CMSC 471: Machine Learning

Frank Ferraro - ferraro@umbc.edu

Why study learning?

- Discover new things or structure previously unknown
- Examples: data mining, scientific discovery
- Fill in skeletal or incomplete specifications in a domain
- Large, complex systems can't be completely built by hand \& require dynamic updating to incorporate new info.
- Learning new characteristics expands the domain or expertise and lessens the "brittleness" of the system
- Acquire models automatically directly from data rather than by manual programming
- Build agents that can adapt to users, other agents, and their environment
- Understand and improve efficiency of human learning

What does it mean to learn?

Wesley has been taking an AI course
Geordi, the instructor, needs to determine if Wesley has "learned" the topics covered, at the end of the course

What is a "reasonable" exam?
(Bad) Choice 1: History of pottery
Wesley's performance is not indicative of what was learned in AI
(Bad) Choice 2: Questions answered during lectures
Open book?
A good test should test ability to answer "related" but "new" questions on the exam

Generalization

Model, parameters and hyperparameters

Model: mathematical formulation of system (e.g., classifier)

Parameters: primary "knobs" of the model that are set by a learning algorithm

Hyperparameter: secondary "knobs"

scoring model

score $_{\theta} \Rightarrow$

objective $F(\theta)$

scoring model

θ (

objective

$F(\theta)$
(implicitly) dependent on the observed data $X=\{ \}$

Machine Learning Framework: Learning

Machine Learning Framework: Learning

Machine Learning Framework:

 Learning

Machine Learning Framework:

 Learning

Classify with Goodness

predicted label

$=\underset{\text { label }}{\arg \max } \operatorname{score}($ example, label)

ML Framework Example

Puppy classifier

Classifier
(trained model)

ML Framework Example

Puppy classifier

ML Framework Example

ML Framework Example

Training data, X			
Text- ure	Ears	Legs	Class
Fuzzy	Round	4	+
Slimy	Missing	8	-
Fuzzy	Pointy	4	-
Fuzzy	Round	4	+
Fuzzy	Pointy	4	+
	\ldots		

Puppy classifier

Test data
$x_{1}=<$ Fuzzy, Pointy, 4>

General ML Consideration: Inductive Bias

What do we know before we see the data, and how does that influence our modeling decisions?

General ML Consideration: Inductive Bias

What do we know before we see the data, and how does that influence our modeling decisions?

Partition these into two groups...

General ML Consideration: Inductive Bias

What do we know before we see the data, and how does that influence our modeling decisions?

Partition these into two groups

Who selected red vs. blue?

General ML Consideration: Inductive Bias

What do we know before we see the data, and how does that influence our modeling decisions?

Partition these into two groups

Who selected red vs. blue?
Who selected vs. ?

General ML Consideration: Inductive Bias

What do we know before we see the data, and how does that influence our modeling decisions?

Tip: Remember how your own
biases/interpretation are influencing your approach

AI \& ML

AI and Learning Today

- 50s\&60s: neural network learning popular

Marvin Minsky did neural networks for his dissertation

- Mid 60s: replaced by paradigm of manually encoding \& using symbolic knowledge
Cf. Perceptrons, Minsky \& Papert book showed limitations of perceptron model of neural networks
- 90s: more data \& Web drove interest in statistical machine learning techniques \& data mining
- Now: machine learning techniques \& big data play biggest driver in almost all successful Al systems
... and neural networks are the current favorite approach

Neural

 Networks 1960A man adjusting the random wiring network between the light sensors and association unit of scientist Frank Rosenblatt's Perceptron, or MARK 1 computer, at the Cornell Aeronautical Laboratory, Buffalo, New York, circa 1960. The machine is designed to use a type of artificial neural network, known as a perceptron.

Neural

Networks

 2020Google's AIY Vision Kit (\$89.99 at Target) is an intelligent camera that can recognize objects, detect faces and emotions. Download and use a variety of image recognition neural networks to customize the Vision Kit for your own creation. Included in the box: Raspberry Pi Zero WH, Pi Camera V2, Micro SD Card, Micro USB Cable, Push Button.

