CMSC 471: Planning

Spring 2021 (Sections 01 \& 03)

Overview

- What is planning?
- Approaches to planning
-GPS / STRIPS
-Situation calculus formalism
-Partial-order planning

Planning Problem

- Find a sequence of actions that achieves a goal when executed from an initial state.
- That is, given
- A set of operators (possible actions)
- An initial state description
- A goal (description or conjunction of predicates)
- Compute a sequence of operations: a plan.

- put on right shoe
 - put on left shoe
 - put on pants
 - put on right sock - put on left sock
 - put on shirt

- Find a sequence of actions that acnieves a goal when executed from an initial state.
- That is, given
- A set of operators (possible actions)
- An initial state description
- A goal (description or conjunction of predicates)
- Compute a sequence of operations: a plan.

Planning Probls

- put on right shoe
- put on left shoe
- put on pants
- put on right sock
- put on left sock
- put on shirt
- Find a sequence of actions that acnieves a goal when executed from an in \cdot pants off
- That is, given
- A set of operators (possible actio
- right shoe off
- right sock off
- right shoe off (etc)
- An initial state description
- A goal (description or conjunction of predicates)
- Compute a sequence of operations: a plan.

Planning Proble

- put on right shoe
- put on left shoe
- put on pants
- put on right sock
- put on left sock
- put on shirt
- Find a sequence of actions that acnieves a goal when executed from an in \cdot
- That is, given
- A set of operators (possible actio.
- right shoe off
- right sock off
- right shoe off (etc)
- An initial state description
- A goal (description or conjunction of predicates)
- Compute a sequence of operatì

Some example domains

- We'll use some simple problems to illustrate planning problems and algorithms
- Putting on your socks and shoes in the morning
- Actions like put-on-left-sock, put-on-right-shoe
- Planning a shopping trip involving buying several kinds of items
- Actions like go(X), buy(Y)

Typical Assumptions (1)

- Atomic time: Each action is indivisible
- Can't be interrupted halfway through putting on pants
- No concurrent actions allowed
- Can't put on socks at the same time
- Deterministic actions
- The result of actions are completely known - no uncertainty

Typical Assumptions

- Agent is the sole cause of change in the world
- Nobody else is putting on your socks
- Agent is omniscient:
- Has complete knowledge of the state of the world
- Closed world assumption:
- Everything known-true about the world is in the state description
- Anything not known-true is known-false

Blocks World

The blocks world consists of a table, set of blocks, and a robot gripper
Some domain constraints:

- Only one block on another block
- Any number of blocks on table
- Hand can only hold one block

Typical representation:
ontable(a) handempty
ontable(c) on(b,a)
TABLE
clear(b) clear(c)

Blocks world

- A micro-world
- Some domain constraints:
- Only one block can be on another block
- Any number of blocks can be on the table
- The hand can only hold one block

Meant to be a simple model! (Applet demo at:
http://aispace.org/planning/index.shtml)

Typical BW planning problem

Typical BW planning problem

Major Approaches

- GPS / STRIPS
- Situation calculus
- Partial order planning
- Hierarchical decomposition (HTN planning)
- Planning with constraints (SATplan, Graphplan)
- Reactive planning

Planning vs. problem solving

- Planning vs. problem solving: can often solve similar problems
- Planning is more powerful and efficient because of the representations and methods used
- States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)
- Search often proceeds through plan space rather than state space (though there are also state-space planners)
- Sub-goals can be planned independently, reducing the complexity of the planning problem

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty
Goal:
on(a,b)
on(b,c)
ontable(c)

A plan
$\operatorname{pickup}(a)$
$\operatorname{stack}(a, b)$
unstack(a,b)
putdown(a)
pickup(b)
$\operatorname{stack(b,c)~}$
$\operatorname{pickup}(a)$
$\operatorname{stack}(a, b)$

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty
Goal:
on(a,b)
on(b,c)
ontable(c)

Planning as Search (?)

