

First-Order Logic (FOL) part 2

1

Overview

- We'll first give some examples of how to translate between FOL and English
- Then look at modelling family relations in FOL
- And finally touch on a few other topics

Translating English to FOL

Every gardener likes the sun

 $\forall x \text{ gardener}(x) \rightarrow \text{likes}(x, \text{Sun})$

All purple mushrooms are poisonous

 $\forall x \text{ mushroom}(x) \land \text{purple}(x) \rightarrow \text{poisonous}(x)$

No purple mushroom is poisonous (two ways)

 $\neg \exists x \text{ purple}(x) \land \text{mushroom}(x) \land \text{poisonous}(x)$

 $\forall x \text{ mushroom}(x) \land \text{purple}(x) \rightarrow \neg \text{poisonous}(x)$

English to FOL: Counting

- Using with numbers & simple math can seem awkward
- Use = predicate to identify different individuals

There are at least two purple mushrooms

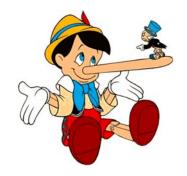
 $\exists x \exists y \text{ mushroom}(x) \land \text{purple}(x) \land \text{mushroom}(y) \land \text{purple}(y) \land \neg (x=y)$

This says that there exisit an x and a y such that

- "x is a purple mushroom" and
- "y is a purple mushroom" and
- "x and y are not the same objects"

English to FOL: Counting

There are exactly two purple mushrooms


```
\exists x \exists y \text{ mushroom}(x) \land \text{purple}(x) \land \text{mushroom}(y) \land \text{purple}(y) \land \neg (x=y) \land \forall z \text{ (mushroom}(z) \land \text{purple}(z)) \rightarrow ((x=z) \lor (y=z))
```

This says that

- "x is a purple mushroom" and
- "y is a purple mushroom" and
- "x and y are not the same objects"
- If there's a purple mushroom z, then either z=x or z=y

Saying there are 802 different <u>Pokemon</u> is hard! Direct use of FOL is not for everything!

Translating English to FOL

What do these mean?

You can fool some of the people all of the time

You can fool all of the people some of the time

Translating English to FOL

What do these mean?

Both English statements are ambiguous

- #1 There is a nonempty subset of people so easily fooled that you can fool that subset every time*
- #2 For any given time, there is a non-empty subset at that time that you can fool

You can fool all of the people some of the time

- #1 There are one or more times when it's possible to fool everyone*
- #2 Each individual can be fooled at some point in time

* Most common interpretation, I think

To represent these in logic we need some terms

• person(x): True iff x is a person

•time(t): True iff t is a point in time

• canFool(x, t): True iff x can be fooled at time t

Note: iff = if and only if = \leftrightarrow

Translating English to FOL

You can fool *some of* the people *all of* the time

- #1 There is a nonempty group of people so easily fooled that you can fool that group every time*
- There's (at least) one person you can fool every time
- $\exists x \ \forall t \ person(x) \land time(t) \rightarrow canFool(x, t)$

- **#2** For any given time, there is a non-empty group at that time you can fool
- ≡ For every time, there's a person at that time you can fool
- $\forall \mathbf{t} \exists \mathbf{x} \text{ person}(\mathbf{x}) \land \text{time}(\mathbf{t}) \rightarrow \text{canFool}(\mathbf{x}, \mathbf{t})$

* Most common interpretation, I think

Translating English to FOL

You can fool all of the people some of the time

#1 There's at least one time when you can fool everyone*

 $\exists t \ \forall x \ time(t) \land person(x) \rightarrow canFool(x, t)$

#2 Everybody can be fooled at some point in time

 $\forall x \exists t \text{ person}(x) \land time(t) \rightarrow canFool(x, t)$

Limits of classical logic

- Note that there's no easy, natural way to talk about a few, many, most, almost all ...
- This is natural in human languages
 - There are many people you can fool most of the time
 - There are a **few** people you can fool **almost every** time
- We also can't have exceptions
 - All birds can fly, except for penguins, ostriches and a few other species
- There are non-classical logic systems that can handles these problems

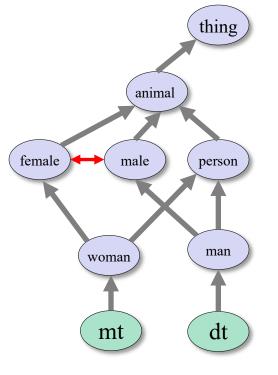
Representation Design

- Many options for representing even a simple fact,
 e.g., something's color as red, green or blue, e.g.:
 - green(kermit)
 - color(kermit, green)
 - hasProperty(kermit, color, green)
- Choice can influence how easy it is to use
- Last option of representing properties & relations as <u>triples</u> used by modern <u>knowledge graphs</u>
 - Let's us ask: What color is Kermit? What are Kermit's properties?, What green things are there? What colors are there? What properties are there? Tell me everything you know about Kermit, ...

