
Can AI Planners Solve Practical Problems?

by

David E. Wilkins

Arti�cial Intelligence Center

SRI International

333 Ravenswood Ave.

Menlo Park, California 94025

415-859-2057

May 21,1990

for publication in the Computational Intelligence Journal

Abstract

While there has been recent interest in research on planning and reasoning about actions,

nearly all research results have been theoretical. We know of no previous examples of a

planning system that has made a signi�cant impact on a problem of practical importance.

One of the primary goals during the development of the SIPE-2 planning system has been

the balancing of e�ciency with expressiveness and
exibility. With a major new extension,

SIPE-2 has begun to address practical problems. This paper describes this new extension and

the new applications of the planner. One of these applications is the problem of producing

products from raw materials on process lines under production and resource constraints. This

is a problem of commercial importance and SIPE-2's application to it is described in some

detail.1

Key words: planning, reasoning about actions, knowledge representation, manufacturing

1The writing of this paper and the research described within was supported by the Australian Department

of Industry, Technology and Commerce under Grant Agreement 16007, the Australian Arti�cial Intelligence

Institute, and SRI International. Research performed at the Department of Civil Engineering, Stanford

University, is also mentioned.

1 The Current State of Planning

There has been great interest in research on planning and reasoning about actions in recent

years. In this paper, planning is de�ned as generating sequences of actions that will achieve

given goals in a domain complex enough that the appropriateness and consequences of the

actions depend upon the world states in which they are to be executed. This is a creative,

synthetic process, not merely a matter of �lling in certain slots with correct values. In

particular, the planning system must keep track of and reason about di�ering world states

at di�erent points in time. This feature distinguishes the planning problem from similar

problems such as scheduling, and makes planning inherently di�cult as it involves the solution

of several exponential problems [Wil88]. Faced with this overwhelming complexity, practical

planning systems must balance epistemological and heuristic adequacy, retaining as much

expressive power as is practical, yet making enough restricting assumptions so that a viable,

e�cient implementation can still be realized.

Many scheduling problems, for example, require constraints to be satis�ed so that sched-

ules can be correctly met, but do not require that the system reason about how the world

changes as scheduled events occur. If the set of actions that must be performed, i.e., the

process network, is known beforehand then it is a scheduling problem to assign resources and

times to these actions. On the other hand, if the set of actions must be generated based on

the current situation and the current goals, then the problem solution also involves planning.

Other features of a problem can change it from a scheduling problem to a planning problem.

For example, if some subset of the constraints in a scheduling problem will change depending

on how another subset is satis�ed, e.g., if the constraints on the afternoon's schedule will

change depending on how the constraints on the morning's schedule were satis�ed, then such

a scheduling problem becomes a planning problem.

Scheduling problems are generally exponential and are certainly important, but they are

simpler than problems that also require reasoning about the e�ects of actions on the world

state. Most non-AI software used for \planning," such as CPM and PERT tools, cannot

reason about the e�ects of actions and is suitable for a much simpler problem than the

planning problem; often, such software merely o�ers bookkeeping facilities for a plan that

has been generated by humans. Linear programming and operations research techniques often

cannot express certain important constraints, cannot revise plans as they do not represent

the causal relationships between activities, and require several hours of computation (see

Section 7). Of course, these techniques can guarantee optimality while AI planners generally

do not. Finally, ISIS [FS84] is an example of an AI system that can solve practical constraint-

satisfaction problems but cannot reason about the di�erent world states that occur after

actions are executed.

1

As problem domains become increasingly complex, the ability to plan becomes more

important. This is shown by the aforementioned example of the constraints on the afternoon's

schedule changing. Similarly, if a system is to modify an existing plan or schedule in response

to unexpected occurrences during execution, then reasoning about the e�ects of actions and

the causal relationships between actions becomes necessary to determine which subplans

remain valid or are amenable to modi�cation. In most real-world situations, unexpected

occurrences are the norm during operations, and it is important to modify plans quickly in

response to these occurrences.

Despite recent AI work in planning, nearly all research results have been theoretical. Many

researchers are solving problems involved in using logical formalisms to reason about actions

[All83, McC80, McD82, Sho87], but almost none of this work has resulted in an implemented

system. Most implemented AI planning systems have been either too ine�cient to tackle

real problems, e.g., FORBIN [DFM88] and TWEAK [Cha87], or not expressive enough,

e.g., NONLIN [Tat76] and NOAH [Sac77]. GEMPLAN [Lan88] is another implemented

planner that has not yet been applied to a practical problem; however, its method of localized

reasoning may prove useful on certain types of problems. We know of no previous examples of

a planning system that has made a signi�cant impact on a problem of commercial importance.

This paper discusses an application of the SIPE-2 (System for Interactive Planning and

Execution) planning system to a practical problem, and mentions results of applications in

other domains. SIPE-2 is based on SRI International's original SIPE system, and includes

all its features [Wil88]. SIPE-2 includes numerous improvements on SIPE, but the primary

addition is the ability to reason about arbitrary orderings of actions. This has resulted in

redesigning and reimplementing nearly every important algorithm in the system.

This paper summarizes SIPE-2 and describes di�erences between SIPE and SIPE-2 that

are crucial in the construction and manufacturing domains. This is followed by a detailed

description of a manufacturing problem and SIPE-2's application to this problem. Finally,

there is an analysis of system performance on this and other problems, and a comparison of

this approach to other approaches, both AI and non-AI (e.g., operations research).

2 Application of SIPE-2 to Practical Problems

Faced with the overwhelming complexity of planning, SIPE-2 has attempted to balance epis-

temological and heuristic adequacy. It retains enough expressive power to be useful, yet

makes enough restricting assumptions to produce a viable, e�cient implementation. It is

implemented in Symbolics CommonLisp and runs on machines supporting Symbolics Gen-

2

era software.2 Unlike most AI planning research, the design of SIPE-2 has taken heuristic

adequacy as one of its primary goals.

SIPE-2 provides a domain-independent formalism for describing operators (the planner's

representation of actions), and utilizes the knowledge encoded in these operators, together

with heuristics for handling the combinatorics of the problem, to plan means to achieve

given goals in diverse problem domains. The plans include causal information so that the

system can modify these plans in response to unanticipated events during plan execution.

Unlike expert systems, AI planners are capable of generating a novel sequence of actions that

responds precisely to the situation at hand.

SIPE-2 is more advanced than most implemented AI planners, primarily because it can

reason about resources, can post and use constraints, and can employ a deductive causal

theory to represent and reason about di�erent world states. It retains much of the e�ciency

of the STRIPS assumption [FN71] while avoiding some of its disadvantages through the use

of the above mechanisms. Automatically, or under interactive control, the system generates

possibly nonlinear plans containing conditionals that will achieve the given goals when ex-

ecuted in the given initial situation. It can intermingle planning and execution, and can

accept arbitrary descriptions, in the language used to describe the domain, of unexpected

occurrences during execution and modify its plan to take these into account.

To achieve heuristic adequacy, SIPE-2 incorporates special techniques for solving a num-

ber of problems; these techniques are described in detail elsewhere [Wil88]. Some of the more

important problems for which specialized algorithms have been developed are these:

� Determination of the truth of a formula at a particular point in a plan

� Deduction of context-dependent e�ects

� Uni�cation of two variables once they have constraints on them

� Handling parallel interactions

� Detecting and resolving resource con
icts

� Searching e�ciently through the space of possible plans

Previous applications of SIPE include the blocks world, tower of hanoi, travel planning,

movement of aircraft on a carrier deck, and control of a mobile robot [Wil88]. Of those

domains, planning the actions of the mobile robot was the only problem that was reasonably

complex and realistic (see Section 6). SIPE-2 has recently been applied to two problem areas

2Currently, this includes all Symbolics machines and, with appropriate Symbolics boards, Apple MacIntosh

IIs and Sun workstations.