- Can think of planning as a search problem
- Actions: generate successor states
- States: completely described \& only used for successor generation, heuristic fn. evaluation \& goal testing
- Goals: represented as a goal test and using a heuristic function
- Plan representation: unbroken sequences of actions forward from initial states or backward from goal state

"Get a quart of milk, a bunch of bananas and a variable-speed cordless drill."

Slightly more complex KB:

Go To Sleep

Treating planning as a search
Read A Book
 problem isn't very efficient!

General Problem Solver

- The General Problem Solver (GPS) system
- An early planner (Newell, Shaw, and Simon)
- Generate actions that reduce difference between current state and goal state
- Uses Means-Ends Analysis
- Compare what is given or known with what is desired
- Select a reasonable thing to do next
- Use a table of differences to identify procedures to reduce differences
- GPS is a state space planner
- Operates on state space problems specified by an initial state, some goal states, and a set of operations

Situation Calculus Planning

- Intuition: Represent the planning problem using first-order logic
- Situation calculus lets us reason about changes in the world
- Use theorem proving to show ("prove") that a sequence of actions will lead to a desired result, when applied to a world state / situation

Situation Calculus Planning, cont.

- Initial state: a logical sentence about (situation) S_{0}
- Goal state: usually a conjunction of logical sentences
- Operators: descriptions of how the world changes as a result of the agent's actions:
- Result(a, s) names the situation resulting from executing action a in situation s.
- Action sequences are also useful:
- Result' $(1, s)$: result of executing list of actions l starting in s

Situation Calculus Planning, cont.

- Initial state:

At $\left(\right.$ Home,$\left.S_{0}\right) \wedge \neg$ Have $\left(\right.$ Milk, $\left.S_{0}\right) \wedge \neg$ Have $\left(\right.$ Bananas, $\left.S_{0}\right) \wedge \neg$ Have $\left(\right.$ Drill, $\left.S_{0}\right)$

- Goal state:
$(\exists \mathrm{s}) \mathrm{At}($ Home,s $) \wedge$ Have $($ Milk,s $) \wedge$ Have $($ Bananas,s) \wedge Have (Drill,s)
- Operators:
$\forall(\mathrm{a}, \mathrm{s})$ Have(Milk,Result $(\mathrm{a}, \mathrm{s})) \Leftrightarrow$
$((a=B u y($ Milk $) \wedge \operatorname{At}($ Grocery,s $)) \vee($ Have(Milk, s) $\wedge a \neq \operatorname{Drop}($ Milk $)))$
- Result(a,s): situation after executing action a in situation s
$(\forall s)$ Result' ${ }^{\prime}[$],s) $=s$
$(\forall \mathrm{a}, \mathrm{p}, \mathrm{s}) \operatorname{Result}^{\prime}([\mathrm{a} \mid \mathrm{p}] \mathrm{s})=\operatorname{Result}^{\prime}(\mathrm{p}, \operatorname{Result}(\mathrm{a}, \mathrm{s}))$

Situation Calculus, cont.

- Solution: a plan that when applied to the initial state gives a situation satisfying the goal query:
At(Home, Result'($\mathrm{p}, \mathrm{S}_{0}$))
\wedge Have(Milk, Result' $\left.\left(p, S_{0}\right)\right)$
\wedge Have(Bananas, Result'($p, \mathrm{~S}_{0}$))
\wedge Have(Drill, Result'(p, $\left.S_{0}\right)$)
- Thus we would expect a plan (i.e., variable assignment through unification) such as: p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore), Buy(Drill), Go(Home)]

