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Overview

• Game playing

– State of the art and resources

– Framework

• Game trees

– Minimax

– Alpha-beta pruning

– Adding randomness
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Why study games?

• Interesting, hard problems requiring minimal 

“initial structure”

• Clear criteria for success

• Study problems involving {hostile, adversarial, 

competing} agents and uncertainty of interacting 

with the natural world

• People have used them to assess their intelligence

• Fun, good, easy to understand, PR potential

• Games often define very large search spaces, e.g.

chess 35100 nodes in search tree, 1040 legal states
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Chess early days

• 1948: Norbert Wiener describes how chess program 
can work using minimax search with an evaluation 
function

• 1950: Claude Shannon publishes Programming a
Computer for Playing Chess

• 1951: Alan Turing develops on paper 1st program 
capable of playing full chess games (Turochamp)

• 1958: 1st program plays full game on IBM 704 (loses)

• 1962: Kotok & McCarthy (MIT) 1st program to play 
credibly

• 1967: Greenblatt’s Mac Hack Six (MIT) defeats a 
person in regular tournament play
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https://en.wikipedia.org/wiki/Cybernetics:_Or_Control_and_Communication_in_the_Animal_and_the_Machine
http://www.csee.umbc.edu/courses/graduate/671/fall12/resources/ProgrammingaComputerforPlayingChess.pdf
https://en.wikipedia.org/wiki/Turochamp
https://www.youtube.com/watch?v=iT_Un3xo1qE
https://en.wikipedia.org/wiki/Kotok-McCarthy
http://en.wikipedia.org/wiki/Mac_Hack


State of the art
• 1979 Backgammon: BKG (CMU) tops world 

champ

• 1994 Checkers: Chinook is the world champion

• 1997 Chess: IBM Deep Blue beat Gary Kasparov

• 2007 Checkers: solved (it’s a draw)

• 2016 Go: AlphaGo beat champion Lee Sedol

• 2017 Poker: CMU’s Libratus won $1.5M from 4 top 
poker players in 3-week challenge in casino

• 20?? Bridge: Expert bridge programs exist, but no 
world champions yet
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http://www.bkgm.com/articles/Berliner/BackgammonProgramBeatsWorldChamp/
https://en.wikipedia.org/wiki/Chinook_(draughts_player)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
http://www.cs.nyu.edu/courses/spring13/CSCI-UA.0472-001/Checkers/checkers.solved.science.pdf
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Libratus
https://en.wikipedia.org/wiki/Computer_bridge


Classical vs. Statistical/Neural 
Approaches

• We’ll look first at the classical approach used 
from the 1940s to 2010

• Then at newer statistical approached of 
which AlphaGo is an example

• These share some techniques
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Typical simple case for a game

• 2-person game, with alternating moves 

• Zero-sum: one player’s loss is the other’s gain

• Perfect information: both players have access to 

complete information about state of game.  No 

information hidden from either player.

• No chance (e.g., using dice) involved 
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Typical simple case for a game

• 2-person game, with alternating moves 

• Zero-sum: one player’s loss is the other’s gain

• Perfect information: both players have access to 

complete information about state of game.  No 

information hidden from either player.

• No chance (e.g., using dice) involved 

• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello

• But not: Bridge,  Solitaire, Backgammon, Poker, 

Rock-Paper-Scissors, ...
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Can we use …

• Uninformed search?

• Heuristic search?

• Local search?

• Constraint based search?

None of these model the fact that we have an 

adversary …
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How to play a game

• A way to play such a game is to:

– Consider all the legal moves you can make

– Compute new position resulting from each move

– Evaluate each to determine which is best

– Make that move

– Wait for your opponent to move and repeat

• Key problems are:

– Representing the “board” (i.e., game state)

– Generating all legal next boards

– Evaluating a position
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Evaluation function
• Evaluation function or static evaluator used to 

evaluate the “goodness” of a game position

Contrast with heuristic search, where evaluation function  

estimates cost from start node to goal passing through given node

• Zero-sum assumption permits single function to 

describe goodness of board for both players

– f(n)  >> 0: position n good for me; bad for you

– f(n) << 0:  position n bad for me; good for you

– f(n) near 0: position n is a neutral position

– f(n) = +infinity: win for  me

– f(n) = -infinity: win for you  
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https://en.wikipedia.org/wiki/Zero-sum_game


Evaluation function examples

• For Tic-Tac-Toe

f(n) = [# my open 3lengths] - [# your open 3lengths] 

Where 3length is complete row, column or diagonal 

that has no opponent marks 

• Alan Turing’s function for chess

– f(n) = w(n)/b(n) where w(n) = sum of point value 

of white’s pieces and b(n) = sum of black’s

– Traditional piece values: pawn:1; knight:3; 

bishop:3; rook:5; queen:9
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Evaluation function examples

• Most evaluation functions specified as a 

weighted sum of positive features

f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n) 

• Example chess features are piece count, piece 

values, piece placement, squares controlled, 

etc. 

