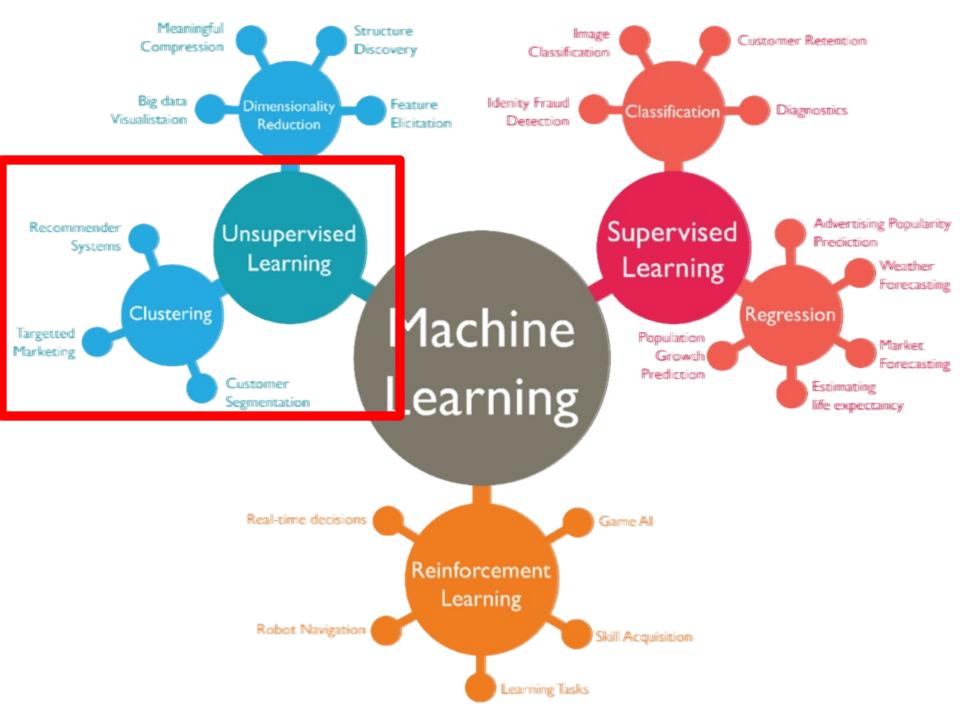


Unsupervised Learning: Clustering Beyond K-means



(2) Hierarchical clustering

Agglomerative

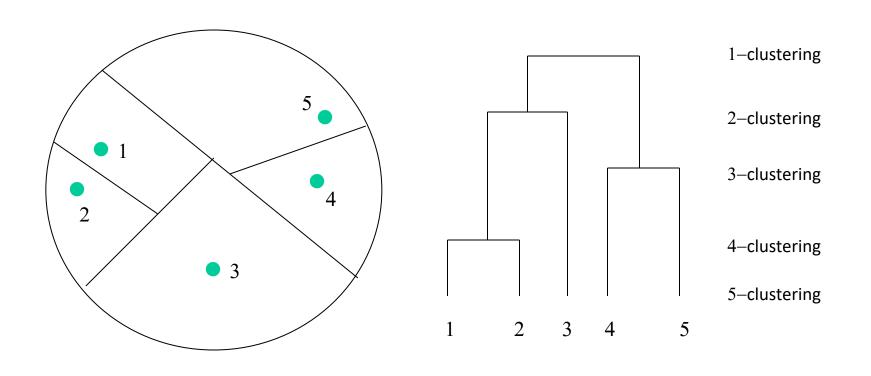
 Bottom-up approach: elements start as individual clusters & clusters are merged as one moves up the hierarchy

Divisive

-Top-down approach: elements start as a single cluster & clusters are split as one moves down the hierarchy