Situation Calculus: Blocks World

- Example situation calculus rule for blocks world:
$-\operatorname{clear}(X, \operatorname{Result}(A, S)) \leftrightarrow$

```
[clear(X, S) ^
    ( }\neg(A=Stack(Y,X)\veeA=Pickup(X)
    \vee (A=Stack(Y,X)^\neg(holding(Y,S))
    \vee ~ ( A = P i c k u p ~ ( X ) ~ \wedge \neg ( h a n d e m p t y ( S ) ~ \wedge ~ o n t a b l e ( X , S ) ~ \wedge ~ c l e a r ( X , S ) ) ) ) ]
    \vee [A=Stack(X,Y)^ holding(X,S) ^ clear(Y,S)]
    \vee[A=Unstack(Y,X)^ on(Y,X,S) ^ clear(Y,S) ^ handempty(S)]
    \vee [A=Putdown (X) ^ holding(X,S)]
```

- English translation: a block is clear if

Situation Calculus: Blocks World

- Example situation calculus rule for blocks world:
$-\operatorname{clear}(\mathrm{X}, \operatorname{Result}(\mathrm{A}, \mathrm{S})) \leftrightarrow$

$$
[\text { clear }(X, S) \wedge
$$

$$
(\neg(A=\operatorname{Stack}(Y, X) \vee A=\operatorname{Pickup}(X))
$$

$$
\vee(A=\operatorname{Stack}(Y, X) \wedge \neg(\text { holding }(Y, S))
$$

$$
\vee(\mathrm{A}=\operatorname{Pickup}(\mathrm{X}) \wedge \neg(\text { handempty }(\mathrm{S}) \wedge \text { ontable }(\mathrm{X}, \mathrm{~S}) \wedge \operatorname{clear}(\mathrm{X}, \mathrm{~S}))))]
$$

$$
\vee[A=\operatorname{Stack}(X, Y) \wedge \text { holding }(X, S) \wedge \operatorname{clear}(Y, S)]
$$

$$
\vee[A=\operatorname{Unstack}(Y, X) \wedge o n(Y, X, S) \wedge \operatorname{clear}(Y, S) \wedge \text { handempty }(S)]
$$

$$
\vee[\mathrm{A}=\operatorname{Putdown}(\mathrm{X}) \wedge \text { holding }(\mathrm{X}, \mathrm{~S})]
$$

- English translation: a block is clear if
(a) in the previous state it was clear AND we didn't pick it up or stack something on it successfully, or
(b) we stacked it on something else successfully, or
(c) something was on it that we unstacked successfully, or
(d) we were holding it and we put it down.

Situation Calculus Planning: Analysis

- Fine in theory, but:
- Problem solving (search) is exponential in the worst case
- Resolution theorem proving only finds a proof (plan), not necessarily a good plan
- So what can we do?
- Restrict the language
- Blocks world is already pretty small...
- Use a special-purpose planner rather than general theorem prover

Basic Representations for Planning

- Classic approach first used in the STRIPS planner circa 1970
- States represented as conjunction of ground literals
- at(Home) ^ \neg have(Milk) $\wedge \neg$ have(bananas) ...
- Goals are conjunctions of literals, but may have variables*
- at(?x) ^have(Milk) ^have(bananas) ...
- Don't need to fully specify state
- Un-specified: either don't-care or assumed-false
- Represent many cases in small storage
- Often only represent changes in state rather than entire situation
- Unlike theorem prover, not finding whether the goal is true, but whether there is a sequence of actions to attain it

Operator/Action Representation

- Operators contain three components:
- Action description
- Precondition - conjunction of positive literals
- Effect - conjunction of positive or negative literals which describe how situation changes when operator is applied
- Example:

Op[Action: Go(there)
Precond: At(here) \wedge Path(here,there), \longrightarrow Go(there)
Effect: At(there) ^ \neg At(here) $]$
At(there) , $\neg \mathrm{At}$ (here)

Operator/Action Representation

- Operators contain three components:
- Action description
- Precondition - conjunction of positive literals
- Effect - conjunction of positive or negative literals which describe how situation changes when operator is applied
- Example:

Op[Action: Go(there), $\longrightarrow A t$ (here), Path(here, there)
Precond: At(here) ^ Path(here,there), \quad Go(there)
Effect: At(there) ^ \neg At(here) $]$
At(there) , $\neg A t$ (here)

- All variables are universally quantified
- Situation variables are implicit
- Preconditions must be true in the state immediately before operator is applied
- Effects are true immediately after

Blocks World Operators

- Classic basic operations for the blocks world:
- $\operatorname{stack}(X, Y)$: put block X on block Y
- unstack(X,Y): remove block X from block Y
- pickup(X): pickup block X
- putdown(X): put block X on the table
- Each will be represented by
- Preconditions
- New facts to be added (add-effects)
- Facts to be removed (delete-effects)
- A set of (simple) variable constraints (optional!)