• IBM’s chess program Deep Blue (circa 1996) 

had >8K features in its evaluation function
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https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)


But, that’s not how people play

• People also use look ahead

i.e., enumerate actions, consider opponent’s 
possible responses, REPEAT

• Producing a complete game tree is only 
possible for simple games

• So, generate a partial game tree for some 
number of plys

– Move = each player takes a turn

– Ply = one player’s turn

• What do we do with the game tree?
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http://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Ply_(game_theory)


• We can easily generate a 
complete game tree for 
Tic-Tac-Toe

• Taking board symmetries 
into account, there are 
138 terminal positions

• 91 wins for X, 44 for O 
and 3 draws
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Game trees

• Problem spaces for typical games are trees

• Root node is current board configuration; player 

must decide best single move to make next

• Static evaluator function rates board position 

f(board):real,  >0 for me; <0 for opponent

• Arcs represent possible legal moves for a player 

• If my turn to move, then root is labeled a "MAX" 

node; otherwise it’s a "MIN" node 

• Each tree level’s nodes are all MAX or all MIN; 

nodes at level i are of opposite kind from those at 

level i+1 
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Game Tree for Tic-Tac-Toe

MAX’s play →

MIN’s play →

Terminal state
(win for MAX) →

Here, symmetries are used to 
reduce branching factor

MIN nodes

MAX nodes
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Minimax procedure

• Create MAX node with current board 
configuration 

• Expand nodes to some depth (a.k.a. plys) of 
lookahead in game

• Apply evaluation function at each leaf node 

• Back up values for each non-leaf node until value 
is computed for the root node

–At MIN nodes: value is minimum of children’s values

–At MAX nodes: value is maximum of children’s values

• Choose move to child node whose backed-up 
value determined value at root 
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Minimax theorem
• Intuition: assume your opponent is at least as smart as 

you and play accordingly

– If she’s not, you can only do better!

• Von Neumann, J: Zur Theorie der Gesellschafts-spiele
Math. Annalen. 100 (1928) 295-320
For every 2-person, 0-sum game with finite strategies, there is a 
value V and a mixed strategy for each player, such that (a) given 
player 2's strategy, best payoff possible for player 1 is V, and (b) 
given player 1's strategy, best payoff possible for player 2 is –V.

• You can think of this as:
–Minimizing your maximum possible loss

–Maximizing your minimum possible gain
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https://en.wikipedia.org/wiki/John_von_Neumann


Minimax Algorithm

2 7 1 8

MAX

MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2This is the move

selected by minimax
Static evaluator value
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Partial Game Tree for Tic-Tac-Toe

f(n)=+1 if position win for X

f(n)=-1 if position win for O

f(n)=0 if position a draw
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Why backed-up values?

▪Why not just use a good static evaluator metric on 

immediate children

▪ Intuition: if metric is good, doing look ahead and 

backing up values with Minimax should be better

▪Non-leaf node N’s backed-up value is value of best 

state MAX can reach at depth h if MIN plays well

▪ “plays well”: same criterion as MAX applies to itself

▪ If e is good, then backed-up value is better estimate 

of STATE(N) goodness than e(STATE(N)) 

▪Use lookahead horizon h because time to choose 

move is limited
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Minimax Tree

MAX node

MIN node

f value
value computed 

by minimax
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Is that all
there is to simple 

games?
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Alpha-beta pruning

• Improve performance of the minimax 

algorithm through alpha-beta pruning

• “If you have an idea that is surely bad, don't take 

the time to see how truly awful it is” -Pat Winston 

(MIT) 

2 7 1

b: =2

a: ≥2 

b: ≤1

?