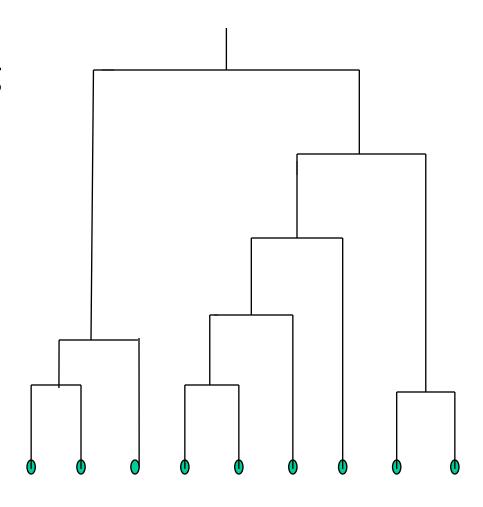
Hierarchical Clustering

Recursive partitioning/merging of a data set



Dendogram

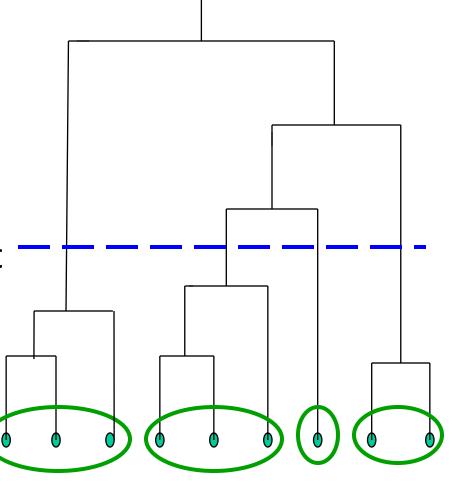
- Tree structure representing all data partitionings
- Constructed as clustering proceeds



Nine items

<u>Dendogram</u>

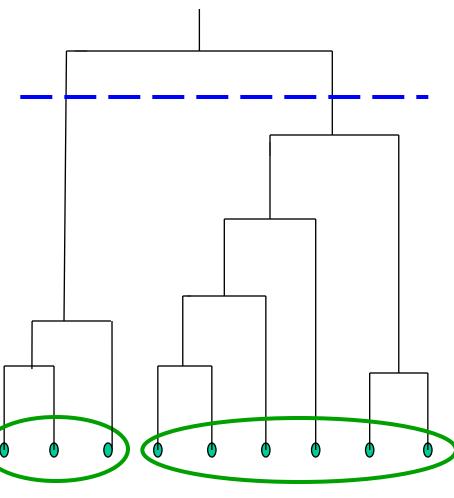
- Tree structure representing all data partitionings
- Constructed as clustering proceeds
- Get a K-clustering by looking at connected components at any given level
- Often binary dendograms, but n-ary ones easy to get with minor algorithm changes



Four clusters at this level

Dendogram

- Tree structure representing all data partitionings
- Constructed as clustering proceeds
- Get a K-clustering by looking at connected components at any given level
- Often binary dendograms, but n-ary ones easy to get with minor algorithm changes



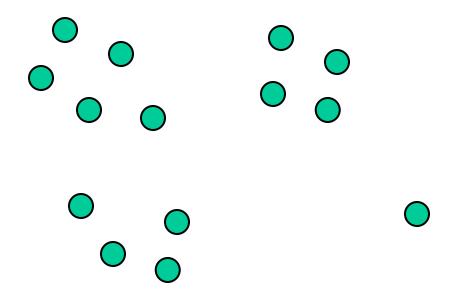
Two clusters at this level

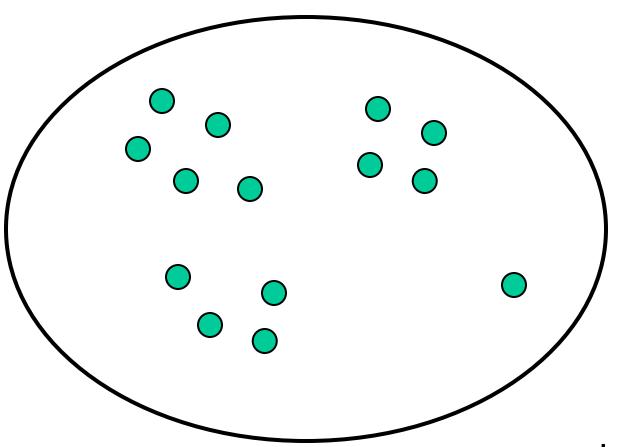
Hierarchical clustering advantages

- Need not specify number of clusters
- Good for data visualization
 - See how data points interact at many levels
 - Can view data at multiple granularity levels
 - Understand how all points interact
- Specifies all of the K clusterings/partitions