Blocks World Operators

- So given these operations:
$-\operatorname{stack}(X, Y)$, unstack (X, Y), pickup (X), putdown(X)
- Need:
- Preconditions, facts to be added (add-effects), facts to be removed (delete-effects), optional variable constraints

```
Example: stack
preconditions(stack(X,Y), [holding(X), clear(Y)])
deletes(stack(X,Y), [holding(X), clear(Y)]).
adds(stack(X,Y), [handempty, on(X,Y), clear(X)])
constraints(stack(X,Y), [X\not=Y, Y\not=table, X\not=table])
```


Blocks World Operators II

operator (stack (X, Y),
Precond [holding (X), clear (Y)],
Add [handempty, on(X,Y), clear(X)],
Delete [holding (X), $\operatorname{clear}(Y)$],
Constr $[X \neq Y, Y \neq$ table, $X \neq$ table $]$).
operator(pickup(X),
[ontable(X), clear(X), handempty],
[holding(X)],
[ontable(X), clear(X), handempty],
[$\mathrm{X} \neq$ table]).
operator(unstack (X, Y), [on(X,Y), clear(X), handempty], [holding(X), clear(Y$)$], [handempty, clear(X), on(X,Y)], $[\mathrm{X} \neq \mathrm{Y}, \mathrm{Y} \neq$ table, $\mathrm{X} \neq$ table $]$).
operator(putdown (X),
[holding(X)],
[ontable(X), handempty, clear(X)],
[holding(X)],
[$\mathrm{X} \neq$ table]).

STRIPS planning

- STRIPS maintains two additional data structures:
- State List - all currently true predicates.
- Goal Stack - push down stack of goals to be solved, with current goal on top

STRIPS planning

- STRIPS maintains two additional data structures:
- State List - all currently true predicates.
- Goal Stack - push down stack of goals to be solved, with current goal on top
- If current goal not satisfied by present state, find action that adds it and push action and its preconditions (subgoals) on stack

STRIPS planning

- STRIPS maintains two additional data structures:
- State List - all currently true predicates.
- Goal Stack - push down stack of goals to be solved, with current goal on top
- If current goal not satisfied by present state, find action that adds it and push action and its preconditions (subgoals) on stack
- When a current goal is satisfied, POP from stack
- When an action is on top stack, record its application on plan sequence and use its add and delete lists to update current state

Shakey video circa 1969

https://youtu.be/qXdn6ynwpiI or https://youtu.be/7bsEN8mwUB8

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty
Goal:
on(b,c)
on(a,b)
ontable(c)

Another BW planning problem

A plan:
pickup(a)
$\operatorname{stack}(a, b)$
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
$\operatorname{stack}(a, b)$

Yet Another BW planning problem

Initial state:
 clear(c) ontable(a) on(b,a) on(c,b) handempty
 Goal:
 on(a,b)
 on(b,c)
 ontable(c)

Plan:
unstack(c,b) putdown(c) unstack(b,a) putdown(b) pickup(b) stack(b,a) unstack(b,a) putdown(b) pickup(a) stack(a,b) unstack(a,b) putdown(a) pickup(b) stack(b,c) pickup(a) stack(a,b)

Yet Another BW planning problem

Goal Interactions

- Simple planning assumes that goals are independent
- Each can be solved separately and then the solutions concatenated
- Let's look at when that fails