Simple genealogy KB in FOL

Design a knowledge base using FOL that

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Defines more complex relations (ancestors, relatives)
- Detect inconsistencies, e.g., a person is her own parent
- Infers relations, e.g., grandparent from parent
- Answers queries about relationships between people


How do we approach this?

- Design an initial ontology of types, e.g.
 - -person, animal, man, woman, ...

- $-person(X) \iff man(X) \lor woman(Y)$
- $-man(X) \ll person(X) \land male(X)$
- $-woman(X) <=> person(X) \land female(X)$
- $-female(X) <=> \sim male(X)$
- Make assertions about individuals, e.g.
 - -man(donaldTrump)
 - -woman(melaniaTrump)

^{*} In a <u>lattice</u>, objects can have multiple immediate types

Extend with relations and constraints

- Simple two argument relations, e.g.
 - spouse, has_child, has_parent
- Add general constraints to relations, e.g.
 - $spouse(X,Y) => ^ (X = Y)$
 - $spouse(X,Y) => person(X) \land person(Y)$
 - spouse(X,Y) => $(man(X) \land woman(Y)) \lor$ $(woman(X) \land man(Y))*$
- Add FOL sentences for inference, e.g.
 - spouse(X,Y) \Leftrightarrow spouse(Y,X)
- Add instance data
 - e.g., spouse(djt, mt)

^{*} Note this constraint is a traditional one than no longer holds

Example: A simple genealogy KB in FOL

Predicates:

- -parent(X, Y), child(X, Y), father(X, Y), daughter(X, Y), etc.
- -spouse(X, Y), husband(X, Y), wife(X,Y)
- -ancestor(X, Y), descendant(X, Y)
- male(X), female(Y)
- -relative(X, Y)

Facts:

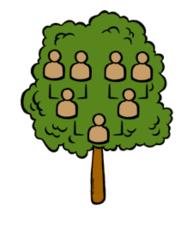
- husband(joe, mary), son(fred, joe)
- -spouse(john, nancy), male(john), son(mark, nancy)
- -father(jack, nancy), daughter(linda, jack)
- daughter(liz, linda)
- -etc.

Example Axioms

 $(\forall X,Y)$ parent $(X,Y) \leftrightarrow \text{child}(Y,X)$

 $(\forall X,Y)$ father $(X,Y) \leftrightarrow parent(X,Y) \land male(X)$

 $(\forall X,Y)$ mother $(X,Y) \leftrightarrow parent(X,Y) \land female(X)$


 $(\forall X,Y)$ daughter(X, Y) \leftrightarrow child(X, Y) \land female(X)

 $(\forall X,Y)$ son $(X,Y) \leftrightarrow child(X,Y) \land male(X)$

 $(\forall X,Y)$ husband $(X,Y) \leftrightarrow spouse(X,Y) \land male(X)$

 $(\forall X,Y)$ spouse $(X,Y) \leftrightarrow$ spouse(Y,X)

• • •

Axioms, definitions and theorems

- Axioms: facts and rules that capture (important) facts
 & concepts in a domain; used to prove theorems
- Mathematicians dislike unnecessary (dependent) axioms, i.e.,
 ones that can be derived from others
- Including dependent axioms can make the result easier for people to understand and reasoning faster, however
- Choosing a good set of axioms is a design problem
- A definition of a predicate is of the form "p(X) ↔ ..."
 and can be decomposed into two parts
 - Necessary description: " $p(X) \rightarrow ...$ "
 - Sufficient description "p(X) \leftarrow ..."
 - Some concepts have definitions (e.g., triangle) and some don't (e.g., person)

More on definitions

Example: define father(X, Y) by parent(X, Y) & male(X)