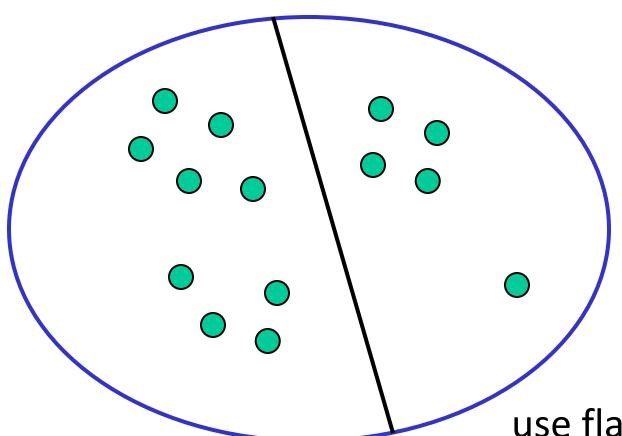
Divisive hierarchical clustering

- Top-down technique to find best partitioning of data, generally exponential in time
- Common approach:
 - Let C be a set of clusters
 - Initialize C to be a one-clustering of data
 - While there exists a cluster c in C
 - remove c from **C**
 - partition c into 2 clusters (c_1 and c_2) using a flat clustering algorithm (e.g., k-means with k=2)
 - Add to c_1 and c_2 **C**

