

Some material adopted from notes
by Charles R. Dyer, University of
Wisconsin-Madison

Today's topics

- Goal-based agents
- Representing states and actions
- Example problems
- Generic state-space search algorithm
- Specific algorithms
- Breadth-first search
- Depth-first search
- Uniform cost search
- Depth-first iterative deepening
- Example problems revisited

Big Idea

Allen Newell and Herb Simon developed the problem space principle as an Al approach in the late 60s/early 70s
"The rational activity in which people engage to solve a problem can be described in terms of (1) a set of states of knowledge, (2) operators for changing one state into another, (3) constraints on applying operators and (4) control knowledge for deciding which operator to apply next."

Newell A \& Simon H A. Human problem solving. Englewood Cliffs, NJ: Prentice-Hall. 1972.

Example: 8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3×3 board, move the tiles to produce a desired goal configuration

Start State

Goal State

- Popularized, but not invented, by Sam Loyd
- He offered $\$ 1000$ to all who could solve it in 1896
- He sold many puzzles
- Its states form two disjoint spaces
-There was no path to solution from initial state!

Simpler: 3-Puzzle

Building goal-based agents

We must answer the following questions
-How do we represent the state of the "world"?
-What is the goal and how can we recognize it?
-What are the possible actions?
-What relevant information do we encoded to describe states, actions and their effects and thereby solve the problem?

5	4	
	4	8
7	3	2
7	3	2

initial state

1	2	3
8		4
7	6	5
goal state		

Representing states

- State of an 8-puzzle?

5	4	
6	1	8
7	3	2
7		

Representing states

- State of an 8-puzzle?
- A 3×3 array of integer in $\{0 . .8\}$

- No integer appears twice
- O represents the empty space
- In Python, we might implement this using a nine-character string: "540681732"
- And write functions to male the 2D coordinates to an index

What's the goal to be achieved?

- Describe situation we want to achieve, a set of properties that we want to hold, etc.
- Defining a goal test function that when applied to a state returns True or False
- For our problem:
def isGoal(state):
return state == "123405678"

What are the actions?

- Primitive actions for changing the state In a deterministic world: no uncertainty in an action's effects (simple model)
- Given action and description of current world state, action completely specifies
- Whether action can be applied to the current world (i.e., is it applicable and legal?) and
- What state results after action is performed in the current world (i.e., no need for history information to compute the next state)

Representing actions

- Actions ideally considered as discrete events that occur at an instant of time
- Example, in a planning context
- If state:inClass and perform action:goHome, then next state is state:atHome
- There's no time where you're neither in class nor at home (i.e., in the state of "going home")

Representing actions

- Actions for 8-puzzle?

5	4	
6	1	8
7	3	2
7		

Representing actions

- Actions for 8-puzzle?

5	4	
6	1	8
7	3	2

- Number of actions/operators depends on the representation used in describing a state
- Specify 4 possible moves for each of the 8 tiles, resulting in a total of $4 * 8=32$ actions
- Or, Specify four moves for "blank" square and we only need 4 actions
- Representational shift can simplify a problem!

Representing states

- Size of a problem usually described in terms of possible number of states
- Tic-Tac-Toe has about 3^{9} states $\left(19,683 \approx 2 * 10^{4}\right)$
- Checkers has about 10^{40} states
- Rubik's Cube has about 10^{19} states
- Chess has about 10^{120} states in a typical game
- Go has 2*10 ${ }^{170}$
- State space size \approx solution difficulty

Representing states

- Our estimates were loose upper bounds
- How many possible, legal states does tic-tac-toe really have?
- Simple upper bound: nine board cells, each of which can be empty, O or X , so 3^{9}
- Only 593 states after eliminating
- impossible states $\stackrel{x|x|}{\mp}$
- Rotations and reflections

Can a Problem space be infinite?

Yes, examples include theorem proving and this simple example from Knuth (1964)

- Starting with the number 4 , a sequence of square root, floor, and factorial operations can reach any desired positive integer
- To get to 5 from 4, do

$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{(4)!}}}}}=5 \text {. }
$$

- floor(sqrt (sqrt (sqrt (sqrt (sqrt (fact (fact 4)))))))

Are they infinitely hard to solve?