• We don’t need to compute 

the value at this node

• No matter what it is, it can’t 

affect value of the root node

MAX

MAX

MIN
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https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning


Alpha-beta pruning

• Traverse search tree in depth-first order 

• At MAX node n, alpha(n) = max value found so far

Alpha values start at -∞ and only increase

• At MIN node n, beta(n) = min value found so far

Beta values start at +∞ and only decrease

• Beta cutoff: stop search below MAX node N (i.e., 

don’t examine more descendants) if alpha(N) >= 

beta(i) for some MIN node ancestor i of N

• Alpha cutoff: stop search below MIN node N if 

beta(N)<=alpha(i) for a MAX node anceastor i of N
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Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example

b: 2

2

Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase
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Alpha-Beta Tic-Tac-Toe Example

1

b: 1

2

Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase
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Alpha-Beta Tic-Tac-Toe Example

a: 1

Alpha value of MAX
node is lower bound on
final backed-up value;
it can never decrease

1

b: 1

2
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Alpha-Beta Tic-Tac-Toe Example

a: 1

1

b = 1

2 -1

b: -1
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Alpha-Beta Tic-Tac-Toe Example

a = 1

1

b = 1

2 -1

b = -1

Discontinue search below a MIN node whose beta 

value ≤ alpha value of one of its MAX ancestors 32



Stochastic Games
• In real life, unpredictable external events can 

put us into unforeseen situations

• Many games introduce unpredictability 
through a random element, such as the 
throwing of dice

• These offer simple scenarios for problem 
solving with adversaries and uncertainty
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Example: Backgammon

•Popular two-player game 
with uncertainty

•Players roll dice to determine 
what moves can be made

•White has just rolled 5 & 6, 
giving four legal moves:

•5-10, 5-11

•5-11, 19-24

•5-10, 10-16

•5-11, 11-16

•Good for exploring decision 
making in adversarial prob-
lems involving skill and luck 34

https://en.wikipedia.org/wiki/Backgammon


Why can’t we use MiniMax?

• Before a player chooses a move, she rolls dice 

and only then knows exactly what moves are 

possible

• The immediate outcome of each move is also 

known

• But she does not know what moves she or  

her opponent will have available in the future

• Need to adapt MiniMax to handle this
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MiniMax trees with Chance Nodes
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Understanding the notation

Max’s move 1 Max’s move 2

Board state includes chance outcome determining available moves 

Min flips coin

Min knows two 
possible moves 

Apply static 
evaluator here 

Outcome probability
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Game trees with chance nodes
•Chance nodes (circles) represent random events

•For random event with N outcomes, chance node has N children, 
each with a probability

•2 dice: 21 distinct outcomes

•Use minimax to compute values
for MAX and MIN nodes

•Use expected values for
chance nodes

•Chance nodes over max node:
expectimax(C) = ∑i(P(di)*maxval(i))

•Chance nodes over min node:
expectimin(C) = ∑i(P(di)*minval(i))

Max
Rolls

Min
Rolls
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Impact on lookahead

• Dice rolls increase branching factor

– There are 21 possible rolls with two dice

• Backgammon: ~20 legal moves for given roll 

~6K with 1-1 roll (get to roll again!)

• At depth 4: 20 * (21 * 20)**3 ≈ 1.2B boards

• As depth increases, probability of reaching a 
given node shrinks

– lookahead’s value diminished and alpha-beta 
pruning is much less effective

• TDGammon used depth-2 search + good static 
evaluator to achieve world-champion level 39

http://www.cs.ualberta.ca/~sutton/book/11/node2.html


Meaning of the evaluation 
function

• With probabilities & expected values we must be careful 
about meaning of values returned by static evaluator

• Relative-order preserving change of static evaluation 
values doesn’t change minimax decision, but could here

• Linear transformations are OK

A1 is best 
move

A2 is best 
move

2 outcomes: 
probabilities {.9, .1}
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Games of imperfect information

• E.g. card games where opponent's initial hand 
unknown

– Can calculate probability for each possible deal

– Like having one big dice roll at beginning of game

• Possible approach: minimax over each action in each 
deal; choose action with highest expected value over 
all deals

• Special case: if action optimal for all deals, it's optimal

• GIB bridge program, approximates this idea by

1. Generating 100 deals consistent with bidding

2. Picking action that wins most tricks on average
41

http://cirl.uoregon.edu/ginsberg/gibresearch.html


High-Performance Game Programs

• Many programs based on alpha-beta + iterative 

deepening + extended/singular search + 

transposition tables + huge databases + …

• Chinook searched all checkers configurations 

with ≤ 8 pieces to create endgame database of 

444 billion board configurations

• Methods general, but implementations 

improved via many specifically tuned-up 

enhancements (e.g., the evaluation functions)
42

http://webdocs.cs.ualberta.ca/~chinook/


Other Issues

• Multi-player games, no alliances

– E.g., many card games, like Hearts

• Multi-player games with alliances

–E.g., Risk

–More on this when we discuss game theory

–Good model for a social animal like humans, 
where we must balance cooperation and 
competition
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AI and video Games