Goal Interactions

- The "Sussman Anomaly": classic goal interaction problem
- Solving on(A,B) first (by doing unstack(C,A), stack(A,B))
- Solve on(B, C) second (by doing unstack(A, B), stack (B, C))
- Solving on (B, C) first will be undone when solving on (A, B)
- Classic STRIPS can't handle this (minor modifications can do simple cases)

Initial state
Goal state

Sussman Anomaly

Achieve on (a, b) via stack(a, b) with preconds: [holding(a),clear(b)] |Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] ||Achieve clear(a) via unstack(_1584,a) with preconds:
[on(_1584,a),clear(_1584),handempty]
||Applying unstack(c,a)
||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)]
\|Applying putdown(c)
|Applying pickup(a)
Applying stack(a,b)
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]
|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]
$\|$ Achieve clear(b) via unstack(_5625,b) with preconds:
[on(_5625,b),clear(_5625),handempty]
||Applying unstack(a,b)
\|Achieve handempty via putdown(_6648) with preconds: [holding(_6648)]
\|Applying putdown(a)
|Applying pickup(b)
Applying stack(b,c)
Achieve on(a, b) via stack(a, b) with preconds: [holding(a),clear(b)]
|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty] Applying pickup(a)
Applying stack(a,b)

Goal state

```
From
[clear(b),clear(c),ontable(a),ontable(b),on
(c,a),handempty]
    To [on(a,b),on(b,c),ontable(c)]
    Do:
        unstack(c,a)
        putdown(c)
        pickup(a)
        stack(a,b)
        unstack(a,b)
        putdown(a)
        pickup(b)
        stack(b,c)
        pickup(a)
        stack(a,b)
```


PDDL

- Planning Domain Description Language
- Based on STRIPS with various extensions
- First defined by Drew McDermott (Yale) et al. - Classic spec: PDDL 1.2; good reference guide
- Used in biennial International Planning Competition (IPC) series (1998-2020)
- Many planners use it as a standard input

PDDL Representation

- Task specified via two files: domain file and problem file
- Both use a logic-oriented notation with Lisp syntax
- Domain file defines a domain via requirements, predicates, constants, and actions
- Used for many different problem files
- Problem file: defines problem by describing its domain, objects, initial state and goal state
- Planner: takes a domain and a problem and produces a plan

(define (domain BW)

(:requirements :strips)

Blocks Word Domain File

(:constants red green blue yellow small large)
(:predicates (on ?x ?y) (on-table ?x) (color ?x ?y) ... (clear ?x))
(:action pick-up
:parameters (?obj1)
:precondition (and (clear ?obj1) (on-table ?obj1) (arm-empty))
:effect (and (not (on-table ?obj1))
(not (clear ?obj1))
(not (arm-empty))
(holding ?obj1)))
... more actions ...)

Blocks Word Problem File

(define (problem 00)
(:domain BW)
(:objects A B C)
(:init (arm-empty)
(on B A)
(on C B)
(clear C))

(:goal (and (on A B)
(on BC)))

Blocks Word Problem File

(define (problem 00)
(:domain BW)
(:objects A B C)
(:init (arm-empty)
(on B A)
(on C B)
(clear C))
(:goal (and (on A B) (on BC)))

Begin plan
1 (unstack c b)
2 (put-down c)
3 (unstack ba)
4 (stack b c)
5 (pick-up a)
6 (stack a b)
End plan

http://planning.domains/

Planning.Domains

A collection of tools for working with planning domains.

Planning.domains

- Open source environment for providing planning services using PDDL (GitHub)
- Default planner is $\underline{f f}$
- very successful forward-chaining heuristic search planner producing sequential plans
- Can be configured to work with other planners
- Use interactively or call via web-based API

State-Space Planning

- STRIPS searches thru a space of situations (where you are, what you have, etc.)
- Find plan by searching situations to reach goal
- Progression planner: searches forward
- From initial state to goal state
- Regression planner: searches backward from goal
- Works iff operators have enough information to go both ways
- Ideally leads to reduced branching: planner is only considering things that are relevant to the goal

