
1

First-Order
Logic (FOL)

part 1

9.3.1

FOL Overview
•First Order logic (FOL) is a powerful knowledge

representation (KR) system
•Used in AI systems in various ways, e.g., to
– Directly represent & reason about concepts & objects
– Formally specify meaning of KR systems (e.g., OWL)
– For programming languages (e.g., Prolog) and rule-

based systems
– For semantic database systems (Datalog) and

knowledge graphs (Wikidata, Schema.org)
– Provide features useful in neural network deep

learning systems

https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Rule-based_system
https://en.wikipedia.org/wiki/Rule-based_system
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/Wikidata
https://schema.org/

First-order logic
• First-order logic (FOL) models the world in terms of

– Objects: things with individual identities
– Properties of objects that distinguish them from others
– Relations that hold among sets of objects
– Functions, a subset of relations where there is only one
“value” for any given “input”

• Examples:
– Objects: students, lectures, companies, cars ...
– Relations: isa, hasBrother, biggerThan, outside, hasPart,

color, occursAfter, owns, visits, precedes, ...
– Properties: blue, oval, even, large, ...
– Functions: hasFather, hasSSN, ...

User provides
• Constant symbols representing individuals in world

– BarackObama, Green, John, 3, “John Smith”
• Predicate symbols map individuals to truth values

– greater(5,3)
– green(Grass)
– color(Grass, Green)
– hasProperty(Grass, Color, Green)

• Function symbols map individuals to individuals
– hasFather(SashaObama) = BarackObama
– colorOf(Sky) = Blue

How to represent
properties and
relations depends
on our goals

What do these mean?
• We must indicate what these mean in

ways humans will understand
– i.e., map to their own internal representations

• May be done via a combination of
– Choosing good names for formal terms, e.g., calling a

concept HumanBeing instead of Q5
– Add comments in the definition #human being
– Descriptions and examples in documentation
– Reference to other representations , e.g., sameAs Q5 in

Wikidata and Person in schema.org
– Give examples like Donald Trump and Luke Skywalker to

help distinguish concepts of real and fictional person

https://www.wikidata.org/wiki/Q5
https://www.wikidata.org/wiki/Q5
https://schema.org/Person

FOL Provides

•Variable symbols (syntax varies)
–e.g., X, Y, ?x, ?foo, ?number

•Connectives
–Same as propositional logic: not (¬),

and (Ù), or (Ú), implies (®), iff («),
equivalence (≡), …

•Quantifiers
–Universal "x or (Ax)
–Existential $x or (Ex)

Notations
differ, of
course!

Sentences: built from terms and atoms

•term (denoting an individual): constant or vari-
able symbol, or n-place function of n terms, e.g.:
– Constants: john, umbc
– Variables: X, Y, Z
– Functions: mother_of(john), phone(mother(x))

•Ground terms have no variables in them
– Ground: john, father_of(father_of(john))
– Not Ground: father_of(?X)

•Syntax varies, e.g., variables start with a “?” or a
capital letter, or identified by qualifiers ("x, $y)

Sentences: built from terms and atoms
•atomic sentences (which are either true or

false) are n-place predicates of n terms, e.g.:
– green(kermit)
– between(philadelphia, baltimore, dc)
– loves(X, mother(X))

•complex sentences formed from atomic ones
connected by the standard logical connectives
with quantifiers if there are variables, e.g.:
– loves(mary, john) Ú loves(mary, bill)
–"x loves(mary, x)

https://en.wikipedia.org/wiki/Logical_connective

What do atomic sentences mean?
•Unary predicates often used to encode a type

or class that something is part of
– muppet(kermit): kermit is a muppet
– green(kermit): kermit is a green thing
– integer(X): X is an integer

•Non-unary predicates typically encode relations
or properties
– Loves(john, mary)
– Greater_than(2, 1)
– Between(newYork, philadelphia, baltimore)
– hasName(john, “John Smith”)

Ontology

•Designing a logic representation is like design-
ing a model in an object-oriented language

•Ontology: a “formal naming and definition of
the types, properties, and relations of entities
for a domain of discourse”

•E.g.: schema.org ontology used to put semantic
data on Web pages to help search engines
– Here’s the semantic markup Google sees on our site
– It’s encoded as JSON, but the model is logic

https://en.wikipedia.org/wiki/Ontology
http://schema.org/
https://validator.schema.org/

Sentences: built from terms and atoms

•quantified sentences adds quantifiers " and $
"x loves(x, mother(x))
$x number(x) Ù greater(x, 100), prime(x)

•well-formed formula (wff): a sentence with no
free variables or where all variables are bound
by a universal or existential quantifier

In ("x)P(x, y) x is bound & y is free so it’s not a wff

Quantifiers: " and $
•Universal quantification

– ("x)P(X) means P holds for all values of X in the
domain associated with variable1

– E.g., ("X) dolphin(X) ® mammal(X)
“all dolphins are mammals”

•Existential quantification
– ($x)P(X) means P holds for some value of X in

domain associated with variable
– E.g., ($X) mammal(X) Ù lays_eggs(X)