- No
- But you must be more careful in searching a space that may be infinite
- Some approaches (e.g. breadth first search) may be better than others (e.g., depth first search)

Some example problems

- Toy problems and micro-worlds
-8-Puzzle
- Missionaries and Cannibals
-Cryptarithmetic
- Remove 5 Sticks
- Water Jug Problem
- Real-world problems

The 8-Queens Puzzle

Place eight queens on a chessboard such that no queen attacks any other

We can generalize the problem to a NxN chessboard

What are the states, goal test, actions?

Route Planning

Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text

Remove 5 Sticks

Given this configuration of sticks, remove exactly five sticks so that the remaining ones form exactly three squares

Other tasks:

- Remove 4 sticks and leave 4 squares
- Remove 3 sticks and leave 4 squares
- Remove 4 sticks and leave 3 squares

Water Jug Problem

- Two jugs J1 \& J2 with capacity C1 \& C2
- Initially J1 has W1 water and J2 has W2 water - e.g.: full 5 gallon jug and empty 2 gallon jug
- Possible actions:
- Pour from jug X to jug Y until X empty or Y full - Empty jug X onto the floor
- Goal: J1 has G1 water and J2 G2
- G1 or G2 can be -1 to represent any amount
- E.g.: initially full jugs with capacities 3 and 1 liters, goal is to have 1 liter in each

So...

- How can we represent the states?
- What's an initial state; how to recognize a goal state
- What are the actions; how can we tell which can be done in a given state; what's the resulting state
- How do we search for a solution from an initial state any goal state
- What is a solution, e.g.:
- The goal state achieved, or
- The path (i.e., sequence of actions) taking us from the initial state to a goal state?

Search in a state space

- Basic idea:
-Create representation of initial state
-Try all possible actions \& connect states that result
-Recursively apply process to the new states until we find a solution or dead ends
- We need to keep track of the connections between states and might use a
- Tree data structure or
-Graph data structure
- A graph structure is best in general...

Search in a state space

Consider a water jug problem with a 3 -liter and 1 -liter jug, an initial state of $(3,1)$ and a goal stage of $(1,1)$

Tree model of space
Graph model of space

graph model avoids redundancy and loops and is usually preferred

Formalizing state space search

- A state space is a graph (V, E) where V is a set of nodes and E is a set of arcs, and each arc is directed from a node to another node
- Nodes: data structures with state description and other info, e.g., node's parent, name of action that generated it from parent, etc.
- Arcs: instances of actions, head is a state, tail is the state that results from action, label on arc is action's name or id

Formalizing search in a state space

- Each arc has fixed, positive cost associated with it corresponding to the action cost
- Simple case: all costs are 1
- Each node has a set of successor nodes corresponding to all legal actions that can be applied at node's state
- Expanding a node = generating its successor nodes and adding them and their associated arcs to the graph
- One or more nodes are marked as start nodes
- A goal test predicate is applied to a state to determine if its associated node is a goal node

Example: Water Jug Problem

- Two jugs J1 and J2 with capacity C1 and C2
- Initially J1 has W1 water and J2 has W2 water
- e.g.: a full 5-gallon jug and an empty 2-gallon jug
- Possible actions:
- Pour from jug X to jug Y until X empty or Y full
- Empty jug X onto the floor
- Goal: J1 has G1 water and J2 G2
- G1 or G0 can be -1 to represent any amount

Example: Water Jug Problem

Given full 5-gal. jug and empty 2-gal. jug, fill 2gal jug with one gallon

- State representation?
-General state?
-Initial state?
-Goal state?
- Possible actions?
-Condition?
-Resulting state?