Currently \$58.85 on Amazon

Machine Learning Successes

- Games: chess, go, poker
- Text sentiment analysis
- Email spam detection
- Recommender systems (e.g., Netflix, Amazon)
- Machine translation
- Speech understanding
- SIRI, Alexa, Google Assistant, ...
- Autonomous vehicles
- Individual face recognition
- Understanding digital images
- Credit card fraud detection
- Showing annoying ads

The Big Idea and Terminology

Given some data, learn a model of how the world works that lets you predict new data

- Training Set: Data from which you learn initially
- Model: What you learn; a "model" of how inputs are associated with outputs
- Test set: New data you test your model against
- Corpus: A body of text data (pl.: corpora)
- Representation: The computational expression of data

Major Machine learning paradigms (1)

- Rote: 1-1 mapping from inputs to stored representation, learning by memorization, association-based storage \& retrieval
- Induction: Use specific examples to reach general conclusions
- Clustering: Unsupervised discovery of natural groups in data

Major Machine learning paradigms (2)

- Analogy: Find correspondence between different representations
- Discovery: Unsupervised, specific goal not given
- Genetic algorithms: Evolutionary search techniques, based on survival of the fittest
- Reinforcement: Feedback (positive or negative reward) given at the end of a sequence of steps
- Deep learning: artificial neural networks with representation learning for ML tasks

CORE TERMINOLOGY

Three Axes for Thinking About Your ML Problem

Classification

Regression

Clustering

Probabilistic	Neural
Generative	Memory- based
Conditional	Exemplar
Spectral	\ldots

the approach: how any data are being
used
the task: what kind of problem are you solving?

Fully-supervised
 Semi-supervised
 Un-supervised

the data: amount of human input/number of labeled examples

Types of learning problems

- Supervised: learn from training examples
- Regression:
- Classification: Decision Trees, SVM
- Unsupervised: learn w/o training examples
- Clustering
- Dimensionality reduction
- Word embeddings
- Reinforcement learning: improve performance using feedback from actions taken
- Lots more we won't cover
- Hidden Markov models, Learning to rank, Semi-supervised learning, Active learning ...

Machine Learning Problems

Supervised Learning
 Unsupervised Learning

classification or categorization
clustering
regression
dimensionality
reduction

Supervised learning

- Given training examples of inputs \& corresponding outputs, produce "correct" outputs for new inputs
- Two important scenarios:
-Classification: outputs typically labels (goodRisk, badRisk); learn decision boundary to separate classes
-Regression: aka curve fitting or function approximation; Learn a continuous input-output mapping from examples, e.g., for a zip code, predict house sale price given its square footage

Unsupervised Learning

Given only unlabeled data as input, learn some sort of structure, e.g.:

- Clustering: group Facebook friends based on similarity of post texts and friends
- Embeddings: Find sets of words whose meanings are related (e.g., doctor, hospital)
- Topic modelling: Induce N topics and words most common in documents about each

Inductive Learning Framework

- Raw input data from sensors or a database preprocessed to obtain feature vector, \mathbf{X}, of relevant features for classifying examples
- Each \mathbf{X} is a list of (attribute, value) pairs
- n attributes (a.k.a. features): fixed, positive, and finite
- Features have fixed, finite number \# of possible values
- Or continuous within some well-defined space, e.g., "age"
- Each example is a point in an n-dimensional feature space
$-X=$ [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female]
- X = [Cheese:f, Sauce:t, Bread:t]
- X = [Texture:Fuzzy, Ears:Pointy, Purrs:Yes, Legs:4]

Inductive Learning Framework Example

Training data, X			
Text- ure	Ears	Legs	Class
Fuzzy	Round	4	+
Slimy	Missing	8	-
Fuzzy	Pointy	4	-
Fuzzy	Round	4	+
Fuzzy	Pointy	4	+
	\ldots		

Puppy classifier

Test data
$x_{1}=<$ Fuzzy, Pointy, 4>

Classification Examples

Assigning subject categories, topics, or genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis

Classification Examples

Assigning subject categories, topics, or genres
Spam detection
Authorship identification

Age/gender identification
Language Identification
Sentiment analysis

Input:
an instance

$$
\text { a fixed set of classes } C=\left\{c_{1}, c_{2}, \ldots, c_{\jmath}\right\}
$$

Output: a predicted class c from C

Classification: Hand-coded Rules?

Assigning subject
categories, topics, or
genres
Spam detection
Authorship identification

Age/gender identification
 Language Identification
 Sentiment analysis

Rules based on combinations of words or other features spam: black-list-address OR ("dollars" AND "have been selected")

Accuracy can be high If rules carefully refined by expert

Building and maintaining these rules is expensive
Can humans faithfully assign uncertainty?