3

of practical importance. One is the generation of project plans for construction,3 and the

other is the scheduling of process lines in a manufacturing environment.4

A description of the construction problem can be found elsewhere [Kar89]; brie
y, the plan

generated by SIPE-2 for a three-story o�ce building is among the most complex construction

plans so far generated automatically. Although resources and time were ignored, the number

of jobs and their interrelated constraints are on a realistic scale. In Section 5, the application

of SIPE-2 in the manufacturing domain is described. This shows by example that problems

of practical importance are beginning to be addressed by this system. In Section 6, system

performance in all these problem domains is presented along with a description of the size

and complexity of each domain.

Before describing the manufacturing application, we describe the recent extensions and

enhancements to SIPE, not described previously in the literature, that enable SIPE-2 to be

e�ective in the construction and manufacturing domains. In these domains, the planner had

to generate thousands of nodes in its plans and reason with world models that contained thou-

sands of predicate instances. Because of this, several planning algorithms were made more

e�cient. Other enhancements include extended temporal reasoning, improved plan critics,

extended resource reasoning, and a vastly improved graphical interface. The most important

new component is the ability to produce arbitrary orderings of unordered actions. Section 3

describes problems posed by unordered actions and SIPE's approach to these problems, and

section 4 describes SIPE-2's approach. Section 4 also describes the speci�cation of goals as

external conditions | a new capability that is needed to take advantage of the ability to

arbitrarily order actions. The new ability to specify parallel reusable-resources is described

in Section 5.

3 Reasoning about Partially Ordered Actions

SIPE-2 has removed the restrictions SIPE previously made on possible ways to order actions.

First we summarize the problems involved in reasoning about partially ordered actions; a

planner that supports partially ordered actions is de�ned as a nonlinear planner. A plan is

partially ordered if it contains actions that are unordered with respect to each other, i.e.,

actions for which the planner has not yet determined an order and which may possibly be ex-

ecuted in parallel. If a planner has the ability to represent and reason about partially-ordered

3This application was done by Nabil Kartam, Department of Civil Engineering, Stanford University.
4This application was done by the author, with the able help of David Morley, and supported by The Aus-

tralian Arti�cial Intelligence Institute and the Australian Department of Industry, Technology and Commerce

under Grant Agreement 16007.

4

plans, it can avoid committing to a particular ordering of actions until it has accumulated in-

formation that permits determination of the correct ordering. This can avoid an exponential

search of all possible plan orderings as is typical of a linear planning system. For example, 52

actions unordered with respect to each other have as many possible orderings as the number

of ways a deck of cards can be shu�ed. This is an enormous number, and a nonlinear planner

can often avoid searching such prohibitively large search spaces.

Another advantage of nonlinear planners is that actions can remain unordered in the �nal

plan, thus permitting parallel plans to be generated; this is a necessity in many domains.

The planner must ensure that no harmful interactions occur among unordered actions. A

nonlinear planner must order actions during the planning process, but actions can often

remain unordered until such time as the planner discovers the order it wishes to impose.

For this reason, nonlinear planners are often referred to as employing the least-commitment

approach.

A planner's truth criterion is its algorithm for determining whether a formula is true

in a particular world state. From an e�ciency standpoint, the truth criterion is the heart

of the planning system as it is a primitive operation used in every planning algorithm. As

Chapman has shown [Cha87], nonlinearity makes the truth criterion NP-complete, given a

reasonably powerful representation. To ensure soundness when the truth criterion requires

that a query predicate is true, the system needs to determine all possible orderings that

would make the query true, then constrain the system to only allow these orderings. This

process is exponential, and is the underlying reason why nonlinear planners that make only

sound deductions at each step are not practically useful. Of course, the soundness of the �nal

plan should be guaranteed. As discussed below, heuristic algorithms for a nonlinear truth

criterion o�er a method for avoiding some of the combinatorics in planning.

3.1 SIPE-2's Handling of Partially Ordered Actions

SIPE-2 incorporates mechanisms and heuristics for circumventing this NP-complete problem.

The high-level description of these mechanisms in this subsection applies to SIPE as well

as SIPE-2, although di�erent implementations are needed to achieve these mechanisms in

the two systems (see Section 4). The most powerful heuristic for avoiding combinatorics is

incorporated in SIPE-2's truth criterion (TC) which does not always enforce the ordering

constraints that would ensure soundness. Thus, invalid plans may be temporarily produced.

The system relies on plan critics that check for and correct problems in these plans. These

critics are applied after each planning level, i.e., an expansion of the whole plan to a greater

level of detail, though the user can control the frequency of critic application as is appropriate

for the problem domain. One could view this as doing the work of enforcing validity every

so often instead of at every primitive step.

5

An important technique for making plan critics e�cient is distinguishing between the main

e�ects and side e�ects of an action. While plan critics guarantee the truth of main e�ects at

every point where the e�ects are needed in the plan, they ignore interactions between side

e�ects that are not used by the plan.

The TC merely proves that there is one possible ordering of the partially ordered actions

that makes the query predicate true, without enforcing that order. Proving that there is one

possible ordering is e�cient, as the ordering itself need not even be calculated, and there is

certainly no need to calculate all such orderings. Roughly, this is because the system only

needs to �nd an action that (1) achieves the query predicate, and (2) does not have an action

that negates the query predicate that necessarily follows it. This algorithm can produce

temporarily invalid plans, since di�erent calls to the truth criterion may assume di�erent

implicit orderings. Thus, the idea of de�ning conditions that make planning operators sound,

as Lifschitz attempts to do for STRIPS [Lif87], is not directly applicable | nor, in my opinion,

can it lead to an heuristically adequate, nonlinear planning system.

There are other reasons for temporarily generating invalid plans. A nonlinear planner

must reason about how actions that may take place concurrently interact with each other.

Often, two actions interfere with each other if they are executed at the same time, and

the planner must recognize and correct these situations in order to generate correct plans.

Nonlinear planning poses other problems as well. A planner must consider the possibility of

achieving a goal by adding ordering constraints instead of by planning some action. Given

a goal G, and some action A that achieves G and is unordered with respect to it, then a

planner can achieve G by ordering it after A. This may or may not be the correct choice

for producing a valid plan; in general, the correctness of such a choice cannot be predicted

without completely investigating all its consequences, which entails a combinatorial search.

If problems are detected by the critics, solvers are applied to modify the plan, possibly

adding ordering constraints to the actions. Solvers in SIPE-2 are more powerful than those

in previous classical planners, as they use the replanning actions of the system to modify

plans [Wil88], possibly removing subplans in order to make better plans. The invalid plans

temporarily produced have not been a problem in practice [Wil88], primarily because ap-

propriate heuristics and algorithms have been developed over time. The TC has proved to

be a useful compromise that provides the user with a powerful tool to produce useful plans

e�ciently.

Now that SIPE-2's approach to partially ordered actions has been summarized, the next

subsection describes the need to generate arbitrary orderings of unordered actions, and Sec-

tion 4 describes recent extensions that allow the system to do just that.