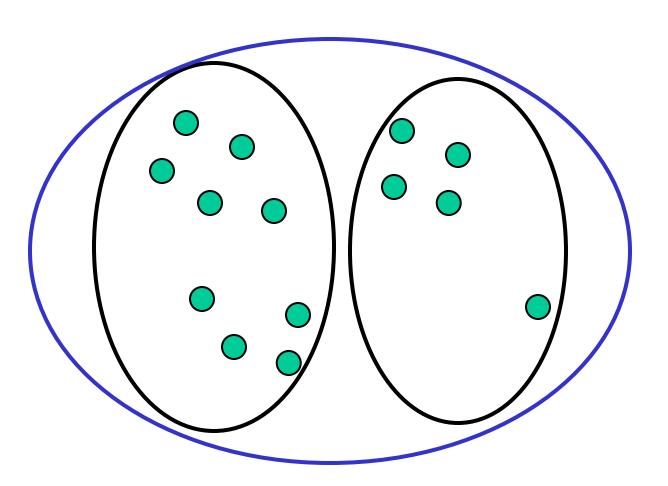


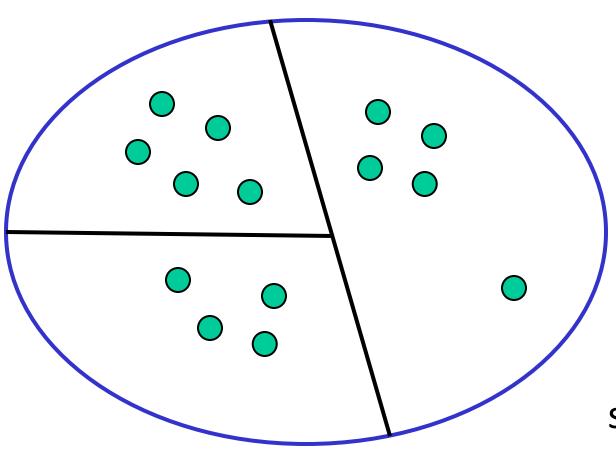


start with one cluster



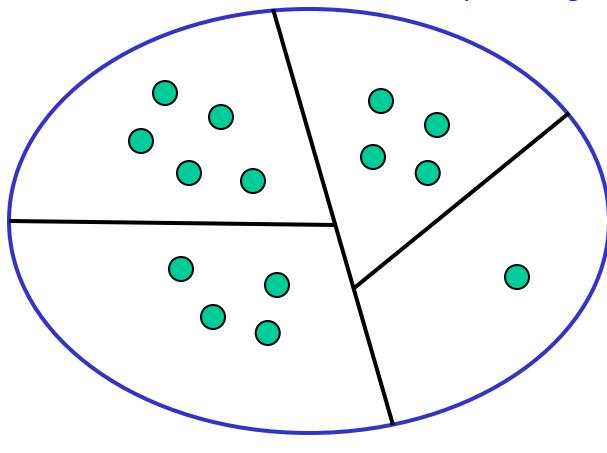
use flat clustering to split into two clusters (e.g., using K-means with k=2)



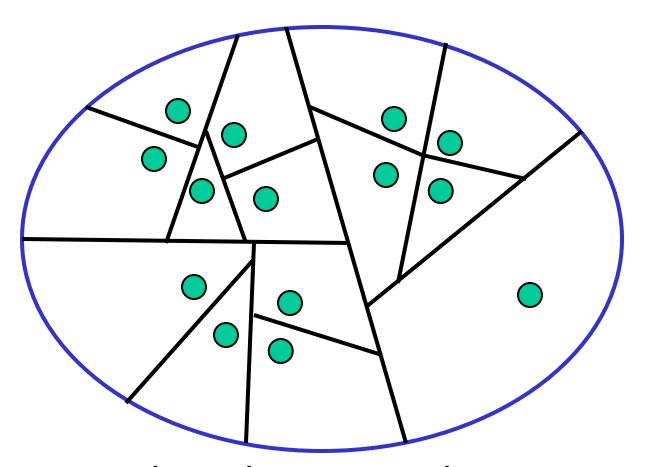


split using flat clustering, e.g., K-means

split using flat clustering



split using flat clustering, e.g., K-means



Stop when clusters reach some constraint, e.g., all of size 1

REGERING CLUSTERING

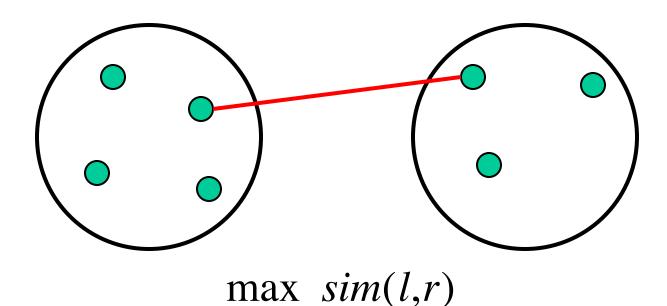
All observations start as their own cluster. Clusters meeting some criteria are merged. This process is repeated, growing clusters until some end point is reached.

ChrisAlbon

Hierarchical Agglomerative Clustering

- Let C be a set of clusters
- Initialize C to all points/docs as separate clusters
- While C contains more than one cluster
 - -find c_1 and c_2 in **C** that are **closest together**
 - -remove c_1 and c_2 from **C**
 - -merge c_1 and c_2 and add resulting cluster to **C**
- Merging history forms a binary tree or hierarchy
- Q: How to measure distance between clusters?

Single-link: Similarity of the *most* similar (single-link)



