
Constraint 
Satisfaction
Russell & Norvig Ch. 6



Overview
•Constraint satisfaction is a powerful problem-

solving paradigm
– Problem: set of variables to which we must assign 

values satisfying problem-specific constraints
– Constraint programming, constraint satisfaction 

problems (CSPs), constraint logic programming…

•Algorithms for CSPs
– Backtracking (systematic search)
– Constraint propagation (k-consistency)
– Variable and value ordering heuristics
– Backjumping and dependency-directed backtracking



Motivating example: 8 Queens

Generate-and-test, with no
redundancies à “only” 88 combinations

Place 8 queens on a chess board such
That none is attacking another.

8**8 is 16,777,216



Motivating example: 8-Queens

After placing these two queens, it’s 
trivial to mark the squares we can 
no longer use



What more do we need for 8 queens?

• Not just a successor function and goal test
• But also 

– a means to propagate constraints 
imposed by one queen on placement of 
others 

– an early failure test
à Explicit representation of constraints and 

constraint manipulation algorithms



Informal definition of CSP
•CSP (Constraint Satisfaction Problem), given

(1) finite set of variables
(2) each with domain of possible values (often finite)
(3) set of constraints on values variables can take

•Solution: assignment of a value to each variable 
such that all constraints are satisfied

•Possible tasks: (1) does solution exist, (2) find a 
solution, (3) find all solutions, (4) find best 
solution w.r.t. some metric (objective function)

https://en.wikipedia.org/wiki/Constraint_satisfaction_problem


Example: 8-Queens Problem

•What are the variables?
• What are the variables

domains, i.e., sets of possible
values

•What are the constraints
between (pairs of) variables?



Example: 8-Queens Problem

• Eight variables Qi, i = 1..8 where Qi is the row 
number of queen in column i

• Domain for each variable {1,2,…,8}
• Constraints are of the forms:

–No queens on same row
Qi = k è Qj ¹ k  for j = 1..8, j¹i

–No queens on same diagonal
Qi=rowi, Qj=rowj è|i-j|¹|rowi-rowj| for j = 1..8, j¹i



Example: Map coloring
Color this map using three colors (red, green, 
blue) such that no two adjacent regions have 
the same color

E

D A

C

B



Map coloring 
• Variables:     A, B, C,  D,  E all of domain RGB
• Domains:      RGB = {red, green, blue}
• Constraints: A¹B, A¹C, A¹E, A¹D, B¹C, C¹D, D¹E

• A solution:    A=red, B=green, C=blue, D=green, E=blue

E
D A

C
B

E
D A

C
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Brute Force methods
•Finding a solution by a brute force 

search is easy
– Generate and test is a weak method
– Just generate potential combinations and 

test each

•Potentially very inefficient
–With n variables where each can have one 

of 3 values, there are 3n possible solutions 
to check

•There are ~190 countries in the world, 
which we can color using four colors

•4190 is a big number!

solve(A,B,C,D,E) :-
color(A),
color(B),
color(C),
color(D),
color(E),
not(A=B),
not(A=B),
not(B=C),
not(A=C),
not(C=D),
not(A=E),
not(C=D).

color(red).
color(green).
color(blue).

4**190 is  2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394176L

generate

test

A Prolog program a 
CSP problem solve this



Example: Boolean SATisfiability
•Given a set of propositions, find assignment of 

variables to {true, false}  making them all true 
(i.e., satisfying them)

•E.g., the 2 clauses: (A Ú B Ú ¬C), ( ¬A Ú D) are 
made true (i.e., satisfied) by assigning
A = false, B = true, C = false, D = false

•Satisfiability known to be NP-complete
⇒ worst case, solving CSP problems requires 
exponential time

•Many real-world problems reduce to SAT

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem


Real-world problems

• Scheduling
• Temporal reasoning
• Building design
• Planning
• Optimization/satisfaction
• Vision

• Graph layout
• Network management
• Natural language 

processing
• Molecular biology / 

genomics
• VLSI design

CSPs are a good match for many practical 
problems that arise in the real world



Running example: coloring Australia

• Seven variables: {WA, NT, SA, Q, NSW, V, T}
• Each variable has same domain: {red, green, blue}
• No two adjacent variables can have same value:

WA¹NT, WA¹SA, NT¹SA, NT¹Q, SA¹Q, SA¹NSW,
SA¹V,Q¹NSW, NSW¹V

T

WA

NT

SA

Q

NSW

V



Unary & binary constraints most common
Binary constraints

T

WA

NT

SA

Q

NSW

V

• Two variables are adjacent or neighbors if
connected by an edge or an arc
• Possible to rewrite problems with higher-order

constraints as ones with just binary constraints

T1

T2

T3

T4



Formal definition of a CN

•Instantiations
–An instantiation of a subset of variables S is 

an assignment of a value (in its domain) to 
each variable in S

–An instantiation is legal iff it violates no 
constraints

•A solution is a legal instantiation of all 
variables in the network



Typical tasks for CSP

•Possible solution related tasks:
–Does a solution exist?
–Find one solution
–Find all solutions
–Given a metric on solutions, find best one
–Given a partial instantiation, do any of above