Classification:

Supervised Machine Learning

Assigning subject

 categories, topics, or
genres

Spam detection

Authorship identification

Input:
an instance d
a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{j}\right\}$
A training set of m hand-labeled instances $\left(d_{1}, c_{1}\right), \ldots,\left(d_{m}, c_{m}\right)$
Output:
a learned classifier γ that maps instances to classes

Age/gender identification
Language Identification
Sentiment analysis

Classification:

Supervised Machine Learning

Assigning subject

categories, topics, or

genres

Spam detection

Authorship identification

Age/gender identification
Language Identification
Sentiment analysis

Input:
an instance d
a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{j}\right\}$
A training set of m hand-labeled instances $\left(d_{1}, c_{1}\right), \ldots,\left(d_{m}, c_{m}\right)$
Output:
a learned classifier γ that maps instances to classes
γ learns to associate certain features of instances with their labels

Classification:

Supervised Machine Learning

Assigning subject
 categories, topics, or
 genres
 Spam detection
 Authorship identification

Input:
an instance d
a fixed set of classes $C=\left\{c_{1}, c_{2}, \ldots, c_{j}\right\}$
A training set of m hand-labeled instances $\left(d_{1}, c_{1}\right), \ldots,\left(d_{m}, c_{m}\right)$
Output:
a learned classifier γ that maps instances to classes

Age/gender identification
Language Identification
Sentiment analysis

Classification Example: Face Recognition

What is a good representation for images?

Pixel values? Edges?

Classification Example:

Sequence \& Structured Prediction

Google
+Subhransu : : 1 团

Translate

English Spanish French Hindi-detected
ऑस्ट्रेलिया में खेली जा रही त्रिकोणीय एकदिवसीय अंतरराट्रीय क्रिकेट मैचों की सिरीज़ में रविवार का दिन सुपर संडे साबित हो सकता हैं.
मेज़बान ऑस्ट्रेलिया और भारत मेलबर्न में आमने-सामने होंगे इसके पहले मुक्राबले में ऑस्ट्रेलिया ने इंल्लैंड को तीन विकेट से हराकर बोनस अंक से साथ शानदार शुरुआत की.
भारत इस एकदिवसीय सिरीज़ से पहले ऑस्ट्रेलिया के हाथों चार टेस्ट मैचों की सिरीज़ में 0-2 से हारा था. तीसरे टेस्ट मैच के ड्रा समाप्त होने के बाद भारत के कप्तान महेंक्र सिंह धोनी ने टेस्ट क्रिकेट से संन्यास का एलान भी कर दिया था.
अब टेस्ट क्रिकेट के सफ़ेद कपड़े ना सही वनडे की रंगीन जर्सी में धोनी अपना जलवा दिखाने के लिये बेचैन होंगे.
$\times \quad$ Being played in Australia tri-series one-day international cricket match can be a Sunday Super Sunday. Australia and
Melbourne. The first match Australia beat England by three wickets with a superb debut of bonus points.
The hands of the one-day series in India The hands of the one-day series in India
before Australia lost 0-2 in the four-Test before
After the end of the third Test draw India After the end of the third Test draw India
captain Mahendra Singh Dhoni was also captain Mahendra Singh Dhoni was also
announced his retirement from Test cricket announced his retirement from Test cricket. Now is not the right day of Test cricket whites
Dhoni color jersey will be anxious to show his Dhoni color jersey will be anxious to show his usual self.
部

Ingredients for classification

Inject your knowledge into a learning system

Feature representation
Training data:
labeled examples
Model

Ingredients for classification

Inject your knowledge into a learning system

Problem specific

Difficult to learn from bad

 onesFeature representation

Training data:
labeled examples
Model

Ingredients for classification

Inject your knowledge into a learning system

Problem specific
Difficult to learn from bad
ones

Feature representation
Labeling data == \$\$\$
Sometimes data is
available for "free"

Training data:
labeled examples

Model

Ingredients for classification

Inject your knowledge into a learning system

Problem specific
Difficult to learn from bad
ones

Feature representation

Labeling data == \$\$\$

Sometimes data is available for "free"

Training data:
labeled examples

No single learning algorithm is always good ("no free lunch")

Different learning algorithms work differently

Model

Regression

Like classification, but real-valued

Regression Example: Stock Market Prediction

Unsupervised learning: Clustering

ML FOR USERS

Deep Learning

What society thinks I do

What my friends think I do

What I think I do

What other computer scientists think I do

keras torch

What I actually do

Our Jobs

Help you learn the ropes...