6

A

C

B

Initial State

A

C

B

Goal State

Figure 1: The Sussman Anomaly

Figure 2: SIPE-2 Plan for Two-Conjunct Sussman Anomaly

3.2 Considering All Possible Orderings

SIPE had a nonshu�ing restriction [Wil88] that made the critics and solvers simple and

e�cient. Given a set of subplans that are unordered with respect to each other, SIPE would

only order them by putting one whole subplan before or after the others. This greatly

reduced the number of possible orderings, but it could not produce all possible shu�es of the

primitive actions in the subplans. While this assumption is reasonable when planning the

actions of a single robot in an environment without other agents, it has proven too restrictive

in problems with multiple agents or conjunctive goals. As will be explained, e�ects of this

restriction appeared in the blocks world, but use of SIPE in a construction domain clearly

showed that this restriction was not acceptable.

SIPE correctly solved all the standard block-world problems involving three blocks. How-

ever, with the nonshu�ing restriction, it obtained a nonoptimal solution for the Sussman

Anomaly (shown in Figure 1) when the initial goal is given as the two unordered conjuncts

(On A B) and (On B C). (The optimal solution was produced for the three-conjunct prob-

lem where (On C Table) is given as a third goal conjunct.) In the two-conjunct case, SIPE

7

produced a plan in which B is �rst moved onto C and then moved back to the table. This

shortcoming is a direct consequence of the assumption that unordered subplans will not be

shu�ed together since �nding the optimal solution requires separating the goal of clearing

A in the (On A B) subplan from the rest of the subplan, as can be seen in the SIPE-2 plan

shown in Figure 2. With the extension which removes the nonshu�ing restriction (described

in the next section), SIPE-2 produces optimal plans for all 3-block block-world problems.

In addition to the evidence from the Sussman Anomaly, planning the construction of

buildings and structures shows the inadequacy of this nonshu�ing restriction. Consider the

problem of building a deck that is supported by four beams which are in turn supported

by four columns sunk in concrete footings. The natural hierarchical decomposition of this

problem is to plan the construction of the four beams in parallel and then lay the deck on the

beams. Constructing a beam consists of constructing its two supporting columns. Ordering

constraints must be added since two di�erent beams require the construction of the same

column. With the nonshu�ing restriction, a planner can only produce a plan that constructs

two footings, then constructs two columns, then lays a beam across those two columns, and

then proceeds to the next footing and column. This is not acceptable as the workers who

lay the concrete have to wait between the second and third footings for the carpenters to

construct columns and beams. A plan that had all footings in parallel followed by all columns

in parallel would be much preferable.

With the capability described in Section 4, SIPE-2 produces a plan with only a minimal

number of ordering constraints for this problem, as shown in Figure 3, taken from SIPE-2's

graphical interface. Plans can be considered to be a set of nodes linked to each other by

ordering links (arrows). Nodes represent actions, control information, goals, and other in-

formation required by the planner. The diamond-shaped nodes depict control information {

the S and J nodes represent split and join nodes respectively which enclose a set of parallel

branches that are initially unordered with respect to each other. The hexagonal nodes rep-

resent processes which are actions to be executed, and the square nodes represent phantoms

which will not be executed, but represent necessary information about what conditions must

be true at particular points in time.

SIPE-2 produces this plan in 3 seconds, and produces plans which involve four such decks

in one structure in less than 23 seconds. One possible ordering implicit in this plan, and

produced by a regrouping algorithm in SIPE-2, is the one shown in Figure 4 with all the

footings, columns, and beams in parallel. The regrouping algorithm groups �rst all nodes

that could be executed �rst, then all nodes that could be executed �rst after that group, and

so forth. The above regrouping algorithm happens to work well in this simple construction

domain, but the user may wish to add ordering links in a more complex fashion. How to allow

the user to specify desirable further orderings of the least-committed plan is an interesting

8

Figure 3: SIPE-2 Plan for Constructing a Deck

Figure 4: Regrouped Plan for Deck Construction

9

research issue.

4 Parallel Links Extension to SIPE

Because of the unacceptability of the nonshu�ing restriction, SIPE-2 was created to allow all

possible orderings of unordered actions. Many planning systems already have this capability,

such as GEMPLAN and TWEAK, but no such systems provide heuristic adequacy at present.

Extending SIPE required a useful, e�cient, implementation that would retain its e�cient

truth criterion while taking into account arbitrary ordering links that may exist. In this

section, we brie
y outline this implementation and mention some of the problems that had

to be solved to obtain heuristic adequacy.

The system now permits parallel links which are de�ned as successor and predecessor

links that can be placed between any two actions in a plan that are unordered with respect

to each other. Such links will be referred to as p-predecessor and p-successor links to dis-

tinguish them from successor and predecessor links that have always been part of the plan.

This is done because the plan-traversal algorithms must follow these links di�erently. These

algorithms follow links from node to node and recurse upon themselves when split-join nodes

are encountered. However, parallel links may link nodes inside a split-join to nodes outside

that split-join, thus invalidating the recursive algorithms used in SIPE.

Accommodating parallel links required the development of several complex algorithms

to add the necessary capabilities to the TC and the plan critics, as well as new routines

for displaying the plans produced. The intention of this section is not to communicate how

SIPE-2's critics or TC work in detail (the SIPE versions of these algorithms are described

elsewhere [Wil88]), but to communicate the complexity of the problem and show the types

of algorithms that must be developed to address it.

The representation of parallel links is complicated by the use of hierarchical planning

levels and SIPE-2's ability to represent alternative plans in di�erent contexts. There may

be a number of parallel links at any one node, e.g., there may be multiple p-predecessors.

However, some links may not apply to the current plan and context but rather apply to an

alternative expansion of the plan. There are also complications in copying these links down

to more detailed expansions of the plan, since some nodes may be expanded to the more

detailed level while other nodes may not be. Thus the TC and other algorithms have to

be able to calculate the lowest-level expansion of the node to which they are linked. For

e�ciency reasons, the system �lls in links at lower levels when they can be calculated, rather

than recomputing links by following higher-level links down to the lowest existing level.

10

4.1 Implementing Parallel Links

The changes to the critics and solvers were fairly straightforward. The solvers now add

ordering constraints by adding p-successor and p-predecessor links, such as the link from the

put C on Table process to the Clear C phantom in Figure 2. The critics need to determine if

two nodes are still unordered with respect to each other before checking for resource con
icts

or harmful interactions. Determining such ordering relationships becomes a basic operation

in many parts of the planner, but is a nontrivial algorithm which must check if either node

is ordered before the other. To see if node1 is ordered before node2, the system must �nd

the common split-join that includes both nodes, then attempt to follow p-predecessor and

predecessor links from one set of nodes (the nodes from node1 to the common join) into a

second set of nodes (the nodes from node2 to the common split).

Parallel links make the TCmuch more complex, although heuristic adequacy is retained by

incorporating the same heuristic of looking for one possible ordering that makes a predicate

true. This can still be done e�ciently in SIPE-2. The TC traverses the nodes in a plan

from the end of the plan to the beginning, taking into account the e�ects of each node.

The algorithm naturally recurses on itself when split-join nodes are encountered. The TC

must wait to process the e�ects of nodes with p-successor links until nodes that necessarily

come after these nodes in other branches of some enclosing split-join are processed. Since

split-joins may be nested arbitrarily deeply, this may involve popping up through several

levels of recursion for additional processing and then returning to the computation that was

suspended. Furthermore, the suspended computation cannot simply wait for its p-successor

to be processed because the TC may determine an answer on that branch before it ever

processes the p-successor node.