•Transform the constraint network into an 
equivalent one that’s easier to solve



Binary CSP
•A binary CSP is one where all constraints 

involve two variables (or just one variable)
•Any non-binary CSP can be converted into a 

binary CSP by introducing additional variables
•Binary CSPs represented as a constraint graph, 

with a node for each variable and an arc 
between two nodes iff there’s a constraint 
involving them
– Unary constraints appear as self-referential arcs



Running example: coloring Australia

• Seven variables: {WA, NT, SA, Q, NSW, V, T}
• Each variable has same domain: {red, green, blue}
• No two adjacent variables can have same value:

WA¹NT, WA¹SA, NT¹SA, NT¹Q, SA¹Q, SA¹NSW,
SA¹V,Q¹NSW, NSW¹V

T

WA

NT

SA

Q

NSW

V



A running example: coloring Australia

•Solutions: complete & consistent assignments
•Here is one of several solutions
•For generality, constraints can be expressed as 

relations, e.g., describe WA ≠ NT as
{(red,green), (red,blue), (green,red), (green,blue), (blue,red),(blue,green)}

T

WA

NT

SA

Q

NSW

V



Backtracking example



Backtracking example



Backtracking example



Backtracking example



Basic 
backtracking 

algorithm

CSP-backtracking(PartialAssignment A)
– If A is complete then return a
– X ß select an unassigned variable
– D ß select an ordering for the domain of X
– For each value v in D do

If v consistent with a then 
– Add (X=v) to A
– result ß CSP-BACKTRACKING(A)

– If result ¹ failure then return result  
– Remove (X= v) from A

– Return failure

Start with CSP-BACKTRACKING({})
Note: depth first search can solve n-queens 

problems for n ~ 25



Problems with Backtracking

•Thrashing: keep repeating the same failed 
variable assignments

•Things that can help avoid this:
–Consistency checking
–Intelligent backtracking schemes

•Inefficiency: can explore areas of the search 
space that aren’t likely to succeed
–Variable ordering can help



Improving backtracking efficiency

Here are some standard techniques to 
improve the efficiency of backtracking

–Can we detect inevitable failure early?
–Which variable should be assigned next?
–In what order should its values be tried?



Forward Checking
After variable X is assigned to 
value v, examine each unassigned 
variable Y connected to X by a 
constraint and delete values from 
Y’s domain inconsistent with v

Using forward checking and backward checking 
roughly doubles the size of N-queens problems 
that can be practically solved



Forward checking

•Keep track of remaining legal values for 
unassigned variables

•Terminate search when any variable has no 
legal values



Forward checking



Forward checking



Forward checking

SA (South Australia)
domain is empty!



Constraint propagation

•Forward checking propagates info.
from assigned to unassigned variables, but 

doesn't provide early detection for all failures
•NT and SA cannot both be blue!

Can we detect
problem earlier?



Definition: Arc consistency

•A constraint C_xy is arc consistent w.r.t. x if for 
each value v of x there is an allowed value of y

•Similarly define C_xy as arc consistent w.r.t. y
•Binary CSP is arc consistent iff every constraint 

C_xy is arc consistent w.r.t. x as well as y
•When a CSP is not arc consistent, we can make 

it arc consistent by using the AC3 algorithm

–Also called “enforcing arc consistency”

https://en.wikipedia.org/wiki/Local_consistency
https://en.wikipedia.org/wiki/AC-3_algorithm


Arc Consistency Example 1
• Domains

– D_x = {1, 2, 3}
– D_y = {3, 4, 5, 6}

• Constraint 
– Note: for finite domains, we can represent a 

constraint as a set of legal value pairs
– C_xy = {(1,3), (1,5), (3,3), (3,6)}

• C_xy isn’t arc consistent w.r.t. x or y
• Enforcing arc consistency, we get reduced domains: 

– D'_x = {1, 3}
– D'_y={3, 5, 6}

x yC_xy



Arc Consistency Example 2
•Domains

–D_x = {1, 2, 3}
–D_y = {1, 2, 3}

•Constraint: X must be less than Y
–C_xy = lambda v1,v2: v1 < v2

•C_xy not arc consistent w.r.t. x or y; enforcing 
arc consistency, we get reduced domains: 
–D'_x = {1, 2}
–D’_y = {2, 3}

x yC_xy



Aside: Python lambda expressions 

Previous slide expressed constraint between 
two variables as an anonymous Python 
function of two arguments

lambda v1,v2: v1 < v2

>>> f = lambda v1,v2: v1 < v2
>>> f
<function <lambda> at 0x10fcf21e0>
>>> f(100,200)
True
>>> f(200,100)
False