Our Jobs

Help you learn the ropes...

Our Jobs

Help you learn the ropes...

... so you can go into a job...

Our Jobs

Help you learn the ropes...

... and apply your knowledge using whatever tools your org. uses!

keras torch
 into a job...

Toolkit Basics

- Machine learning involves working with data - analyzing, manipulating, transforming, ...
- More often than not, it's numeric or has a natural numeric representation
- Natural language text is an exception, but this too can have a numeric representation
- A common data model is as a N -dimensional matrix or tensor
- These are supported in Python via libraries

Typical Python Libraries

numpy, scipy

- Basic mathematical libraries for dealing with matrices and scientific/mathematical functions
pandas, matplotlib
- Libraries for data science \& plotting
sklearn (scikit-learn)
- A whole bunch of implemented classifiers

torch (pytorch) and tensorflow

- Frameworks for building neural networks

What is Numpy?

- NumPy supports features needed for ML
- Typed N-dimensional arrays (matrices/tensors)
- Fast numerical computations (matrix math)
- High-level math functions
- Python does numerical computations slowly and lacks an efficient matrix representation
- 1000×1000 matrix multiply
- Python triple loop takes > 10 minutes!
- Numpy takes ~ 0.03 seconds

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices

- Images
- Tensors
- Convolutional Neural

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays, Basic Propertie؛

```
>>> import numpy as np
>>> a= np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> print(a.ndim, a.shape, a.dtype)
2 (2, 3) float32
>> print(a)
[[1. 2. 3.]
    [4. 5. 6.]]
```


Arrays:

1. Can have any number of dimensions, including zero (a scalar)
2. Are typed: np.uint8, np.int64, np.float32, np.float64
3. Are dense: each element of array exists and has the same type

NumPy Array Indexing, Slicing

a[0,0] \# top-left element
a[0,-1] \# first row, last column
a[0,:] \# first row, all columns
a[:,0] \# first column, all rows
a[0:2,0:2] \# 1st 2 rows, 1st 2 columns
Notes:

- Zero-indexing
- Multi-dimensional indices are comma-separated)
- Python notation for slicing

SciPy

- SciPy builds on the NumPy array object
- Adds additional mathematical functions and sparse arrays
- Sparse array: one where most elements = 0
- An efficient representation only implicitly encodes the non-zero values
- Access to a missing element returns 0

SciPy sparse array use case

- NumPy and SciPy arrays are numeric
- We can represent a document's content by a vector of features
- Each feature is a possible word
- A feature's value might be any of:
- TF: number of times it occurs in the document;
- TF-IDF: ... normalized by how common the word is
- and maybe normalized by document length ...

SciPy sparse array use case

- Maybe only model 50k most frequent words found in a document collection, ignoring others
- Assign each unique word an index (e.g., dog:137)
- Build python dict w from vocabulary, so w['dog']=137
- The sentence "the dog chased the cat"
- Would be a numPy vector of length 50,000
- Or a sciPy sparse vector of length 4
- An 800-word news article may only have 100 unique words; The Hobbit has about 8,000

SciPy.org

Docs

SciPy v1.4.1 Reference Guide

SciPy Tutorial

- Introduction
- Basic functions
- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fft)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse eigenvalue problems with ARPACK
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
- File IO (scipy.io)
 \section*{More on
 \section*{More on

 SciPy}

 SciPy}

See the SciPy tutorial Web pages

scikit-learn
 Machine Learning in Python

- Simple and efficien tools for data mining and data analysis
- Accessible to everybo 'v, and reusable in various contexts
- Built on NumPy, SciPy, a d matplotlib
- Open source, commercially usable - BSD license

Many tutorials

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.
Algorithms: SVM, nearest neighbors,
random forest,

- Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-
negative matrix factorization. - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso,

- Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning
Modules: grid search, cross validation, metrics.

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,
mean-shift, ... - Examples

Preprocessing

Feature extraction and normalization.
Application: Transforming input data such as text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

- Examples

How easy is this?

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html \ggg from sklearn.datasets import load_iris
\ggg from $s k l e a r n . l i n e a r m o d e l$ import LogisticRegression
$\ggg X, Y=$ load_iris (return_X_y=True)
features on
data

DATA \& EVALUATION

$\leftarrow \rightarrow$ C $\boldsymbol{\text { in } ~} \square$ archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/mt

$\bigcirc \sim$ ค~

Machine Learning Repository

Center for Machine Leaming and Intelligent Systems

Welcome to the UC Irvine Machine Learning Repository!