Action table

Name	Cond.	Transition	Effect

Example: Water Jug Problem

Given full 5-gal. jug and empty 2-gal. jug, fill 2-gal jug with one gallon
-State $=(x, y)$, where x is water in jug 1 ; y is water in jug 2
-Initial State $=(5,0)$

- Goal State $=(-1,1)$, where -1 means any amount

Action table

Name	Cond.	Transition	Effect
dump1	$\mathrm{x}>0$	$(\mathrm{x}, \mathrm{y}) \rightarrow(0, \mathrm{y})$	Empty Jug 1
dump2	$\mathrm{y}>0$	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, 0)$	Empty Jug 2
pour_1_2	 $\mathrm{y}<\mathrm{C} 2$	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-\mathrm{D}, \mathrm{y}+\mathrm{D})$ $D=\min (x, C 2-y)$	Pour from Jug 1 to Jug 2
pour_2_1	$\mathrm{y}>0 \&$ $\mathrm{X}<\mathrm{C} 1$	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+\mathrm{D}, \mathrm{y}-\mathrm{D})$ $D=\min (y, C 1-x)$	Pour from Jug 2 to Jug 1

Formalizing search

- Solution: sequence of actions associated with a path from a start node to a goal node
- Solution cost: sum of the arc costs on the solution path
- If all arcs have same (unit) cost, then solution cost is length of solution (number of steps)
- Algorithms generally require that arc costs cannot be negative (why?)

Formalizing search

- State-space search: searching through state space for solution by making explicit a portion of an implicit state-space graph to find a goal node
- Can't materializing whole space for large problems
- Initially V=\{S\}, where S is the start node, $\mathrm{E}=\{ \}$
- On expanding S, its successor nodes are generated and added to V and associated arcs added to E
- Process continues until a goal node is found
- Nodes represent a partial solution path (+ cost of partial solution path) from S to the node
- From a node there may be many possible paths (and thus solutions) with this partial path as a prefix

State-space search algorithm

;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure
function general-search (problem, QUEUEING-FUNCTION) nodes = MAKE-QUEUE (MAKE-NODE (problem.INITIAL-STATE))
loop
if EMPTY(nodes) then return "failure"
node $=$ REMOVE-FRONT (nodes)
if problem.GOAL-TEST (node.STATE) succeeds then return node
nodes = QUEUEING-FUNCTION (nodes, EXPAND (node, problem. OPERATORS))
end
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops

Key procedures to be defined

- EXPAND
- Generate a node's successor nodes, adding them to the graph if not already there
- GOAL-TEST
- Test if state satisfies all goal conditions
- QUEUEING-FUNCTION
- Maintain ranked list of nodes that are candidates for expansion
- Changing definition of the QUEUEING-FUNCTION leads to different search strategies: Which node to expand next

Bookkeeping

Typical node data structure includes:

- State at this node
- Parent node(s)
- Action(s) applied to get to this node
- Depth of this node (\# of actions on shortest known path from initial state)
- Cost of path (sum of action costs on best path from initialstate)

Some issues

- Search process constructs a search tree/graph, where -root is initial state and
- leaf nodes are nodes
- not yet expanded (i.e., in list "nodes") or
- having no successors (i.e., they're deadends because no operators were applicable and yet they are not goals)
- Search tree may be infinite due to loops; even graph may be infinite for some problems
- Solution is a path or a node, depending on problem.
-E.g., in cryptarithmetic return a node; in 8-puzzle, a path
- Changing definition of the QUEUEING-FUNCTION leads to different search strategies

Informed vs. uninformed search

Uninformed search strategies (blind search)
-Use no information about likely direction of a goal
-Methods: breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional

Informed search strategies (heuristic search)
-Use information about domain to (try to) (usually) head in the general direction of goal node(s)
-Methods: hill climbing, best-first, greedy search, beam search, algorithm A, algorithm A^{*}

Evaluating search strategies

- Completeness
- Guarantees finding a solution whenever one exists
- Time complexity (worst or average case)
- Usually measured by number of nodes expanded
- Space complexity
- Usually measured by maximum size of graph/tree during the search
- Optimality (aka Admissibility)
- If a solution is found, is it guaranteed to be an optimal one, i.e., one with minimum cost

Classic uninformed search methods

- The four classic uninformed search methods
- Breadth first search (BFS)
- Depth first search (DFS)
- Uniform cost search (generalization of BFS)
- Iterative deepening (blend of DFS and BFS)
- To which we can add another technique
-Bi-directional search (hack on BFS)

Example of uninformed search strategies

Consider this search space where S is the start node, G is the goal, and numbers are arc costs assume graph is not known in advance