 $l \in L, r \in R$

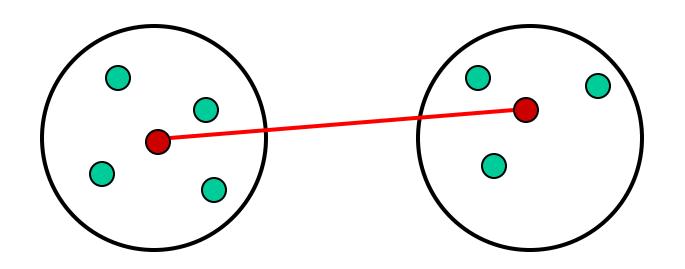
Weka: linkType=SINGLE

Complete-link: Similarity of the "furthest" points, the *least* similar

$$\min_{l \in L, r \in R} sim(l, r)$$

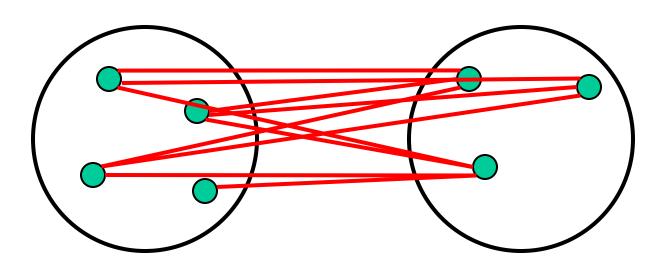
Weka: linkType=COMPLETE

Centroid: Clusters whose centroids (centers of gravity) are the most similar



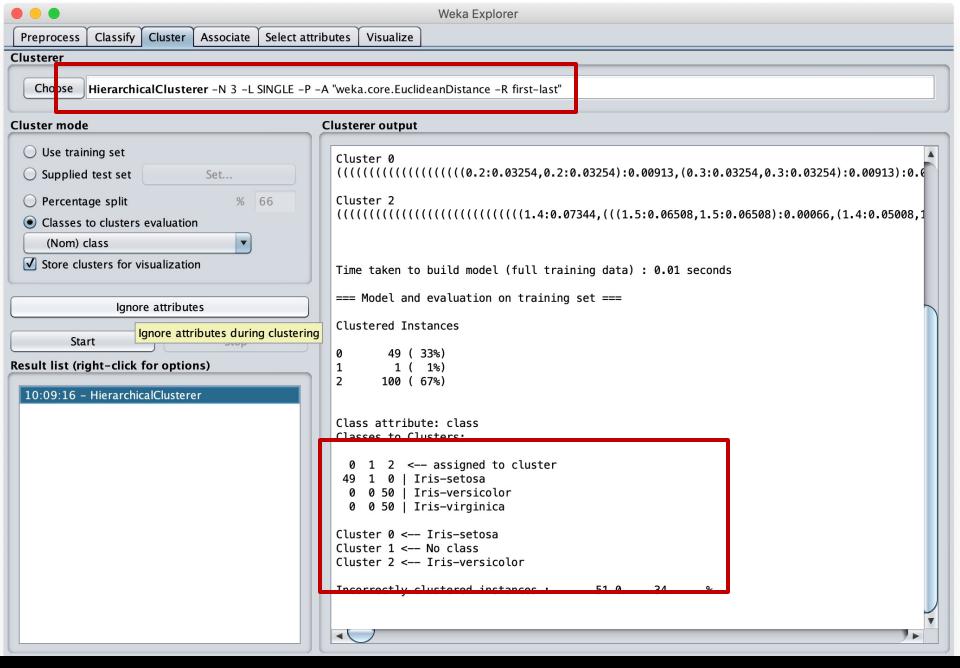
$$\|\mu(L) - \mu(R)\|^2$$

Average-link: Average similarity between all pairs of elements

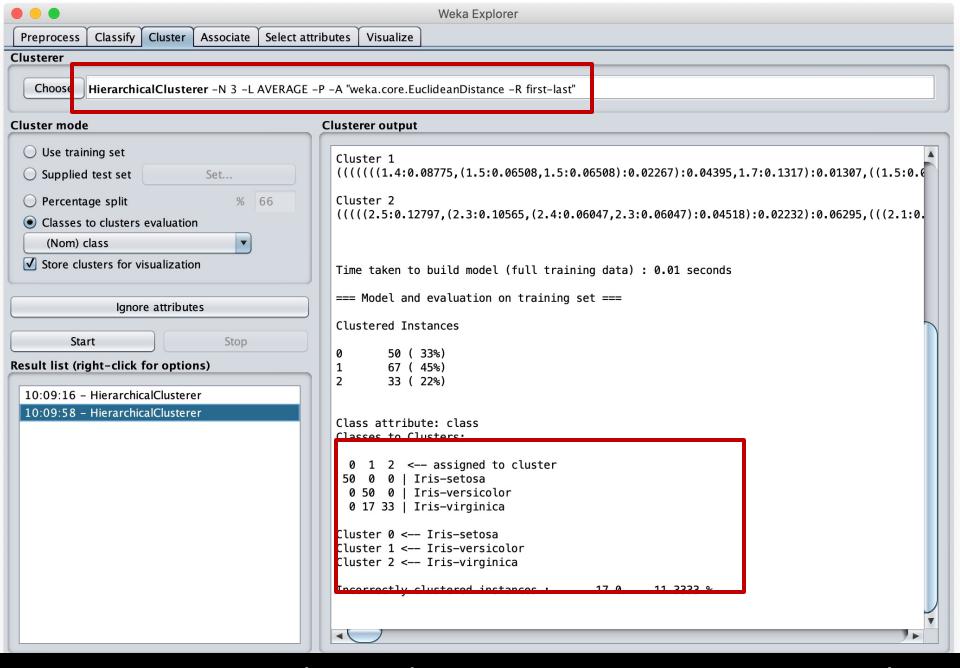


$$\frac{1}{|L| \cdot |R|} \sum_{x \in L, y \in R} ||x - y||^2$$

Weka: linkType=AVERAGE



Defaut **SINGLE** cluster distance gives poor results here



Using AVERAGE cluster distance measure improves results

Knowing when to stop

- General issue is knowing when to stop merging/splitting a cluster
- We may have a problem specific desired range of clusters (e.g., 3-6)
- There are some general metrics for assessing quality of a cluster