Planning Heuristics

- Need an admissible heuristic to apply to planning states
- Estimate of the distance (number of actions) to the goal
- Planning typically uses relaxation to create heuristics
- Ignore all or some selected preconditions
- Ignore delete lists: Movement towards goal is never undone)
- Use state abstraction (group together "similar" states and treat them as though they are identical) - e.g., ignore fluents*
- Assume subgoal independence (use max cost; or, if subgoals actually are independent, sum the costs)
- Use pattern databases to store exact solution costs of recurring subproblems

Plan-Space Planning

- Alternative: search through space of plans, not situations
- Start from a partial plan; expand and refine until a complete plan that solves the problem is generated
- Refinement operators add constraints to the partial plan and modification operators for other changes
- We can still use STRIPS-style operators:

Op(ACTION: PutOnRightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: PutOnRightSock, EFFECT: RightSockOn)
Op(ACTION: PutOnLeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: PutOnLeftSock, EFFECT: LeftSockOn)

Partial-Order Planning

Partial-Order Planning

- The big idea: Don't specify the order of steps if you don't have to.

- Doesn't matter, but a regular planner has to consider and specify all the options.

A simple graphical notation

(a)

(b)

Partial-Order Planning

- A linear planner builds a plan as a totally ordered sequence of plan steps
- A non-linear planner (aka partial-order planner) builds up a plan as a set of steps with some temporal constraints
- E.g., S1<S2 (step S1 must come before S2)
PutOnRightSock $<\quad$ PutOnRightShoe

The order here does matter, so the planner has to know that.

Partial-Order Planning

- A linear planner builds a plan as a totally ordered sequence of plan steps
- A non-linear planner (aka partial-order planner) builds up a plan as a set of steps with some temporal constraints
- E.g., S1<S2 (step S1 must come before S2)
- Partially ordered plan (POP) refined by either:
- adding a new plan step, or
- adding a new constraint to the steps already in the plan.
- Linearize a POP by topological sort

Linear vs. POP: Shoes

Total Order Plans:

Linear vs. POP: Shoes

Total Order Plans:

Partial Order Plan:

Linear vs. POP: Shoes

Total Order Plans:
 sequences in any order

The Initial Plan

Every plan starts the same way

S1:Start	
Initial	State
Goal	State
S2:Finish	

Least Commitment

- Non-linear planners embody the principle of least commitment
- Only choose actions, orderings and variable bindings absolutely necessary, postponing other decisions
- Avoid early commitment to decisions that don't really matter
- Linear planners always choose to add a plan step in a particular place in the sequence
- Non-linear planners choose to add a step and possibly some temporal constraints

Non-Linear Plan Components

1) A set of steps $\left\{S_{1}, S_{2}, S_{3}, S_{4} \ldots\right\}$

- Each step has an operator description, preconditions and postconditions
- ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn

2) A set of causal links $\left\{\ldots\left(\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}\right) \ldots\right\}$

- (One) goal of step S_{i} is to achieve precondition C of step S_{j}
- 〈PutOnLeftShoe, LeftShoeOn, Finish〉
- This says: No action that undoes LeftShoeOn is allowed to happen after PutOnLeftShoe and before Finish. Any action that undoes LeftShoeOn must either be before PutOnLeftShoe or after Finish.

3) A set of ordering constraints $\left\{\ldots \mathrm{S}_{\mathrm{i}}<\mathrm{S}_{\mathrm{j}} \ldots\right\}$