- parent(X, Y) is a necessary (but not sufficient)
 description of father(X, Y)
 father(X, Y) → parent(X, Y)
- parent(X, Y) ^ male(X) ^ age(X, 35) is a sufficient (but not necessary) description of father(X, Y): father(X, Y) ← parent(X, Y) ^ male(X) ^ age(X, 35)
- parent(X, Y) ^ male(X) is a necessary and sufficient description of father(X, Y)
 parent(X, Y) ^ male(X) ↔ father(X, Y)

Necessary and sufficient descriptions are definitions

Higher-order logic

- FOL only lets us quantify over variables, and variables can only range over objects
- HOL allows us to quantify over relations, e.g.
 - "two functions are equal iff they produce the same value for all arguments"

$$\forall f \ \forall g \ (f = g) \longleftrightarrow (\forall x \ f(x) = g(x))$$

• E.g.: (quantify over predicates)

$$\forall$$
r transitive(r) \rightarrow (\forall xyz) r(x,y) \wedge r(y,z) \rightarrow r(x,z))

 More expressive, but reasoning is undecideable, in general

FOL used to specify semantics of KR languages

- FOL is typically not used directly
- Often used to specify semantics of knowledge representation and reasoning systems
- Examples:
 - <u>Datalog</u>: relational data base + rules
 - Prolog: logic oriented programming language
 - OWL: a family of semantic knowledge graph languages
 - -CYC: A KB of common-sense knowledge

Examples of FOL in use

- Semantics of W3C's <u>Semantic Web</u> stack (RDF, RDFS, OWL) is defined in FOL
- OWL Full is equivalent to FOL
- Other OWL profiles support a subset of FOL and are more efficient
- FOL oriented knowledge representation systems have many user-friendly tools
- E.g.: <u>Protégé</u> system for creating, editing and exploring knowledge-based systems

Examples of FOL in use

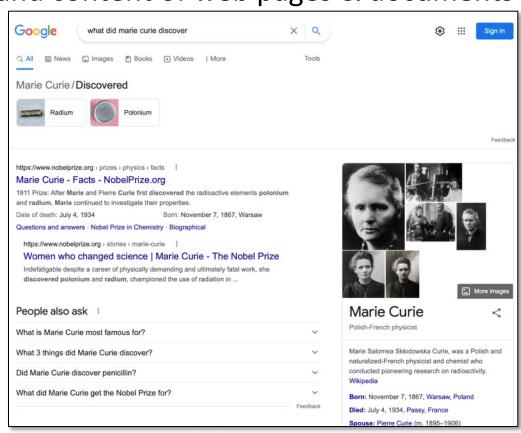
Many practical approaches embrace the approach that "some data is better than none"

- The semantics of <u>schema.org</u> is only defined in natural language text
- Wikidata's knowledge graph has a rich schema
 - Many constraint/logical violations are flagged with warnings
 - However, not all, see this <u>Wikidata query</u> that finds people who are their own grandfather

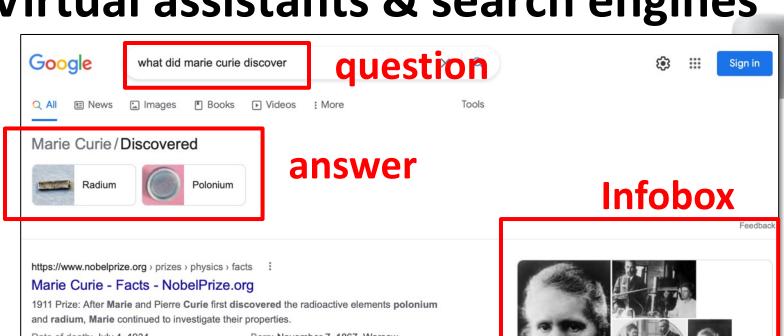
Wikidata knowledge graph

- Community knowledge graph with ~1B statements about ~100M items
- Fine-grained ontology has~2M types & ~10K properties
- Multilingual: all text values tagged with language id
- Has both a human and query interface
- Many community tools for editing, search, visualization, update

Wikidata web interface for the UMBC entity, **Q735049**

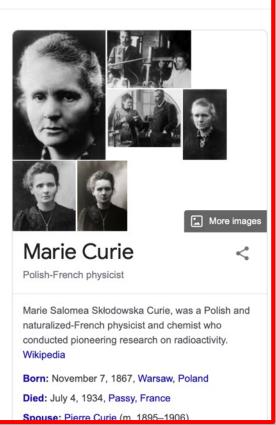

Wikidata's huge ontology

- How can we understand an ontology with so many types?
- wdtaxonomy is a useful tool for exploring the ontology
- Given a type (e.g., Q3918, university) we can quickly see
 - Subtypes or supertypes (immediate or inferred)
 - Number of instances (immediate or inferred)
 - Direct instances
 - Number Wikimedia sites it's in
- Implemented in javascript with a command line script