Breadth-First Search

Expanded node

	$\left\{S^{0}\right\}$
S^{0}	$\left\{A^{3} B^{1} C^{8}\right\}$
A^{3}	$\left\{B^{1} C^{8} D^{6} E^{10} G^{18}\right\}$
B^{1}	$\left\{C^{8} D^{6} E^{10} G^{18} G^{21}\right\}$
C^{8}	$\left\{D^{6} E^{10} G^{18} G^{21} G^{13}\right\}$
D^{6}	$\left\{E^{10} G^{18} G^{21} G^{13}\right\}$
E^{10}	$\left\{G^{18} G^{21} G^{13}\right\}$
G^{18}	$\left\{G^{21} G^{13}\right\}$

Nodes list (aka Fringe)

\{ S^{0} \}
$\left\{A^{3} B^{1} C^{8}\right\}$
$\left\{B^{1} C^{8} D^{6} E^{10} G^{18}\right\}$
$\left\{C^{8} D^{6} E^{10} G^{18} G^{21}\right\}$
$\left\{D^{6} \mathrm{E}^{10} \mathrm{G}^{18} \mathrm{G}^{21} \mathrm{G}^{13}\right\}$
$\left\{\mathrm{E}^{10} \mathrm{G}^{18} \mathrm{G}^{21} \mathrm{G}^{13}\right\}$
$\left\{\mathrm{G}^{18} \mathrm{G}^{21} \mathrm{G}^{13}\right\}$
$\left\{G^{21} G^{13}\right.$ \}

FIFO (queue)

Notation

G is node; 18 is cost of shortest known path from S

- Typically don't check if node is goal until we expand it (why?)
- Solution path found is S A G , cost 18
- \# nodes expanded (including goal node) = 7

Breadth-First Search (BFS)

- Long time to find solutions with many steps: we must look at all shorter length possibilities first
- Complete tree of depth d where nodes have b children has $1+b+b^{2}+\ldots+b^{d}=\left(b^{(d+1)}-1\right) /(b-1)$ nodes $=\mathbf{0}\left(b^{d}\right)$
- Tree with depth 12 \& branching $10>$ trillion nodes
- If BFS expands 1000 nodes $/ \mathrm{sec}$ and nodes uses 100 bytes, can take 35 years \& uses 111 TB of memory!
+ Always finds solution if one exists
+ Solution found is optimal

Breadth-First Search

- Enqueue nodes in FIFO (first-in, first-out) order
- Complete
- Optimal (i.e., admissible) finds shorted path, which is optimal if all operators have same cost
- Exponential time and space complexity, $O\left(b^{d}\right)$, where d is depth of solution; b is branching factor (i.e., \# of children)
- Long time to find long solutions since we explore all shorter length possibilities first

Depth-First Search

Expanded node
S^{0}
A^{3}
D^{6}
E^{10}
G^{18}

Nodes list (aka fringe) \{ S^{0} \}
$\left\{A^{3} B^{1} C^{8}\right\}$ $\left\{D^{6} E^{10} G^{18} B^{1} C^{8}\right\}$
$\left\{\mathrm{E}^{10} \mathrm{G}^{18} \mathrm{~B}^{1} \mathrm{C}^{8}\right\}$
$\left\{G^{18} B^{1} C^{8}\right\}$
$\left\{B^{1} C^{8}\right\}$

Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) $=5$

Depth-First (DFS)

- Enqueue nodes on nodes in LIFO (last-in, first-out) order, i.e., use stack data structure to order nodes
- May not terminate w/o depth bound, i.e., ending search below fixed depth D (depth-limited search)
- Not complete (with or w/o cycle detection, with or w/o a cutoff depth)
- Exponential time, $O\left(b^{d}\right)$, but linear space, $O(b d)$
- Can find long solutions quickly if lucky (and short solutions slowly if unlucky!)
- On reaching deadend, can only back up one level at a time even if problem occurs because of a bad choice at top of tree

Uniform-Cost Search (UCS)

- Enqueue nodes by path cost. i.e., let $\mathrm{g}(\mathrm{n})=$ cost of path from start to current node n. Sort nodes by increasing value of $\mathrm{g}(\mathrm{n})$.
- Aka Dijkstra's Algorithm and similar to Branch and Bound Algorithm from operations research
- Complete (*)
- Optimal/Admissible (*)