Python uses 
lambda after 
Alonzo Church’s 
lambda calculus 
from the 1930s

https://en.wikipedia.org/wiki/Lambda_calculus


Arc consistency

•Simplest form of propagation makes each 
arc consistent

•X àY is consistent iff for every value xi of X 
there is some allowed value yj in Y



Arc consistency

•Simplest form of propagation makes each 
arc consistent

•X àY is consistent iff for every value xi of X 
there is some allowed value yj in Y



Arc consistency
• Arc consistency detects failure earlier than

simple forward checking
• WA=red and Q=green is quickly recognized as a 

deadend, i.e. an impossible partial instantiation
• The arc consistency algorithm can be run as a 

preprocessor or after each assignment



General CP for Binary Constraints
Algorithm AC3 
contradiction ß false
Q ß stack of all variables
while Q is not empty and not contradiction do

X ß UNSTACK(Q)
For every variable Y adjacent to X do

If REMOVE-ARC-INCONSISTENCIES(X,Y) 
If domain(Y) is non-empty then STACK(Y,Q)
else return false

http://en.wikipedia.org/wiki/AC-3_algorithm


Complexity of AC3

•e = number of constraints (edges)
•d = number of values per variable
•Each variable inserted in queue up to d 

times
•REMOVE-ARC-INCONSISTENCY takes O(d2) 

time
• CP takes O(ed3) time



Improving backtracking efficiency

•Some standard techniques to improve the 
efficiency of backtracking
– Can we detect inevitable failure early?
– Which variable should be assigned next?
– In what order should its values be tried?

•Combining constraint propagation with these 
heuristics makes 1000-queen puzzles feasible



• AKA most constrained variable:
choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic
• After assigning value to WA, both NT and SA have 

only two values in their domains 
– choose one of them rather than Q, NSW, V or T

H1: pick var with fewest values



H2: most constraining variable

• Tie-breaker afterH1, minimum remaining values 
• Choose variable involved in largest # of constraints 

on remaining variables

• After assigning SA to be blue, WA, NT, Q, NSW and V 
all have just two values left.

• WA and V have only one constraint on remaining 
variables and T none, so choose one of NT, Q & NSW

T

WA

NT

SA

Q

NSW
V



H3: Least constraining value

•Given variable, try value that’s least 
constraining on its neighbors:
– the one that rules out the fewest values in the 

remaining variables

•Combining these heuristics makes 1000 
queens feasible

•What’s an intuitive explanation for this?



Is AC3 Alone Sufficient?

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Consider the four queens problem



Solving a CSP still requires search

•Search: 
–can find good solutions, but must examine 

non-solutions along the way
•Constraint Propagation:

–can rule out non-solutions, but this is not 
the same as finding solutions

•Interweave constraint propagation & search:
–perform constraint propagation at each 

search step



1

3
2

4

32 41

1

3
2

4

32 41

1

3
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4

32 41
1

3
2

4

32 41

Using Search



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Using CSP

Try assigning X1=1



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X1=1  eliminates { X2=1,2, X3=1,3, X4=1,4 }



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=3  eliminates { X3=2, X3=3, X3=4 }
Þ inconsistent!



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=4 Þ X3=2, which eliminates { X4=2, X4=3}
Þ inconsistent!



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X1 can’t be 1, let’s try 2



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Can we eliminate any other values?



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X

Yes! We know X2=4, so X3 can’t be 3



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Arc constancy eliminates x3=3 because it’s not
consistent with X2’s remaining values

X



4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

There is only one solution with X1=2



Sudoku
• Digit placement puzzle on 9x9 grid with unique answer
• Given an initial partially filled grid, fill remaining 

squares with a digit between 1 and 9
• Each column, row, and nine 3×3 sub-grids must 

contain all nine digits

• Some initial configurations are easy to solve and 
others very difficult

http://en.wikipedia.org/wiki/Sudoku


Sudoku Example

How can we set this up as a CSP?

initial problem a solution



def sudoku(initValue):
p = Problem()
for i in range(1, 10) : # Variable for each cell: 11,12,13...21,22,...98,99

p.addVariables(range(i*10+1, i*10+10), range(1, 10))
for i in range(1, 10) :  # Each row has different values

p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
for i in range(1, 10) :  # Each column has different values

p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
# Each 3x3 box has different values
p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])

p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])

p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
for i in range(1, 10) :  # unary constraints for cells with initial non-zero values

for j in range(1, 10):
value = initValue[i-1][j-1]
if value: p.addConstraint(lambda var, val=value: var == val, (i*10+j,))