Another complication in the TC occurs when it is trying to determine the truth of a

predicate at a node (called the current node) inside a split-join. The TC marks all nodes

that must precede the current node by virtue of p-predecessor links, then starts traversing the

plan from the outermost join that includes the current node. This is the same TC algorithm

except that it ignores unmarked nodes.

A necessary subtask of implementing parallel links was an enhancement of the output

routines. As plans get more complex, the issue of how to present the plan so that a human

can understand it becomes important and nontrivial. For example, the least-constrained plan

in Figure 5 for �nishing a room in the construction domain is hard to express without graphics

(and this is one of the simpler construction plans). SIPE-2's graphical interface has become

essential for determining the structure of the plans now being produced. SIPE's interface had

to be extended in order to debug the other algorithms that were developed. It was necessary

to include the capability to regroup unordered actions as shown in Figure 4, since plans

11

Figure 5: SIPE-2 Plan for Finishing a Room

with parallel links can be di�cult to interpret. Figure 6 shows SIPE-2's domain-independent

graphical interface displaying part of one of the schedules produced in the manufacturing

domain; a domain-speci�c interface was also implemented for this domain.

4.2 External-Condition Goals

With the new capability provided by parallel links, the user needs new ways to specify

domain-speci�c knowledge about orderings. This was accomplished in SIPE-2 by allowing

certain goals in operators to be speci�ed as external-condition goals. Such a speci�cation

indicates that the goal is not to be achieved by planning a sequence of actions, but rather

will be achieved by actions external to this operator and \phantomized" by inserting an

ordering link. Such goals correspond to \unsupervised conditions" in the NONLIN planner

[Tat76]. External-condition goals are necessary in the construction domain: e.g., if �nishing

the walls is proceeding in parallel with electrical wiring, there must be some way to specify

that the portion of the wiring inside the walls must be �nished before the walls are completely

enclosed. This can be accomplished by having a external-condition goal of �nishing the

internal wiring placed before the goal of closing the walls in the plot of an operator which

speci�es the actions for �nishing the wall.

12

Figure 6: SIPE-2's Graphical Interface

5 Planning in Manufacturing Domains

SIPE-2 has now reached a point where it can be useful in practical problems. This is shown

by its recent application in the manufacturing domain.

In competitive markets, manufacturers must be able to recon�gure factories or reschedule

activities in response to shifts in customer demands for product and contractual obligations

covering deliveries. In addition, events that a�ect operations are continually taking place,

e.g., equipment breaking, workers not showing up. Thus a planning system that can quickly

respond to such changing situations can result in greater productivity and performance.

Mathematical modeling is appropriate for making long-range predictions about the be-

havior of a system and can help in designing a factory for maximum throughput at minimum

cost. However, operations-research techniques are not well suited to shorter term tactical

planning where it is important to have a clear understanding of the interactions between

processes and the consequences of any given course of action in qualitative terms. These

techniques cannot support replanning after unexpected occurrences as they do not represent

the causal relationships between activities in a plan/schedule. They often cannot express

13

all the constraints that actually exist in the factory. Furthermore, the combinatorics of the

problem space results in such large execution times that computer programs based on such

techniques must be run o�-line. Thus these approaches are of little help after an unexpected

occurrence invalidates the plan that has been produced by an overnight computer run. Such

unexpected occurrences often happen within the �rst hour of factory operation and generally

result in the plan being discarded.

We have used the scheduling of packaging lines at one of the world's largest breweries as a

problem domain. There are several reasons for this: it is a real problem in terms of practical

importance and numerous, complex constraints; it is a fairly typical problem in that most

manufacturing operations will have similar problems; our techniques are fairly well suited to

this problem; and, importantly, the brewery was willing to cooperate and provide access to

the necessary domain information.

The problem is typical because it is an example of producing products from raw materials

under constraints. Many manufacturers have a number of production lines that can produce

a variety of products. The production lines often have overlapping capabilities, but each line

also has its specializations. Production is often interrupted by events such as the unavailabil-

ity of some raw material, equipment malfunction, or resource shortages, and the production

planner must modify its plan in response.

The brewery packaging plant exempli�es this domain. The domain actually implemented

in SIPE-2 is described here. This problem is a simpli�cation of the actual situation at the

brewery, but it contains the important aspects of the situation. There are over 300 products

which are assembled from the raw materials of beer, cans or bottles, tops, labels, wrapping,

and cartons.5 Manpower availability is quantized into a number of work shifts which have

been planned by human long-range planners. Beer and bottles can sometimes be diverted

from one product to another, but cans, labels, and cartons cannot.

This section �rst describes the manufacturing problem that was addressed, then explains

the representation of this problem in SIPE-2, then outlines the system's generation and

modi�cation of plans, and, �nally, presents performance data.

5.1 Planning Production Lines

SIPE-2 was applied to one of the most critical parts of the production scheduling problem:

daily operations planning. Two of the most important advantages of using AI planning

technology are its ability to deal with many complex constraints, and its ability to formulate

new plans in response to changing circumstances. Both these properties are crucial to daily

5The number of products is large because di�erent states and countries require di�erent information on

the labels. Thus many products have the same beer but di�erent labels or cans.

14

operations planning, and both are weaknesses of the operations-research approaches that are

often used on similar problems.

While weekly or monthly long-range planning is also suitable for AI planning technology,

this will more easily and correctly be achieved after the basic, underlying physical constraints

have been incorporated. Thus, an automated daily-operations planner will be able to provide

input and information that can be used as the basis for higher level decisions. In summary,

the reasons for �rst addressing daily operations planning are the following:

� Daily planning involves most of the complex, physical constraints

� Fast reaction to unplanned events is important

� Automating the foundation will provide a basis for automation of higher-level planning

In addressing the daily scheduling problem, the number of shifts that management has

decided to run is accepted as an input to the system, along with the current state of orders,

inventories, equipment, and manpower. Some of the many physical constraints that have

been incorporated into the implementation are mentioned below.

The domain consists of six production lines fed from several beer tanks through beer lines.

Each beer line runs to one particular cellar and can only connect to the beer tanks in that

cellar. Production lines can therefore contend for the use of both beer tanks and beer lines.

The beer in the beer tanks has been produced more or less in accordance with a planned

fermentation cycle computed from the order backlog as it stood two weeks ago. However,

the planner must react to the current demand for products, as well as the current state of

manpower, equipment, and available beer and materials. Other considerations include the

many physical constraints on the combinations of beer, package type, and production line.

There is a cost involved in switching the type of beer that
ows through a beer line as the

line must be
ushed, resulting in the loss of a signi�cant amount of beer. For most products,

there is a backlog of orders which is subject to change. The problem is to generate plans that

meet as many of the orders as possible, while meeting all physical constraints and minimizing

waste from
ushing of lines. The system must also provide help in modifying plans when

unanticipated problems occur during their execution.

An important point to consider when judging the usefulness of SIPE-2 for this type

of planning is that the e�ort described below involved only six man-months of work. Of

this, about three man-months were spent extending the system and three man-months were

spent encoding and debugging the domain knowledge. While the implementation has certain

limitations, the scope is nevertheless broad for the amount of e�ort involved.

15

5.2 Ontological Issues

Two natural but con
icting ontologies for the representation of the problem domain presented

themselves. One is to have the planner solve goals of �lling orders. This has several disad-

vantages in the SIPE-2 framework: not all goals can be met when scheduling a particular set

of shifts, e.g., when producing a schedule for the next day; knowledge of what is best to do

next must be incorporated in the choice of goals to expand next rather than in the choice of

operators used to expand a goal; and, it is not clear how to manage the temporal aspects of

the domain.