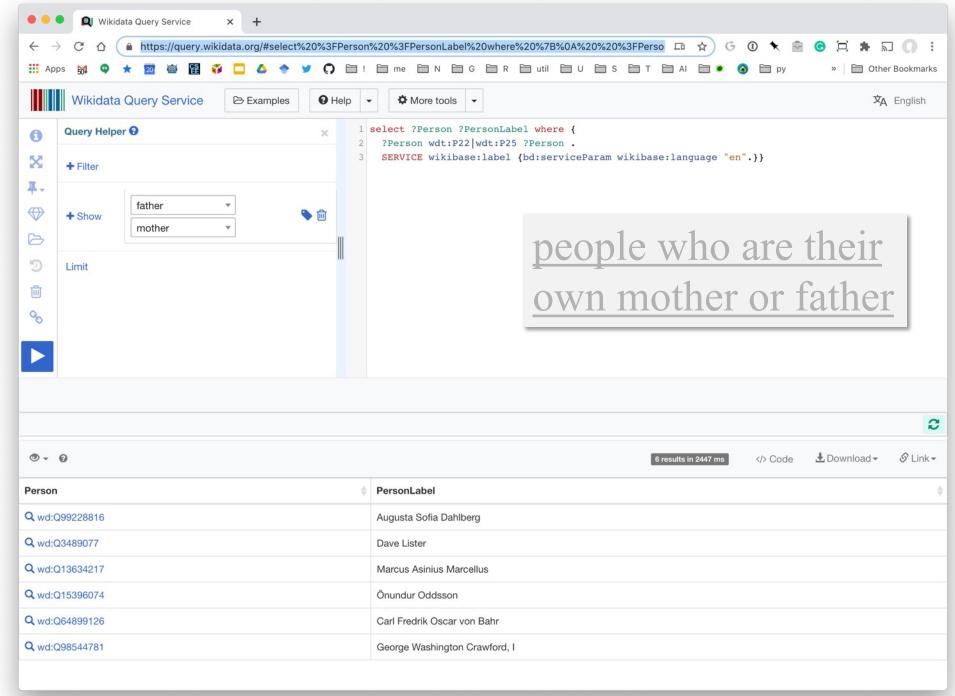

```
$$ wdtaxonomy Q3918 -c -t
university (Q3918) •163 ×15380 ↑↑
─Universities in Germany (Q212462) •2
—national university (0265662) •11 ×73
-National University (Q366354) •5
├─Imperial universities of Japan (Q562092) •12
Byzantine university (Q622870) •4
—college and university rankings (Q847843) •23 ×45 ↑
—public university (0875538) •39 ×974 ↑
—private university (Q902104) •32 ×846 ↑
—new university (Q987075) •4 ×1
-Red brick university (Q1202123) •11
-institute of technology (Q1371037) •20 ×325
─veterinary medicine school (Q1384955) •5 ×28
—online university (Q1407393) •4 ×10 ↑
—virtual university (01755248) •8 ×11
  —online university (Q1407393) •4 ×10 ↑ ...
—comprehensive university (Q1767829) •2 ×6
─plate glass university (Q1902446) •8
 —medical university (Q1916585) •1 x9 ↑
—pontifical university (Q2120466) •18 ×37 ↑↑
---Corporate university (Q2278672) •6
—ancient university (02667285) •9 ×1
-central university (Q3351682) •12 ×2
├─collegiate university (Q3354859) •9 ×12
—deemed university (Q3520135) •6 ×16
—university in France (Q3551775) •3 ×75 ↑
├─Istituto superiore per le industrie artistiche (03803831) •2 ×4
——Smolny Institute for Noble Maidens (Q4432880) •1
—??? (Q4475845) •2
├─federal university (Q4481793) •3 ×3
—ecclesiastical university (Q5332280) •6 ×2
——labor universities (Q5690751) •1 ×6
—open university (Q6755402) •4 ×1
—Urban university (Q7900184) •2
—international university (Q10829188) •3 ×9
—autonomous university (Q11057861) •2 ×1
-research university (Q15936437) •9 ×224
-Italian universities (Q20009854) •2
—Canciller de Universidad (Q21547263)
-imperial university of the Russian Empire (Q28667313) •2 ×12
-universities in China (028700403) •1
——Institute of National Importance (Q47531586) ×1 ↑
—campusuniversity (Q59537665) ×3
├─Indiana University Bloomington Department of French and Italian (063441027)
—Indiana University Department of French and Italian (063441251)
Indiana University Bloomington Department of History (Q63441447)
```