- If step S_{i} must come before step S_{j}
- PutOnSock < Finish

Non-Linear Plan: Completeness

- A non-linear plan consists of
(1) A set of steps $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4} \ldots\right\}$
(2) A set of causal links $\left\{\ldots\left(\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}\right) \ldots\right\}$
(3) A set of ordering constraints $\left\{\ldots \mathrm{S}_{\mathrm{i}}<\mathrm{S}_{\mathrm{j}} \ldots\right\}$
- A non-linear plan is complete iff
- Every step mentioned in (2) and (3) is in (1)
- If S_{j} has prerequisite C, then there exists a causal link in (2) of the form $\left(\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}\right)$ for some S_{i}
- If $\left(S_{i}, C, S_{j}\right)$ is in (2) and step S_{k} is in (1), and S_{k} threatens $\left(\mathrm{S}_{\mathrm{i}}, \mathrm{C}, \mathrm{S}_{\mathrm{j}}\right)$ (makes C false), then (3) contains either $\mathrm{S}_{\mathrm{k}}<\mathrm{S}_{\mathrm{i}}$ or $\mathrm{S}_{\mathrm{j}}<\mathrm{S}_{\mathrm{k}}$

Trivial Example

Operators:
Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: leftSockOn)

Solution

POP Constraints and

Search Heuristics

- Only add steps that reach a not-yet-achieved precondition
- Use a least-commitment approach:
- Don't order steps unless they need to be ordered
- Honor causal links $S_{1} \rightarrow S_{2}$ that protect a condition c :
- Never add an intervening step S_{3} that violates c
- If a parallel action threatens c (i.e., has the effect of negating or clobbering c), resolve that threat by adding ordering links:
- Order S_{3} before S_{1} (demotion)
- Order S_{3} after S_{2} (promotion)

Partial-Order Planning Example

- Initially: at home; SM sells bananas; SM sells milk; HWS sells drills
- Goal: Be home with milk, bananas, and a drill

Planning

Real-World Planning Domains

- Real-world domains are complex
- Don't satisfy assumptions of STRIPS or partial-order planning methods
- Some of the characteristics we may need to deal with:
- Modeling and reasoning about resources
- Representing and reasoning about time
- Planning at different levels of abstractions
- Conditional outcomes of actions
- Uncertain outcomes of actions
- Exogenous events
- Incremental plan development
- Dynamic real-time replanning

Planning under uncertainty
\} HTN planning

Planning Summary

- Planning representations
- Situation calculus
- STRIPS representation: Preconditions and effects
- Planning approaches
- State-space search (STRIPS, forward chaining,)
- Plan-space search (partial-order planning, HTNs, ...)
- Search strategies
- Forward planning
- Goal regression
- Backward planning
- Least-commitment
- Nonlinear planning

Extended PDDL Examples

Classic Blocks World

- Starting with
- BW: a domain file
- Several problem files
- Use planning.domains to demonstrate solving the problems
(:predicates
List all the predicates with their arguments
(on ?x ?y) ; object ?x is on ?object ?y
(on-table ?x) ; ?x is directly on the table
(clear ?x) ; ?x has nothing on it
(arm-empty) ; robot isn't holding anything
(holding ?x)) ; robot is holding ?x
;; the four classic actions for manipulating objects
... actions in next four slides ...

bw.pddl 2

(:action pick-up

:parameters (?ob1)

Variable for the argument of a pick-up action
:precondition
(and (clear ?obilin
These three statements must be True before we can do a pick-up action
:effect
(and (not (on-table ?ob1))
(not (clear ?ob1))
After doing a pick-up action, these become
(not (arm-empty))
(holding ?ob1)))

bw.pddl 3

(:action pick-up

:parameters (?ob1)

Variable for the argument of a pick-up action
:precondition
(and (clear ?obil

These three statements must be True before we can do a pick-up action
:effect
(and (not (on-table ?ob1))
(not (clear ?ob1))
After doing a pick-up action, these become
(not (arm-empty))
(holding ?ob1)))

bw.pddl 5

(:action unstack

) ; this closes the domain definition
;; The arm is empty and there is a stack of three blocks: C is on B which is on A
;; which is on the table. The goal is to reverse the stack, i.e., have A on B and B
;; on C. No need to mention C is on the table, since domain constraints will enforce it.
(define (problem p03)
(:domain bw)
(:objects A B C)
(:init (arm-empty)
(on-table A)
(on BA)
(on CB)
(clear C))
(:goal (and (on A B)

p03.pddl

http://planning.domains/

