
• A: Model checking for propositional logic
• Rule based reasoning in first-order logic

– Inference rules and generalized modes ponens
– Forward chaining
– Backward chaining

• Resolution-based reasoning in first-order logic
– Clausal form
– Unification
– Resolution as search

•Inference wrap up

From Satisfiability to Proof

•To see if a satisfiable KB entails sentence S,
see if KB Ù ¬S is satisfiable
– If it is not, then the KB entails S
– If it is, then the KB does not entail S
– This is a refutation proof

•Consider the KB with (P, P=>Q, ~P=>R)
– Does the KB it entail Q? R?

Does the KB entail Q? KB
P
P=>Q
~P=>R

P ~P v Q P v R
P P=>Q ~P => R

~Q
~Q

Q

An empty clause represents a
contradiction

We assume that every sentence in the KB is true. Adding ~Q to the
KB yields a contradiction, so ~Q must be false, so Q must be true.

Does the KB entail R? KB
P
P=>Q
~P=>R

P ~P v Q P v R
P P=>Q ~P => R

~R
~R

Q PQ v R

Q
Adding ~R to KB does not produce a contradiction after drawing all
possible conclusions, so it could be False, so KB doesn’t entail R.

Propositional logic model checking

•Given KB, does a sentence S hold?
– All the variables in S must be in the KB
– A candidate model is just an assignment of T|F to

every variable in the KB

•Basically generate and test:
–Consider candidate models M for the KB
–If "M S is true, then S is provably true
–If "M ¬S, then S is provably false
–Otherwise ($M1 S Ù $M2 ¬S): S is satisfiable

but neither provably true or provably false

Efficient PL model checking (1)
Davis-Putnam algorithm (DPLL) is generate-and-
test model checking with several optimizations:
– Early termination: short-circuiting of disjunction or

conjunction sentences
– Pure symbol heuristic: symbols appearing only negated

or un-negated must be FALSE/TRUE respectively
e.g., in [(AÚ¬B), (¬BÚ¬C), (CÚA)] A & B are pure, C impure.
Make pure symbol literal true: if there’s a model for S,
making pure symbol true is also a model

– Unit clause heuristic: Symbols in a clause by itself can
immediately be set to TRUE or FALSE

http://en.wikipedia.org/wiki/Davis%E2%80%93Putnam_algorithm
http://en.wikipedia.org/wiki/Trial_and_error
http://en.wikipedia.org/wiki/Short-circuit_evaluation

Using the AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>

expr parses a string, and
returns a logical expression

dpll_satisfiable returns a
model if satisfiable else False

The KB entails Q but does not
entail R

Efficient PL model checking (2)
•WalkSAT: a local search for satisfiability: Pick a

symbol to flip (toggle TRUE/FALSE), either using
min-conflicts or choosing randomly

•…or use any local or global search algorithm
•Many model checking algorithms & systems:
– E.g.: MiniSat: minimalistic, open-source SAT solver

developed to help researchers & developers use SAT”
– E.g.: International SAT Competition (2002…2020):

identify new challenging benchmarks to promote
new solvers for Boolean SAT”

http://en.wikipedia.org/wiki/WalkSAT
http://minisat.se/
http://www.satcompetition.org/

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses
[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))
>>> kb1.clauses
[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False
>>> kb1.tell(expr('P'))
>>> kb1.clauses
[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))
{}
>>> kb1.retract(expr('P'))
>>> kb1.clauses
[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

After adding P the KB does
entail Q

Retracting P removes it and
the KB no longer entails Q

Fin
11