The alternative ontology, which has been used in the implementation, is to have the

system plan to solve goals of scheduling production lines. This works very well in the SIPE-2

framework. The system is still driven by the orders that exist, as operators used to solve

scheduling goals �nd the best orders to �ll. In this ontology, the knowledge about which order

is best to �ll can be incorporated in the preconditions of the operators. Another advantage

is that time
ows forward in the plan, and a running schedule for each line corresponds

naturally to the way the brewery's human schedulers produce plans.

This ontology required the implementation of an extended notion of reusable resource

in SIPE-2. Previously, SIPE would order actions that had resource con
icts [Wil88]. For

example, when trying to drive two nails, the planner would do one before the other if only

one hammer were available. In this production-line ontology however, a resource con
ict

indicates an invalid plan as the lines must be run in parallel to get maximum throughput.

SIPE-2 now provides an additional notion of reusable resource, namely, one that must be

used in parallel. This was a straightforward extension of the system. Reusable resources

are implemented by posting Optional-Not-Same constraints between two variables that are

resources in actions that are unordered with respect to each other. To implement parallel

reusable resources, the system simply posts Not-Same constraints instead, to prevent con
icts

from occurring [Wil88].

5.3 Representation in SIPE-2

The implementation of the brewery domain uses predicates and SIPE-2's sort hierarchy to

describe all products, the current orders, the current stock levels, the materials requirements

of each product, the locations of each beer line and beer tank, the actual manpower turnout,

the actual machine availability, the actual materials availability, and other information about

the domain. The initial world state is described by 2063 predicate instances: to the best

of our knowledge, this is considerably larger than any problem previously solved by an AI

planning system. Figure 7 gives the number of predicate instances in the initial world for each

16

Size of input domain in number of predicate instances:

Instances of WAITING-ON-STOCKS: 5

Instances of STOCKS-UNAVAILABLE: 5

Instances of SEVERE-SHORTFALL: 1

Instances of SLIGHT-SHORTFALL: 1

Instances of EXCESS: 1

Instances of UNAVAILABLE: 1

Instances of CONTAINS: 10

Instances of BOTH-LINE: 3

Instances of OPERATIVE: 7

Instances of LEVEL: 35

Instances of APPROPRIATE-LINE: 263

Instances of IS-STOCK: 34

Instances of REQUIRES-BEER: 199

Instances of REQUIRES-HARD-STOCK: 797

Instances of IS-ORDER: 166

Instances of STOP-TIME: 21

Instances of START-TIME: 21

Instances of BEER-LINE: 8

Instances of BEER-TANK: 21

Instances of STOCK-PRODUCT: 42

Instances of PRODUCT: 182

Instances of CARTON-PACKING-RATE: 7

Instances of CARTON-VOLUME: 11

Instances of USES-PACKAGE-TYPE: 213

Instances of SHIFTS: 7

Instances of SPECIALTY-LINE: 2

69 dynamic predicates, 1994 static predicates.

2063 predicate instances in initial world state.

Figure 7: Predicate Instances in Manufacturing Domain

predicate name. The predicates will not be described in detail, but the names are mnemonic

so �gure 7 further helps to describe the size and structure of the domain.

Operators describe the actions available to the planner and how to achieve particular

goals. They include the resources required and the conditions under which the operation can

proceed. Operators encode knowledge of what orders are preferred for scheduling next, how

to connect packaging lines to beer tanks, how to start and end shifts, how to avoid
ushing

beer lines when possible, and other such process oriented knowledge. Physical constraints on

transporting raw materials from stores inventory to the packaging line have been adequately

modeled in operators; this involves satisfying constraints on using beer lines to feed several

production lines from beer tanks, as well as ensuring that all necessary raw materials are

17

Operator: Connect-bt-pl-no
ush
Arguments: beer-tank1, packaging-line1, beer-line1, cellar1, beer1;
Purpose: (connected beer-tank1 packaging-line1);
Precondition:

(beer-tank beer-tank1 cellar1),
(beer-line beer-line1 cellar1),
-(connected-bt beer-tank1 beer-line1),
(contains beer-tank1 beer1),
(or (clean beer-line1) (contains beer-line1 beer1));

Plot:
Parallel

Goals: (connected-bt beer-tank1 beer-line1);
Goals: (connected-pl packaging-line1 beer-line1);

End Parallel

Process

Action: check-connection;
Arguments: packaging-line1,beer-line1;
Resources: beer-line1;
E�ects: (connected beer-tank1 packaging-line1);

Figure 8: SIPE-2 Operator for Connecting a Beer Line

available and meet the constraints of the packaging line being used.

Figure 8 shows a SIPE-2 operator, Connect-bt-pl-no
ush, for connecting a beer tank to

a packaging line when the line does not need to be
ushed. This case is separated from the

ushing case so that the system will try this operator �rst, because of the given preference

order of operators, and thus prefer actions that do not
ush a beer line. This operator will

be described in detail to indicate how SIPE-2 is used to represent actions in this domain.

An operator is applied to achieve goals that match its purpose, in this example, connecting

a packaging line to a beer tank. The arguments slot of this operator speci�es three additional

variables used in the operator that are constrained to be in the following classes by virtue

of their variable name: cellar, beer line, and beer. The precondition of an operator must be

true in a given world state before this operator can be applied. Preconditions can be used to

encode many types of knowledge, e.g., physical constraints on the domain, and preferences for

certain actions. The �rst predicate of the precondition in Connect-bt-pl-no
ush constrains

the cellar1 variable to be the cellar containing beer-tank1. The second predicate constrains

beer-line1 to run to that same cellar. The third predicate constrains beer-line1 to be a beer

line that is not already connected to this beer tank; in this case, some other operator can

accomplish the goal more e�ciently. The fourth predicate constrains beer1 to be the beer

in beer-tank1. Finally, the last conjunct of the precondition checks that beer-line1 does not

18

need to be
ushed; this is the case when the line is clean or it already contains the same beer.

The plot of an operator speci�es a template for further elaboration of a plan. A plot is a

network of actions and goals that will accomplish the purpose of the operator in any situation

satisfying the precondition. The plot of Connect-bt-pl-no
ush speci�es that the two ends of

the beer line can be connected in parallel. This is followed by an action which tests that the

connection has been established and declares beer-line1 as a resource.

SIPE-2 uses its new abilities to post parallel links and reason about parallel, reusable re-

sources to correctly allocate both beer tanks and beer lines to each packaging line. Allocation

of such resources is trivial: the user simply declares the beer line and beer tank variables in

his operators to be resources, and the system will ensure there is no con
ict. For example,

simply declaring beer-line1 as a resource in Connect-bt-pl-no
ush will cause the system to

avoid con
icts in the use of beer lines. Parallel links are used to order early shifts/runs on

one line before later shifts/runs on another line, thus enabling such shifts to use the same

resources.

The current implementation represents all products and accepts the number of shifts, cur-

rent manpower, current stock outages, and state of current equipment as input. It attempts

to �ll arbitrary orders that are also given as input. The planner establishes connections

between production lines, beer lines and beer tanks, taking advantage of connections that

already exist, and schedules as many production runs as are needed to �ll each shift. The

generated plan includes actions to assure that all needed materials are present for each run

and satis�es all physical constraints, such as constraints on the use of di�erent containers on

di�erent lines.