Virtual assistants and Infoboxes

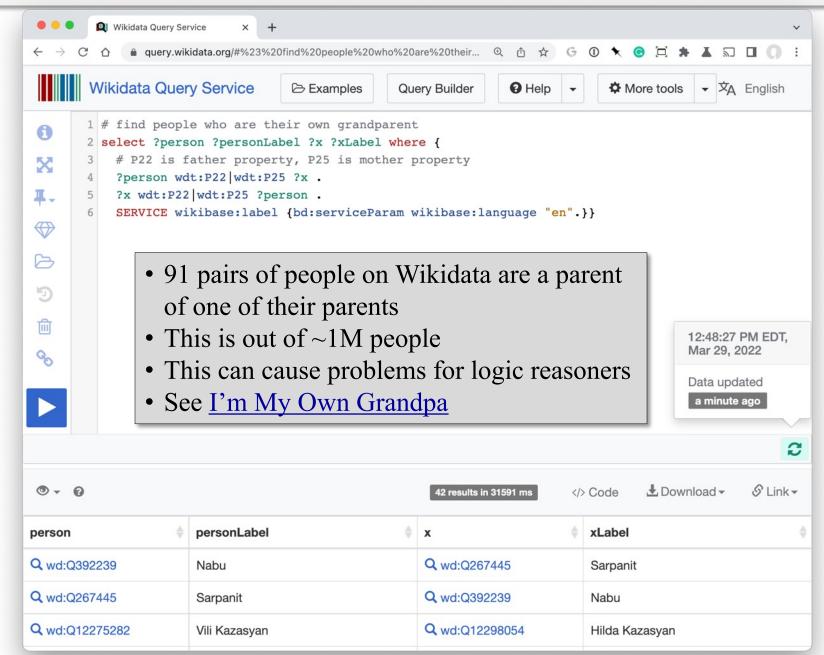
- ATTLE PRINCIPLE AND ADDRESS OF THE PRINCIPLE
- Web search engines and virtual assistants like
 Alexa use custom knowledge graphs to
 - help understand queries and content of web pages & documents
 - Answer questions
 - Show infoboxes
- Wikidata shares roots with these
- All draw on the similar knowledge, like the ~300 Wikipedia & Wikimedia sites


Virtual assistants & search engines

Feedback


Date of death: July 4, 1934 Born: November 7, 1867, Warsaw Questions and answers · Nobel Prize in Chemistry · Biographical https://www.nobelprize.org > stories > marie-curie Women who changed science | Marie Curie - The Nobel Prize Indefatigable despite a career of physically demanding and ultimately fatal work, she discovered polonium and radium, championed the use of radiation in ... People also ask : What is Marie Curie most famous for? What 3 things did Marie Curie discover? Did Marie Curie discover penicillin?

What did Marie Curie get the Nobel Prize for?



However...

- Huge knowledge bases like Wikidata made with humanprovided data have some errors
- Using "too much" logic could produce logical inconsistencies
 - E.g., you can't be your own ancestor
 - This could be fatal for many classic FOL reasoning systems
- Solution?
 - Use a limited set of logical rules, e.g., for class/subclass relations like parent/child or symmetric relations like spouse
 - Use reasoners that can handle inconsistencies
 - Use variations like probabilistic logic, default logic, etc.

people who are their own grandparent

FOL Summary

- First order logic (FOL) introduces predicates, functions and quantifiers
- More expressive, but reasoning more complex
 - Reasoning in propositional logic is NP hard, FOL is semidecidable
- Common as an AI knowledge representation language
 - Other KR languages (e.g., <u>OWL</u>) often defined by mapping them to FOL
- FOL variables range over objects
 - HOL variables range over functions, predicates or sentences
- Some practical systems avoid enforcing rigid FOL constraints due to having noisy data