We currently maintain 233 data sets as a service to the machine learning community. You may view all data sets through our searchable interface. Our old web site is still available, for those who prefer the old format. For a general overview of the Repository, please visit our About page. For information about citing data sets in publications, please read our citation policy. If you wish to donate a data set, please consult our donation policy. For any other questions, feel free to contact the Repository librarians. We have also set up a mirror site for the Repository.

Supported By:

233 data sets

Latest News:

2010-03-01: Note from donor regarding Netflix data
2009-10-16: Two new data sets have been added.
2009-09-14: Several data sets have been added.
2008-07-23: Repository mirror has been set up.
2008-03-24: New data sets have been added!
2007-06-25: Two new data sets have been added: UJI Pen Characters, MAGIC Gamma Telescope
2007-04-13: Research papers that cite the repository have been associated to specific data sets.

Featured Data Set: Yeast

Task: Classification
Data Type: Multivariate
\# Attributes: 8 \# Instances: 1484

Most Pop	ta Sets (hits since 2007):
386214:	Iris
272233:	Adult
237503:	Wine
195947:	Breast Cancer Wisconsin (Diagnostic)
182423:	Car Evaluation
151635:	Abalone
135419:	Poker Hand
113024:	Forest Fires 78

Machine Learning Repository
Center for Machine Learning and Intelligent Systems

Zoo Data Set

Download: Data Folder, Data Set Description
Abstract: Artificial, 7 classes of animals

http://archive.ics.uci.edu/ml/datasets/Zoo

Data Set Characteristics:	Multivariate	Number of Instances:	101	Area:	Life
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	17	Date Donated	$1990-05-$ 15
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	18038

animal name: string
hair: Boolean
feathers: Boolean
eggs: Boolean
milk: Boolean
airborne: Boolean
aquatic: Boolean
predator: Boolean
toothed: Boolean
backbone: Boolean
breathes: Boolean
venomous: Boolean
fins: Boolean
legs: $\{0,2,4,5,6,8\}$
tail: Boolean
domestic: Boolean
catsize: Boolean
type: \{mammal, fish, bird, shellfish, insect, reptile, amphibian\}

Zoo data

101 examples

aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal antelope, $1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1, \mathrm{mammal}$ bass, $0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0$, fish bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal carp, $0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0$, fish catfish, $0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0$, fish cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal cheetah, $1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1, m a m m a l$ chicken, $0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0$, bird chub, $0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0$, fish clam, $0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0$, shellfish crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Defining Appropriate Features

Feature functions help extract useful features
(characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Often binary-valued (0 or 1), but can be real-valued

Features

Define a feature $\mathrm{f}_{\text {clue }}$ ((1), label) for each type of clue you want to consider

The feature $f_{\text {clue }}$ fires if the clue applies to/can be

sklearn example
(in-class, live coding)

Zoo example

aima-python> python
>>> from learning import *
>>> 200
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0])
'fish'
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])
'mammal'

Central Question: How Well Are We Doing?

 solving?

Central Question: How Well Are We Doing?

Clustering

the task: what kind of problem are you solving?

Evaluation methodology (1)

Standard methodology:

1. Collect large set of examples with correct classifications (aka ground truth data)
2. Randomly divide collection into two disjoint sets: training and test (e.g., via a 90-10\% split)
3. Apply learning algorithm to training set giving hypothesis H
4. Measure performance of H on the held-out test set

Evaluation methodology (2)

- Important: keep the training and test sets disjoint!
- Study efficiency \& robustness of algorithm: repeat steps 2-4 for different training sets \& training set sizes
- On modifying algorithm, restart with step 1 to avoid evolving algorithm to work well on just this collection

Experimenting with Machine Learning Models

All your data

Training Data

Rule \#1

Evaluation methodology (3)

Common variation on methodology:

1. Collect set of examples with correct classifications
2. Randomly divide it into two disjoint sets: development \& test; further divide development into devtrain \& devtest
3. Apply ML to devtrain, giving hypothesis H 4. Measure performance of H w.r.t. devtest data
4. Modify approach, repeat 3-4 as needed 6. Final test on test data

Evaluation methodology (4)