• Many games include agents run by
the game program as

–Adversaries, in first person shooter games

–Collaborators, in a virtual reality game

–E.g.: AI bots in Fortnite Chapter 2

• Some games used as AI/ML challenges or 
learning environments

–MineRL: train bots to play Minecraft

–MarioAI: train bots for Super
Mario Bros
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http://minerl.io/
http://marioai.org/


General Game Playing

• General Game Playing is an idea
developed by Michael
Genesereth of Stanford

• See his site for more information

• Idea: don’t develop specialized systems to 
play specific games (e.g., Checkers) well

• Goal: design AI programs to be able to play 
more than one game successfully

• Work from a description of a novel game

45

http://en.wikipedia.org/wiki/General_game_playing
http://logic.stanford.edu/ggp/homepage/


A example of General Intelligence

• Artificial General Intelligence describes 
research that aims to create machines 
capable of general intelligent action

• Harkens back to early visions of AI, like 
McCarthy’s Advise Taker

– See Programs with Common Sense (1959)

• A response to frustration with narrow 
specialists, often seen as “hacks”

– See On Chomsky and the Two Cultures
of Statistical Learning
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http://en.wikipedia.org/wiki/Strong_AI#Artificial_General_Intelligence_research
http://en.wikipedia.org/wiki/Advice_taker
http://www.csee.umbc.edu/courses/671/fall12/resources/mcc59.pdf
http://norvig.com/chomsky.html


Perspective on Games: Con and Pro

“Chess is the Drosophila of 
artificial intelligence. However, 
computer chess has developed 
much as genetics might have if 
the geneticists had concentrated 
their efforts starting in 1910 on 
breeding racing Drosophila. We 
would have some science, but 
mainly we would have very fast 
fruit flies.”

John McCarthy, Stanford

“Saying Deep Blue doesn’t really 
think about chess is like saying an 

airplane doesn't really fly 
because it doesn't flap its wings.”

Drew McDermott, Yale
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AlphaGO

• Developed by Google’s DeepMind

• Beat top-ranked human grandmasters in 
2016

• Used Monte Carlo tree search over game tree
expands search tree via random sampling of search 
space

• Science Breakthrough of the year runner-up

Mastering the game of Go with deep neural 

networks and tree search, Silver et al., Nature, 

529:484–489, 2016

• Match with grandmaster Lee Sedol in 2016 
was subject of award-winning 2017 AlphaGo
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https://en.wikipedia.org/wiki/AlphaGo
https://deepmind.com/
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
http://www.academia.edu/download/45520717/deepmind-mastering-go.pdf
https://www.alphagomovie.com/


Go - the game

captureliberties

• Played on 19x19 board; black vs. white stones

• Huge state space O(bd): chess:~3580, go: 
~250150

• Rule: Stones on board must have an adjacent 
open point ("liberty") or be part of connected 
group with a liberty. Groups of stones losing 
their last liberty are removed from the board.
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AlphaGo implementation

• Trained deep neural networks (13 layers) to 
learn value function and policy function

• Performs Monte Carlo game search

–explore state space like minimax

–random "rollouts"

–simulate probable plays by opponent according 
to policy function
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AlphaGo implementation

• Hardware: 1920 CPUs, 28O GPUs

• Neural networks trained in two phases over 4-6 
weeks

• Phase 1: supervised learning from database of 
30 million moves in games between two good 
human players

• Phase 2: play against versions of self using 
reinforcement learning to improve performance

51
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Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2

prune!

b=14b=1

prune!
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Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3
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0

0 -3
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

5
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2
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0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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With alpha-beta we avoided computing a static 
evaluation metric for 14 of the 25 leaf nodes
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Effectiveness of alpha-beta
• Alpha-beta guaranteed to compute same value for 

root node as minimax, but with ≤ computation

• Worst case: no pruning, examine bd leaf nodes, 
where nodes have b children & d-ply search is 
done 

• Best case: examine only (2b)d/2 leaf nodes

– You can search twice as deep as minimax! 

– Occurs if each player’s best move is 1st alternative 

• In Deep Blue, alpha-beta pruning reduced 
effective branching factor from ~35 to ~6
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https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)


Many other improvements

▪ Adaptive horizon + iterative deepening

▪ Extended search: retain k>1 best paths (not 

just one) extend tree at greater depth below 

their leaf nodes to help dealing with “horizon 

effect”

▪ Singular extension: If move is obviously 

better than others in node at horizon h, 

expand it

▪ Use transposition tables to deal with 

repeated states
82

https://en.wikipedia.org/wiki/Transposition_table