The system uses consumption rates to calculate the changing levels of orders, the changing

availability of raw materials, and the start time, end time, duration, and level of production

of each run and shift as a function of the size of the order and the packaging rate of the

particular production line. The numerical values of time, levels of orders, and levels of beer

tanks are all represented using SIPE-2's numerical variables and distinguished level, produce,

and consume predicates [Wil88]. Figure 9 shows the plot of an operator that solves the goal

of scheduling a packaging line at a certain time and thus updates these numerical values.

Several predicates in the precondition of this operator choose an appropriate product to

bottle based on orders and other factors. This is done by placing constraints on the product1

variable. All variables obtain their constraints initially either by matching of the operator's

precondition or by speci�cation in the operator's arguments slot.

The �rst goal in the plot is to connect an appropriate beer tank to the packaging line. By

solving the connected goal, the planner will assure that the appropriate beer is available for

the bottling run. The plot speci�es that this condition should be maintained by the execution

monitor until the bottling run is �nished; this will occur when the appropriate number of

19

Plot:

Goal: (connected beer-tank1 pack-line1);
Protect-until: (consume product1 num-cartons2);

Process

Action: load-stock;
Arguments: product1;
E�ects: (loaded pack-line1 product1);
Protect-until: (consume product1 num-cartons2);

Process

Action: bottle;
Arguments: pack-line1, product1, num-cartons2,

beer-tank1,start-time1, duration1, beer-volume1;
Resources: beer-tank1;
E�ects: (consume product1 num-cartons2),

(consume beer-tank1 beer-volume1);
Duration: duration1;

Goal: (schedule pack-line1 shift1 current-time2 stop-time1);

Figure 9: SIPE-2 Plot for Scheduling a Bottling Run

cartons have been consumed. The default is to protect conditions through the last action

in a plot. However, because of the scheduling-goal ontology, the plot of this operator ends

by specifying another scheduling goal which causes the system to recurse and continue to

schedule actions until the stop-time is reached. The connection of the beer tank should only

be maintained through the bottling action and not through this recursive scheduling goal.

The arguments slot of the operator is used to de�ne the values of variables such as

num-cartons2 and duration1. The variable num-cartons2 is declared in the arguments slot

of the operator as num-cartons2 is (cartons duration1 pack-rate1) which posts a function

constraint [Wil88] that will cause the variable's value to be computed by calling a Lisp

function (cartons) that takes the duration and the bottling rate of the line as arguments.

Similarly, the duration1 variable has a function constraint which computes the length of a

bottling run as a Lisp function of several arguments.

Process nodes in plots can be used to specify either a primitive, executable action or

another operator that will further elaborate the plan. The �rst process node in the plot

in Figure 9 speci�es an action of loading the necessary raw materials (other than beer) on

the packaging line. The next process speci�es the bottling run, and has several arguments

including duration1 and beer-volume1 which have function constraints that will cause their

value to be computed. This process declares the beer tank as a resource just as Connect-

bt-pl-no
ush declares beer lines as resources. At this level of abstraction, beer lines have

not been introduced into the plan; that will happen when the connected goal is solved. The

20

e�ects of this process are to reduce the level of beer in the beer tank and to reduce the level

of outstanding orders for the product. These two e�ects are encoded by consume predicates

which cause SIPE-2 to appropriately update the levels of these two numerical quantities over

time. Similarly, the duration slot on this process will update the level that represents time.

Finally, the schedule goal will cause the system to schedule another bottling run from the

now current time (after duration1) until stop-time1 is reached.

5.4 Generating and Modifying Plans

By applying operators in the preference order given, the system will take advantage of any

existing connections to beer lines and avoid unnecessary
ushings. Similarly, these preferences

�rst try to �ll high priority orders. The resulting schedule minimizes
ushings for the orders

it has scheduled and schedules as many of the highest priority orders as possible during the

given shifts. Because we have chosen the ontology of goals for scheduling production lines,

there is always a solution that can be found without relaxing constraints; this matches basic

assumptions built into the system.

SIPE-2 currently quits as soon as it �nds a valid plan, i.e., has scheduled all given shifts

completely, though it would be straightforward to implement a best-�rst search using the

context mechanism if a good measure for the utility of a plan is provided [Wil88]. Good

plans are produced by the system because domain-speci�c knowledge about search control

and the utility of plans is encoded in the operators. For example, operators encode preferences

on what orders to �ll and what beer lines to use. While all constraints described above have

been incorporated, there are aspects of daily operation that have not been addressed. For

example, this implementation does not form groups of individuals with certain skills into one

crew (as must be done when workers fail to report to work).

Producing a plan that schedules dozens of orders on six production lines with around

twenty separate product runs, with their corresponding needs for di�erent connections and

materials, requires less than four minutes on a Symbolics 3645. To produce one such plan

with no backtracking requires the generation of 1100 action and goal nodes (at all planning

levels). Another 1000 control nodes are produced in the plan. How the solution time varies

as the problem is changed is discussed in Section 6.

Figure 10 depicts the plan produced in a Gantt chart. This is a simple translation of the

actual plan which is a PERT-type structure with many hundreds of nodes. Ignoring all nodes

except bottling actions, the translation uses the product being bottled, the start time, and

the end time to draw and label the Gantt chart, and inserts vertical dotted lines to denote

di�erent shifts. This same plan is depicted graphically in Figure 6 which shows the �rst

few action nodes for the last three production lines; these include actions for connecting and

21

Figure 10: Gantt Chart of Plan for 11 Shifts on 6 Lines

ushing beer lines. Information about the assumptions underlying various subplans is also

included in each plan to help with replanning; these are not shown in either �gure.

The information on the right of Figure 10 provides more details of the second run of

Golf-Lager-Ottumwa on line PL-12, in response to a mouse click on the Gantt chart. This

information includes the scheduled start and stop times of the run and an inventory of the

materials needed. It was necessary to bottle Golf-Lager-Ottumwa for 9 hours to �ll an

outstanding order, so the system decided to make a 1 hour run at the start of the second

shift to �nish �lling the order.

An important motivation for using AI planning technology is the ability to modify plans

quickly during execution. SIPE-2's execution monitor accepts arbitrary descriptions of un-

expected events in the language used to describe the domain, and is able to determine how

they a�ect the plan being executed [Wil88]. It uses a set of replanning actions to modify

plans, possibly removing subplans in order to make better plans. In many cases, it is able to

retain most of the original plan by making changes in that plan to avoid problems caused by

these unexpected events. It is also capable of shortening the original plan when serendipitous

events occur.

22

Figure 11: Modi�ed Plan after Lid-A is Unavailable

Let us consider an unexpected occurrence during the execution of the plan in Figure 10.

Suppose that a scheduled shipment of Lid-A did not arrive by the end of the �rst shift.

The run of Golf-Lager-Ottumwa that begins the second shift can be seen to require 55,440

of Lid-A. SIPE-2 modi�es the plan by removing all subplans that require Lid-A. In this

example, the planner removes the last two bottling actions on line PL-12, together with all

their associated actions of making connections and loading stock. The deleted subplans are

replaced with goals of scheduling the production lines for the open time period, and this new

plan, with unsolved goals, is given to the planner as a problem to solve. The solution is shown

in Figure 11. Line PL-12 has been rescheduled to bottle Pella-Ale, one of the few products

with outstanding orders that can be bottled on this line and that does not require Lid-A; see

the right side of Figure 11. This modi�ed plan is produced in one minute, a response time

that makes it reasonable to consider using the planner on the factory
oor to schedule daily

operations and respond to new events.