C - Only devtest data used for evalua-

1. tion during system development

- When all development has ended, test data used for final evaluation
- Ensures final system not influenced by test data

3. - If more development needed, get 4. new dataset!
devtest data
4. Modify approach, repeat 3-4 as needed
5. Final test on test data
classifications
sets:
development

Zoo evaluation

train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train
>>> dtl = DecisionTreeLearner
>>> train_and_test(dtl(), zoo, 0, 10)
1.0
>>> train_and_test(dtl(), zoo, 90, 100)
0.80000000000000004
>>> train_and_test(dtl(), zoo, 90, 101)
0.81818181818181823
>>> train_and_test(dtl(), zoo, 80, 90)
0.90000000000000002

Zoo evaluation

train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train

- We hold out 10 data items for test; train on the other 91 ; show the accuracy on the test data
- Doing this four times for different test subsets shows accuracy from 80% to 100%
- What's the true accuracy of our approach?

K-fold Cross Validation

- Problem: getting ground truth data expensive
- Problem: need different test data for each test
- Problem: experiments needed to find right feature space \& parameters for ML algorithms
- Goal: minimize training+test data needed
- Idea: split training data into K subsets; use K-1 for training and one for development testing
- Repeat K times and average performance
- Common K values are 5 and 10

Zoo evaluation

- AIMA code has a cross_validation function that runs K-fold cross validation
- cross_validation(learner, data, K, N) does N iterations, each time randomly selecting $1 / \mathrm{K}$ data points for test, leaving rest for train
>>> cross_validation(dtl(), zoo, 10, 20) 0.95500000000000007
- This is a very common approach to evaluating the accuracy of a model during development
- Best practice is still to hold out a final test data set

Leave one out

- AIMA code also has a leave1out function that runs a different set of experiments to estimate accuracy of the model
- leave1out(learner, data) does len(data) trials, each using one element for test, rest for train

$$
\begin{aligned}
& \text { >>> leave1out(dtl(), zoo) } \\
& 0.97029702970297027
\end{aligned}
$$

- K-fold cross validation can be too pessimistic, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative

Learning curve (1)

A learning curve shows accuracy on test set as a function of training set size or (for neural networks) running time

Learning curve

- When evaluating ML algorithms, steeper learning curves are better
- They represents faster learning with less data perfonmance

Here the system with the red curve is better since it requires less data to achieve given accuracy

Classification Evaluation: the 2-by-2 contingency table

Let's assume there are two classes/labels

Assume is the "positive" label

Given X, our classifier predicts either label

$$
p(\bigcirc \mid x) \text { vs. } p(\bigcirc \mid x)
$$

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed
Not selected/
not guessed

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct

Actually
Incorrect

Selected/ True Positive
Guessed
Not selected/
not guessed

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct
Actually
Incorrect
Selected/
Guessed

False Positive $\underset{\text { Actual }}{\bigcirc}$ (FP) Guessed

Not selected/
 not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually

Correct
Actually
Incorrect
Selected/
Guessed
True Positive
False Positive
Actual
(TP)
Guessed
(FP)

Guessed
Not selected/ False Negative
not guessed
(FN)
Guessed

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actually

Correct
Actually
Incorrect
Selected/
Guessed
Not selected/ not guessed

True Positive
(TP)
Guessed
False Negative (FN)

False Positive $\bigcirc \bigcirc_{\text {Actual }}$ (FP) Guessed
True Negative $\underset{\text { Actual }}{\bigcirc}$ (TN) Guessed

Classification Evaluation:

the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct

Actually

Incorrect
Selected/ True Positive False Positive
Guessed
Not selected/ False Negative not guessed
(TP) ${ }_{\text {Guessed }}$
Negative
(FN)

True Negative $\underset{\text { Actual }}{\bigcirc}$ (TN)

Construct this table by counting the number of TPs, FPs, FNs, TNs

Contingency Table Example

Predicted:
Actual: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
Incorrect

Selected/
Guessed
Not selected/ False Negative not guessed

True Positive (TP)

False Positive (FP)
True Negative
(TN)

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct
True Positive

$$
(T P)=2
$$

Actually
Incorrect

Selected/
Guessed

False Positive (FP)
Not selected/ False Negative not guessed

True Negative
(TN)

Contingency Table Example

Predicted:

Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
Incorrect

Selected/
Guessed

True Positive

$$
(T P)=2
$$

False Negative (FN)

False Positive
(FP) = 1
True Negative
(TN)