Depends on goal test being applied when node is removed from nodes list, not when its parent node is expanded \& node first generated

- Exponential time and space complexity, $O\left(b^{d}\right)$

Uniform-Cost Search

Expanded node Nodes list

	$\left\{S^{0}\right\}$
S^{0}	$\left\{B^{1} A^{3} C^{8}\right\}$
B^{1}	$\left\{A^{3} C^{8} G^{21}\right\}$
A^{3}	$\left\{D^{6} C^{8} E^{10} G^{18} G^{21}\right\}$
D^{6}	$\left\{C^{8} E^{10} G^{18} G^{21}\right\}$
C^{8}	$\left\{E^{10} G^{13} G^{18} G^{21}\right\}$
E^{10}	$\left\{G^{13} G^{18} G^{21}\right\}$
G^{13}	$\left\{G^{18} G^{21}\right\}$

Solution path found is SC G, cost 13
Number of nodes expanded (including goal node) $=7$

Depth-First Iterative Deepening (DFID)

- Do DFS to depth 0 , then (if no solution) DFS to depth 1, etc.
- Often used with a tree search
- Complete
- Optimal/Admissible if all operators have unit cost, else finds shortest solution (like BFS)
- Time complexity a bit worse than BFS or DFS Nodes near top of search tree generated many times, but since almost all nodes are near tree bottom, worst case time complexity still exponential, $\mathrm{O}\left(\mathrm{b}^{\mathrm{d}}\right)$

Depth-First Iterative Deepening (DFID)

- If branching factor is b and solution is at depth d, then nodes at depth d are generated once, nodes at depth d -1 are generated twice, etc. - Hence $b^{d}+2 b^{(d-1)}+\ldots+d b<=b^{d} /(1-1 / b)^{2}=O\left(b^{d}\right)$.
-If $b=4$, worst case is 1.78 * $4^{\text {d }}$, i.e., 78% more nodes searched than exist at depth d (in worst case)
- Linear space complexity, O(bd), like DFS
- Has advantages of BFS (completeness) and DFS (i.e., limited space, finds longer paths quickly)
- Preferred for large state spaces where solution depth is unknown

How they perform

- Depth-First Search:

- 4 Expanded nodes: SA DE G
- Solution found: SA G (cost 18)
- Breadth-First Search:
- 7 Expanded nodes: SA BC DE G
- Solution found: SA G (cost 18)
- Uniform-Cost Search:
- 7 Expanded nodes: SA D BC EG
- Solution found: SC G (cost 13)

Only uninformed search that worries about costs

- Iterative-Deepening Search:
- 10 nodes expanded: S SA BC SA DE G
- Solution found: SA G (cost 18)

Searching Backward from Goal

- Usually a successor function is reversible
- i.e., can generate a node's predecessors in graph
- If we know a single goal (rather than a goal's properties), we could search backward to the initial state
- It might be more efficient
- Depends on whether the graph fans in or out

Bi-directional search

- Alternate searching from the start state toward the goal and from the goal state toward the start
- Stop when the frontiers intersect
- Works well only when there are unique start \& goal states
- Requires ability to generate "predecessor" states
- Can (sometimes) lead to finding a solution more quickly

Comparing Search Strategies

Criterion	Bieadth- First	Uniform- Cost	Depth- First	Depth- Litnited	Itetative Deepening	Bidirectional (if applicable)
Time	b^{d}	b^{d}	b^{m}	b^{l}	b^{d}	$b^{d / 2}$
Space	b^{d}	b^{d}	$b m$	$b l$	$b d$	$b^{d / 2}$
Optimal?	Yes	Yes	No	No	Yes	Yes
Complete?	Yes	Yes	N 0	Yes, if $l \geq d$	Yes	Yes

Summary

- Search in a problem space is at the heart of many Al systems
- Formalizing the search in terms of states, actions, and goals is key
- The simple "uninformed" algorithms we examined can be augmented to heuristics to improve them in various ways
- But for some problems, a simple algorithm is best