23

6 Performance of SIPE-2

Our claims regarding e�ciency rest on system performance in solving actual problems. It is

not possible to prove lower bounds on computation for any input because the representation

provided is powerful enough to express large and combinatorial constraints. Furthermore,

some algorithms inside the planner address exponential problems. In practice, e�cient perfor-

mance depends upon axiomatizing one's domain so as to take advantage of system heuristics

and algorithms.

In this section, we review SIPE-2's performance on all the domains mentioned in this

paper. Since acceptable computational bounds cannot be proven, actual performance data

are important for judging the usefulness of a planning system. While choice of hardware or

software may vary execution times by an order of magnitude, such times are still important

because they can vary several orders of magnitude across AI planners. The units in which the

times are expressed are signi�cant, and the numbers simply provide a datapoint. Solution

times expressed in seconds and minutes for planning problems like those described here mean

the combinatorics of the problem have been addressed | an exponential algorithm could

have solution times expressed in centuries or millenia.

Unfortunately, research in AI planning and knowledge representation, unlike most other

areas of computer science, has generally failed to address issues of system performance: it has

neither developed reasonable measures for comparing task di�culty, nor has it standardly

reported performance data for the tasks undertaken. Although measures such as CPU-time

expended are not entirely su�cient as a measure of a planning system's performance, we

nonetheless believe that the �eld will be advanced by the disclosure of such data. These

numbers will change in the face of hardware and software advances, but progress can be

gauged by changes in their order of magnitude. Thus, for example, if a new planner that

solves particular problems is described, it is useful to knowwhether the solutions took seconds,

minutes, hours, or days. The fact that the answer is sometime hours, or even days, is no

reason to withhold this information from the community.

Typical data for SIPE-2 plan generation are shown in Table 1. Various sizes are given in

this table to help judge the size of the problem. The all nodes column refers to the number of

goal/process nodes created when generating, with no backtracking, one solution to a typical

problem in the domain. This count includes nodes at all hierarchical planning levels, but does

not include control nodes, e.g., split and join nodes, which often make the actual number

of nodes in a plan nearly double the number shown. The primitive nodes column gives two

numbers; the �rst is the number of process nodes in the �nal plan, only at the lowest planning

level; the second is the number of phantom nodes in the �nal plan at the lowest planning

level, these are goal nodes that are already true at the point where they occur. Phantom

24

Domain All Primitive World Oprs Time

nodes nodes predicates (secs)

block world 20 3-6 20 5 1

tower of hanoi 3 220 7 35 14 10

tower of hanoi 4 800 15 35 14 80

travel 30 5-1 300 35 3.5

mobile robot 175 10-16 250 50 20

house construction 160 50-10 1 25 5

o�ce construction 1450 115-110 112 10 370

beer production 1100 250-20 2000 40 210

Table 1: Performance of SIPE-2

nodes are used by the execution monitor and add as much complexity to planning algorithms

as do the process nodes; thus these algorithms must traverse a plan that is the sum of these

two numbers. The world predicates column is the number of predicate instances that describe

the initial world state. Although not shown in the table, the amount of information in the

sort hierarchy would also be relevant to determining the size of the problem domain. The

oprs column refers to the number of operators used to describe the domain, and the time

column gives execution times in seconds on a Symbolics 3645 processor for a typical problem

in each domain. Similar times are obtained on a Macintosh II with a MacIvory board.6

Problems in an extended block-world (i.e., one that permits more than one block to be on

top of another and poses problems such as \get some red block on top of some blue block")

are solved in 1 second. The tower-of-hanoi problem with 3 discs is solved in 10 seconds, while

the 4-disc problem requires 80 seconds. The latter involved re�ning the plan over 26 levels of

detail and generating 800 process/goal nodes. The travel-planning domain has 35 operators

and over 300 predicate instances describing the world, and it requires solutions containing

about 30 goal and process nodes. Such solutions are generated in 3 to 4 seconds.

The simple indoor mobile-robot world consists of �ve rooms connected by a hallway, the

robot itself, and various objects. The rooms were divided into 35 symbolic locations that

included multiple paths between locations, which greatly increased the amount of work done

by the planner. The initial world is described by 222 predicate instances, about half of

which were deduced from deductive operators. The description of possible actions includes

25 action-describing operators and 25 deductive operators. The operators use four levels

6Times on both Symbolics and Macintosh machines vary from run to run depending on many factors (e.g.,

free memory, fullness of the symbol table), so the given times are only approximate.

25

of abstraction in the planning process. The planner produces primitive plans that provide

actual commands for controlling the robot's motors. This low level of abstraction requires

the planner to generate hundreds of goal nodes to generate one plan, yet SIPE-2 takes only

about 20 seconds to formulate such a plan completely, or 9 seconds for an executable plan

if the planner intermingles planning and execution. This is acceptable performance, as the

robot requires several seconds to move down the hall.

Results for two problems in the construction domain are given. The �rst is the house

problem that was solved by NONLIN [Tat76]; this is given for comparison purposes. The

problem is simple, SIPE-2's input is much more readable and concise than that of NONLIN,

and SIPE-2 solves the problem in 5 seconds. NONLIN required a comparable amount of time

(20 seconds) to produce the solution. However, NONLIN's cumbersome input requirements

meant the system had signi�cantly less work to do to solve the problem because of the

additional input information.

The second construction problem is a three-story o�ce building. Since resources and

time were ignored, the planner's e�ort was primarily spent in obtaining the correct orderings

among the more than 100 tasks that were, for the most part, initially unordered. This

problem makes extensive use of the parallel-links capability and requires about 6 minutes

to solve. Most of this time is spent by the plan critics determining which of the enormous

number of possible orderings to impose.

As already described, producing a plan in the beer manufacturing domain that schedules

twenty separate product runs on six production lines requires less than 4 minutes. To produce

one such plan with no backtracking requires the generation of 1100 action and goal nodes

while another 1000 control nodes are produced. To modify such a plan when a raw material

becomes unexpectedly unavailable can take only a minute.

Interestingly, the three larger domains each stress a di�erent part of the system. In the

robot domain, the planner spends around 70% of its computational e�ort deducing the e�ects

of its planned actions. By comparison, no time is spent deducing e�ects in the construction

domain, and very little in the manufacturing domain. In the construction and manufacturing

domains, the e�ects of actions were mostly known apriori, but in the robot domain the e�ects

depend upon where the robot is and what it is holding when it moves.

In the construction domain, most of the computational e�ort is spent by the plan critics

determining orderings for actions. In the manufacturing domain, most of the e�ort is spent

in determining the truth of the preconditions of operators. This is attributable to a number

of features of the domain: operators have large preconditions with as many as a dozen

predicates, the plans have hundreds of nodes, and the world state is described by thousands

of predicate instances.

26

The solution time in the brewery problem appears to be linear in the number of bottling

runs that are scheduled. This is not surprising as each run requires the matching of large

operator preconditions to choose an appropriate product to bottle, in addition to planning

actions to supply all the raw materials for that run. Adding extra products and orders

to the world description has a negligible e�ect on performance. Adding extra production

lines increases planning time only linearly with the number of runs that will be scheduled

on the new lines. This is primarily because the interactions between lines are handled by

resource reasoning. If the tasks were interconnected in more complex ways, as they are in

the construction domain, then the computational resources used by the plan critics could

increase signi�cantly as more lines were added.

It is hard to make e�ciency comparisons, as it appears that no AI planning systems have

been tried on problems of similar complexity, in most cases because such problems cannot be

e�ectively handled. We know of no other AI planning system that can solve these or similar

problems with a comparable amount of e�ort. FORBIN, which makes some concessions

in order to gain e�ciency, is described as being slow on even simple problems [DFM88].