return p.getSolution() # find and return a solution

# Sample problems
easy = [

[0,9,0,7,0,0,8,6,0],
[0,3,1,0,0,5,0,2,0],
[8,0,6,0,0,0,0,0,0],
[0,0,7,0,5,0,0,0,6],
[0,0,0,3,0,7,0,0,0],
[5,0,0,0,1,0,7,0,0],
[0,0,0,0,0,0,1,0,9],
[0,2,0,6,0,0,0,5,0],
[0,5,4,0,0,8,0,7,0]]

hard = [
[0,0,3,0,0,0,4,0,0],
[0,0,0,0,7,0,0,0,0],
[5,0,0,4,0,6,0,0,2],
[0,0,4,0,0,0,8,0,0],
[0,9,0,0,3,0,0,2,0],
[0,0,7,0,0,0,5,0,0],
[6,0,0,5,0,2,0,0,1],
[0,0,0,0,9,0,0,0,0],
[0,0,9,0,0,0,3,0,0]]

very_hard = [
[0,0,0,0,0,0,0,0,0],
[0,0,9,0,6,0,3,0,0],
[0,7,0,3,0,4,0,9,0],
[0,0,7,2,0,8,6,0,0],
[0,4,0,0,0,0,0,7,0],
[0,0,2,1,0,6,5,0,0],
[0,1,0,9,0,5,0,4,0],
[0,0,8,0,2,0,7,0,0],
[0,0,0,0,0,0,0,0,0]]



Local search for constraint problems
•Remember local search?
•There’s a version of local search for CSP 

problems
•Basic idea: 

–generate a random “solution”
–Use metric “number of violated constraints”
–Modifying solution by reassigning one variable 

at a time to decrease metric until solution found 
or no modification improves it

•Has all features and problems of local search
like….?



Min Conflict Example
•States: 4 Queens, 1 per column
•Operators: Move a queen in its column

•Goal test: No attacks
•Evaluation metric: Total number of attacks

How many conflicts does each state have?



Basic Local Search Algorithm
Assign one domain value di to each variable vi

while no solution & not stuck & not timed out:
bestCost ¬¥; bestList ¬ [ ];
for each variable vi | Cost(Value(vi)) > 0

for each domain value di of vi 
if Cost(di) < bestCost

bestCost ¬ Cost(di); bestList ¬ [di];
else if Cost(di) = bestCost

bestList ¬ bestList È di
Take a randomly selected move from bestList



Eight Queens using Backtracking

Try Queen 1Try Queen 2Try Queen 3Try Queen 4Try Queen 5

Stuck!

Undo move

for Queen 5

Try next value
for Queen 5

Still Stuck

Undo move
for Queen 5
no move left

Backtrack and
undo last 

move
for Queen 4

Try next value
for Queen 4

Try Queen 5Try Queen 6Try Queen 7

Stuck Again

Undo move
for Queen 7
and so on...

Note: in this example we put one queen in each row, not column



Place 8 Queens
randomly on

the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try

another 
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31
2 2 32 1 3 2 11

3 2 23 3 3 3 01

Answer Found

Note: in this example we put one queen in each row, not column



Backtracking Performance
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Local Search Performance
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Min Conflict Performance
• Performance depends on quality and 

informativeness of initial assignment; 
inversely related to distance to solution 

• Min Conflict often has astounding 
performance

• Can solve arbitrary size (i.e., millions)  N-
Queens problems in constant time

• Appears to hold for arbitrary CSPs with the 
caveat…



Min Conflict Performance

Except in a certain critical range of the ratio 
constraints to variables.



Famous example: labeling line drawings
• Waltz labeling algorithm, earliest AI CSP application 

(1972)
– Convex interior lines labeled as +
– Concave interior lines labeled as –
– Boundary lines labeled as          with background to left

• 208 labeling possible labelings, but only 18 are legal

https://en.wikipedia.org/wiki/David_Waltz


Labeling line drawings II

Here are some illegal labelings

+ + -
-

-



Labeling line drawings
Waltz labeling algorithm: propagate constraints 
repeatedly until a solution is found

solution for one 
labeling problem

labeling problem 
with no solution



Labeling line drawings
This line drawing is ambiguous, with two 
interpretations



Shadows add complexity

CSP was able to label scenes where some
of the lines were caused by shadows



Challenges for constraint reasoning

•What if not all constraints can be satisfied?
– Hard vs. soft constraints vs. preferences
– Degree of constraint satisfaction
– Cost of violating constraints

•What if constraints are of different forms?
– Symbolic constraints
– Logical constraints
– Numerical constraints [constraint solving]
– Temporal constraints
– Mixed constraints



Summary

•Many problems can be effectively modeled  
as constraints solving problems

•The approach is very good at reducing the 
amount of search needed

•Arc consistency is simple yet powerful
•Constraints are also useful for local search
•There’s a lot of complexity in many real-

world problems that require additional 
ideas and tools