- There are also domain specific heuristics for cluster quality

(3) DBSCAN Algorithm

- Density-Based Spatial Clustering of Applications with Noise
- It clusters close points based on a distance and a minimum number of points
 - Key parameters: eps=maximum distance between two points; minPoints= minimal cluster size
- Marks as outliers points in low-density regions
- Needn't specify number of clusters expected
- Fast

DBERN

DBSCAN looks for densely packed observations and makes no assumptions about the number or shape of clusters.

1. A random observation, xi, is selected

2. If x; has a minimum of close neighbors, we consider it part of a cluster.

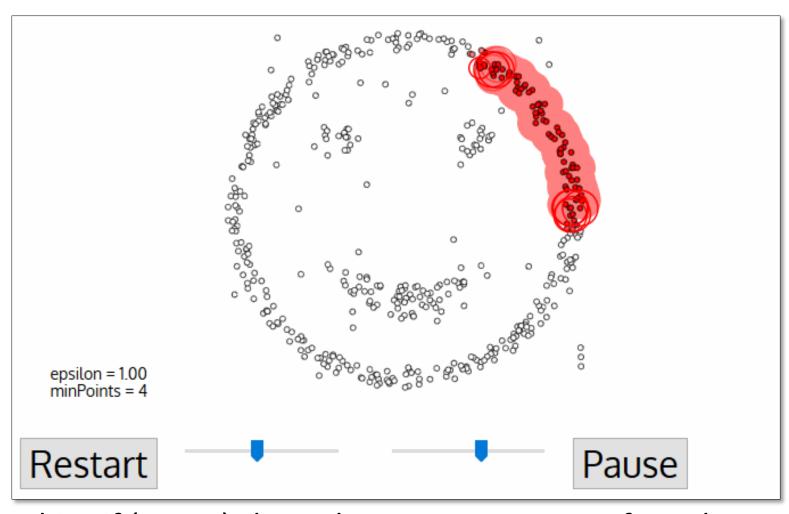
3. Step 2 is repeated recursively for all of x's neighbors, then neighbors' neighbors etc... These are the cluster's core members.

4. Once Step 3 runs out of observations, a new random point is chosen

Afterwards, observations not part of a core are assigned to a nearby cluster or marked as outliers.