TWEAK does not have heuristic adequacy as one of its design goals, and would probably be

less e�cient than FORBIN. Drummond describes his NEWT planner [DC88] as not solving

block-world problems because of memory limitations until a \temporal-coherence" heuristic

was added to the system. With this heuristic, the system was able to solve simple block-world

problems, allowing only one block on top of another, in \a matter of minutes." Furthermore,

NEWT was designed with a concern for e�ciency. GEMPLAN solves simple block-world

problems in less than one minute, and solves the three-disc tower-of-hanoi problem in 17

minutes on a Sun 3, and 7 minutes on a SPARC station.7 In our experience, more expressive

planning systems cannot achieve even this level of performance, e.g., a planner based on

formal logic with frame axioms took hours to solve simple block-world problems.8

7 Conclusion

We know of no other AI planning systems that could handle a problem as large as the

brewery scheduling and still respond in reasonable time. NOAH, NONLIN, and probably

TWEAK are not expressive enough, while TWEAK, NEWT and FORBIN would appear not

to be heuristically adequate [DFM88]. GEMPLAN has not yet been applied to a practical

problem, and its heuristic adequacy will likely rest on how e�ective its method of localized

reasoning will be on a particular problem.

7Personal communication.
8These results were never published, but obtained through personal communication.

27

Nonplanning technologies can be applied to this problem, and ISIS is a strong candidate.

It would appear that, with a certain amount of creativity, the brewery problem could be

translated into the job-shop scheduling constraints provided by ISIS. It is not clear how much

e�ort this would involve or how the resulting system would compare to SIPE-2 in terms

of either execution time or quality of answer. SIPE-2 provides a more general replanning

capability than ISIS, and also provides interactive capabilities.

Except for systems with operations-research techniques, most commercially available

\planning" software does not generate schedules/plans. The primary advantages of an AI

planner over operations-research techniques are the following:

� AI representation languages allow representation of some constraints that cannot be

expressed by linear equations.

� Resources are allocated with no violation of resource constraints.

� Planners like SIPE-2 can be run interactively, letting a human make crucial, high level

decisions while the system ensures that all the details are correctly worked out.

� Because plans are produced in minutes, various \what-if" analyses can be run to produce

and compare alternative plans.

� Planners like SIPE-2 can modify their plans in seconds or minutes in response to un-

expected occurrences, thus signi�cantly reducing down-time of production lines while

permitting a higher level of order ful�llment. Surprises are ubiquitous in the factory

and often quickly render useless plans produced by linear programming techniques,

since such plans cannot be modi�ed to respond to new situations.

This implementation shows that AI planning techniques are approaching the point where

signi�cant problems can be addressed. Producing production plans like those described here

can be di�cult for humans because there are so many constraints to be considered. For

example, a schedule produced by human planners sometimes turns out to be unexecutable

because all the right connections cannot be made to the beer tanks, or because some particular

lid is unavailable. To schedule a production run, it is necessary to check the level of orders,

check if the beer is in a beer tank, check if the beer tank is available, check if a beer line that

can connect to the beer tank is available, and check if all labels, lids, bottles, and cartons are

available. The problem is well suited to SIPE-2 because there is nearly always some beer-order

whose constraints are satis�ed; thus, relaxation of constraints is unnecessary. It is primarily

a matter of keeping track of all the details. SIPE-2's ability to post constraints allows it to

obtain solutions e�ciently, often with no backtracking as most of the knowledge for choosing

a reasonable product to schedule is incorporated in the preconditions of operators.

28

It is important to note that the brewery implementation described here involved only

six man-months of work. This shows the power of domain-independent planners for repre-

senting new domains. There are many limitations: the lack of a search through alternative

schedules/plans, the ignoring of certain constraints (e.g., manpower), the inability to relax

constraints, and the user interface. However, these issues could not be addressed within the

scope of this project. They should be the focus of future research { in particular, use of SIPE-2

in a particular domain would often involve development of a reasonable, probably domain-

speci�c, search algorithm. Of the limitations mentioned above, only relaxation of constraints

would be a large e�ort to incorporate, and our ontology for the brewery domain makes this

unnecessary. SIPE-2 already incorporates the foundation for many types of search algorithms

as it saves alternative plans and their contexts, and its interactive capabilities should make

development of a user interface easier. Future research could use AI planning techniques

to provide support for longer range planning, and could integrate the planning system with

existing information processing systems.

Two features of the implemented system are expected to make it useful in the brewery:

user interaction and replanning. The system can be run interactively, allowing the user to

participate in the decision-making process. This allows a human expert to formulate plans

based on his knowledge and judgement in a fraction of the time it would take without the

AI planning system. The planning system takes care of all details, some of which would

otherwise be ignored by the human expert because of the large number of constraints to be

checked.

An important problem in this factory, as in most, is that production is often interrupted

by unplanned events such as the unavailability of some raw material, equipment malfunction,

or resource shortages. The planner has causal information relating the actions in its plans,

and can use this information to modify plans during execution without having to replan

completely, as shown in the example in Section 5.4. The ability of the system to modify

the plan in response to unexpected events has the potential for signi�cantly improving plant

performance.9

9The system described here is a prototype and not in actual use. Such use would require an improved user

interface, increased robustness, and probably other extensions. The brewery has funded a project to develop

a prototype for actual use.

29

References

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of

the Association for Computing Machinery, 26(11):832{843, 1983.

[Cha87] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{378,
1987.

[DC88] M. Drummond and K. Currie. Exploiting temporal coherence in nonlinear plan
construction. Computational Intelligence, 4(4):341{348, 1988.

[DFM88] T. Dean, R. J. Firby, and D. Miller. Hierarchical planning involving deadlines,
travel time, and resources. Computational Intelligence, 4(4):381{398, 1988.

[FN71] R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Arti�cial Intelligence, 2:189{208, 1971.

[FS84] M. S. Fox and S. Smith. ISIS - a knowledge-based system for factory scheduling.
Expert Systems, 1(1):24{49, 1984.

[Kar89] N. Kartam. Investigating the Utility of Arti�cial Intelligence Techniques for Auto-

matic Generation of Construction Project Plans. PhD thesis, Stanford University,
Department of Civil Engineering, Stanford CA, 1989.

[Lan88] A. L. Lansky. Localized event-based reasoning for multiagent domains. Computa-

tional Intelligence, 4(4):319{340, 1988.

[Lif87] V. Lifschitz. On the semantics of strips. In Reasoning about Actions and Plans:

Proceedings of the 1986 Workshop. Morgan Kaufmann Publishers Inc., San Mateo,
CA, 1987.

[McC80] J. McCarthy. Circumscription { a form of nonmonotonic reasoning. Arti�cial

Intelligence, 13:27{39, 1980.

[McD82] D. McDermott. A temporal logic for reasoning about processes and plans. Cognitive
Science, 6:101{155, 1982.

[Sac77] E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier, North Holland,
New York City, NY, 1977.

[Sho87] Y. Shoham. Reasoning about Change: Time and Causation from the Standpoint of

Arti�cial Intelligence. MIT Press, Cambridge, MA, 1987.

[Tat76] A. Tate. Project planning using a hierarchical nonlinear planner. Department of
Arti�cial Intelligence Report 25, Edinburgh University, 1976.

[Wil88] David E. Wilkins. Practical Planning: Extending the Classical AI Planning

Paradigm. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

30