“There is a mammal that lays eggs”
– Lets us make statements about an object without

identifying it

1 a variable’s domain is often not explicitly stated and is assumed by the context

Universal Quantifier: "
•Universal quantifiers typically used with

implies to form rules:
Logic: "X student(X) ® smart(X)
Means: All students are smart

•Universal quantification rarely used without
implies:
Logic: "X student(X) Ù smart(X)
Means: Everything is a student and is smart

•What about this, though:
–Logic: "X alive(X) Ú dead(X)
–Means: everything is either alive or dead

Universal Quantifier: "

•What about this, though:
–Logic: "X alive(X) Ú dead(X)
–Means: everything is either alive or dead

•Can be rewritten using a standard tautology
–A Ú B ≡ ~A ® B

•Giving both of these (since AÚB ≡ BÚA)
–"X ~alive(X) ® dead(X)
–"X alive(X) ® ~dead(X)

Existential Quantifier: $

•Existential quantifiers usually used with and to
specify a list of properties about an individual

Logic: ($ X) student(X) Ù smart(X)
Meaning: There is a student who is smart

•Common mistake: represent this in FOL as:
Logic: ($ X) student(X) ® smart(X)
Meaning: ?

Existential Quantifier: $

•Existential quantifiers usually used with and to
specify a list of properties about an individual

Logic: ($ X) student(X) Ù smart(X)
Meaning: There is a student who is smart

•Common mistake: represent this in FOL as:
Logic: ($ X) student(X) ® smart(X)
P ® Q = ~P v Q
$ X student(X) ® smart(X) = $ X ~student(X) v smart(X)
Meaning: There’s something that is either not a
student or is smart

Quantifier Scope
• FOL sentences have structure, like programs
• In particular, variables in a sentence have a scope
• Suppose we want to say “everyone who is alive loves

someone”
("X) alive(X) ® ($ Y) loves(X, Y)

• Here’s how we scope the variables

("X) alive(X) ® ($Y) loves(X, Y)

Scope of x
Scope of y

Quantifier Scope
• Switching order of two universal quantifiers does

not change the meaning
– ("X)("Y) P(X,Y) ↔ ("Y)("X) P(X,Y)
– Dogs hate cats (i.e., all dogs hate all cats)

• You can switch order of existential quantifiers
– ($X)($Y) P(X,Y) ↔ ($Y)($X) P(X,Y)
– A cat killed a dog

• Switching order of universal and existential
quantifiers does change meaning:
– Everyone likes someone: ("X)($Y) likes(X,Y)
– Someone is liked by everyone: ($Y)("X) likes(X,Y)

Procedural example 1

def verify1():
Everyone likes someone: ("x)($y) likes(x,y)
for p1 in people():

foundLike = False
for p2 in people():

if likes(p1, p2):
foundLike = True
break

if not foundLike:
print(p1, ‘does not like anyone L’)
return False

return True

Every person has at
least one individual that
they like

Procedural example 2

def verify2():
Someone is liked by everyone: ($y)("x) likes(x,y)
for p2 in people():

foundHater = False
for p1 in people():

if not likes(p1, p2):
foundHater = True
break

if not foundHater
print(p2, ‘is liked by everyone J’)
return True

return False

There is a person who is
liked by every person in
the universe

Connections between " and $
•We can relate sentences involving " and $

using extensions to De Morgan’s laws:
1. ("x) P(x) ↔ ¬($x) ¬ P(x)
2. ¬("x) P(x) ↔ ($x) ¬P(x)
3. ($ x) P(x) ↔ ¬ (" x) ¬P(x)
4. ($x) P(x) ↔ ¬("x) ¬P(x)

•Examples
1. All dogs don’t like cats ↔ No dog likes cats
2. Not all dogs bark ↔ There is a dog that doesn’t bark
3. All dogs sleep ↔ There is no dog that doesn’t sleep
4. There is a dog that talks ↔ Not all dogs can’t talk

http://en.wikipedia.org/wiki/De_Morgan's_laws

Notational differences

•Different symbols for and, or, not, implies, ...

–" $ Þ Û Ù Ú ¬ • É

–p v (q ^ r)
–p + (q * r)

• Different syntax for variables vs. constants,
predicates vs. functions, etc.

Notational differences
• Typical logic notation
"x $y furry(x) Ù meows(x) Ù has(x, y) Ù claw(y) Þ cat(x)

• Prolog
cat(X) :- furry(X), meows(X), has(X, Y), claw(Y).

• Lisp notations
(forall ?x (implies (and (furry ?x) (meows ?x)

(has ?x ?y) (claw ?y))
(cat ?x)))

• Python code
e.g., AIMA python, logic.ipynb

• Knowledge graph triples
e.g., in RDF/OWL

“anything that is
furry, meows and
has claws is a cat”

https://github.com/aimacode/aima-python/blob/master/logic.ipynb
https://en.wikipedia.org/wiki/Web_Ontology_Language

Fin
24