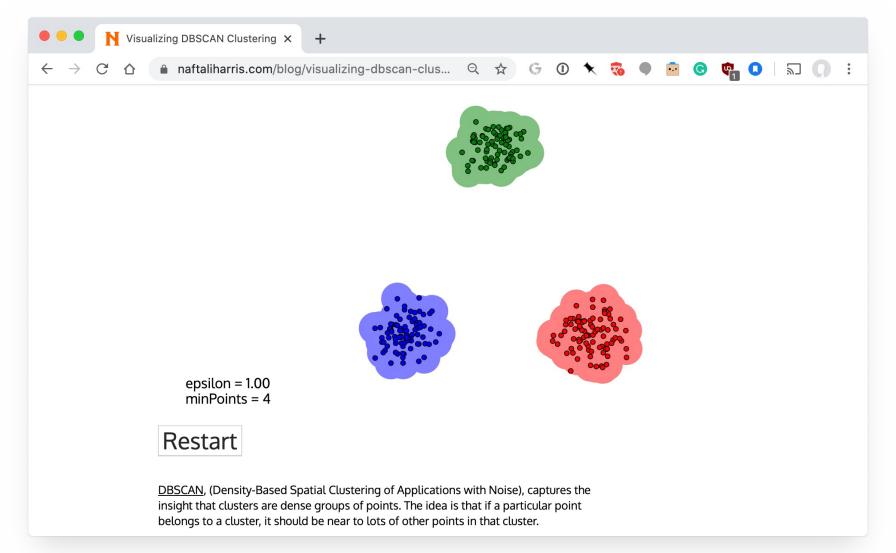
ChrisAlbon

DBSCAN Example

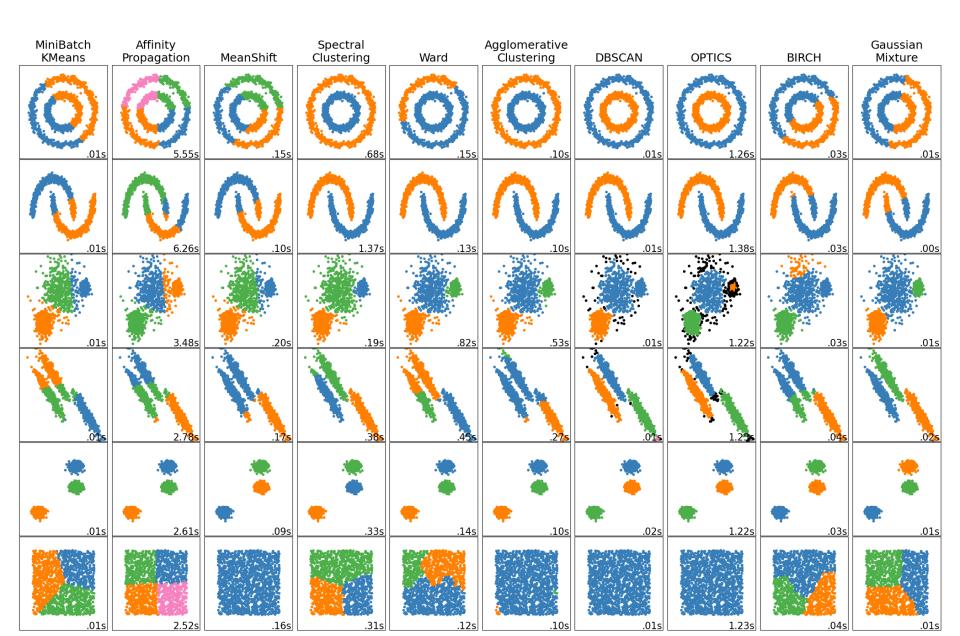


This gif (in ppt) shows how DBSCAN grows four clusters and identifies the remaining points as outliers

Visualizing DBSCAN https://bit.ly/471dbscan



Comparing clustering algorithms via Scikit Learn



Clustering Summary

- Clustering useful & effective for many tasks
- K-means clustering one of simplest & fastest techniques, but
 - Requires knowing how many clusters is right
 - Doesn't handle outliers well
- Hierarchical clustering slower and more general, but needs a metric to know when to stop
- There are many other clustering options