Contingency Table Example

Predicted:

Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
Incorrect

Selected/
Guessed

True Positive

$$
(T P)=2
$$

False Negative

$$
(\mathrm{FN})=1
$$

False Positive
(FP) = 1
True Negative
(TN)

Contingency Table Example

Predicted:

Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive
(TP) = 2
False Negative

$$
(F N)=1
$$

False Positive
(FP) = 1
True Negative

$$
(\mathrm{TN})=1
$$

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed
Not selected/
not guessed

True Positive

$$
(\mathrm{TP})=2
$$

False Negative

$$
(F N)=1
$$

False Positive
(FP) = 1
True Negative
$(\mathrm{TN})=1$

Classification Evaluation:

 Accuracy, Precision, and RecallAccuracy: \% of items correct TP + TN
$\overline{T P}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)
115		

Classification Evaluation:

 Accuracy, Precision, and RecallAccuracy: \% of items correct TP + TN

$$
\overline{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct

$$
\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}
$$

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN
$\overline{T P+F P+F N+T N}$
Precision: \% of selected items that are correct

$$
\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}
$$

Recall: \% of correct items that are selected

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct

$$
\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct TP

$$
\overline{\mathrm{TP}+\mathrm{FP}}
$$

Min: 0 :
Max: 1)

Recall: \% of correct items that are selected

TP
$\overline{\mathrm{TP}+\mathrm{FN}}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Precision and Recall Present a Tradeoff

Q: Where do you want your ideal

Precision and Recall Present a Tradeoff

precision

Precision and Recall Present a Tradeoff

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under
 this tradeoff curve

Min AUC: 0 :

Max AUC: 1 :

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under

Min AUC: 0 :
Max AUC: 1 :
this tradeoff curve

1. Computing the curve

You need true labels \& predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Min AUC: 0 :
Max AUC: 1 :

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall
2. Finding the area

How to implement: trapezoidal rule (\& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC

AUC measures the area under this tradeoff curve

Min ROC-AUC: $0.5:-$
Max ROC-AUC: 1 :)

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate
Threshold the scores and for each threshold compute metrics
2. Finding the area

How to implement: trapezoidal rule (\& others)
In practice: external library like the sklearn.metrics module

Main variant: ROC-AUC

Same idea as before but with some
flipped metrics

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}=\frac{\left(1+\beta^{2}\right) * P * R}{\underbrace{\left(\beta^{2} * P\right)+R}_{\substack{\text { (not imporaratant) }}}}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
$$

Balanced F1 measure: $\beta=1$

$$
F_{1}=\frac{2 * P * R}{P+R}
$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

$$
\text { macroprecision }=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c}^{c} \text { precision }_{c}
$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$$
\text { microprecision }=\frac{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FP}_{\mathrm{c}}}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.
when to prefer the macroaverage?
macroprecision $=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c}$ precision $_{c}$
(missing 1/C)
Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.
when to prefer the microaverage?

$$
\text { microprecision }=\frac{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FP}_{\mathrm{c}}}
$$

Micro- vs. Macro-Averaging: Example

Class 1

	Truth :yes	Truth :no
Classifier: yes	10	10
Classifier: no	10	970

Class 2

	Truth :yes	Truth :no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth $:$ yes	Truth $:$ no
Classifier: yes	100	20
Classifier: no	20	1860

Macroaveraged precision: $(0.5+0.9) / 2=0.7$
Microaveraged precision: 100/120 = . 83
Microaveraged score is dominated by score on frequent classes

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

	0	\square
$\#$	$\#$	$\#$
$\#$	$\#$	$\#$
$\#$	$\#$	$\#$

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

Guessed
 Value

$80 \quad 9 \quad 11$

7

$$
2
$$

$$
8
$$

Q: Is this a good result?

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

3 Guessed Value	\bigcirc	30	40	30
				35
	30	35	50	

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

		\square
7	3	90
4	8	88
3	7	90

Q: Is this a good result?

DECISION TREES \& RANDOM FORESTS

Decision Trees

"20 Questions": http://20q.net/

Goals: 1. Figure out what questions to ask
2. In what order
3. Determine how many questions are enough
4. What to predict at the end

Example: Learning a decision tree

Course ratings dataset

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
o	n	n	n	n	y
o	y	n	n	y	y
o	n	y	n	y	n
o	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Rating is the label

Rating					
	Easy?	AI?	Sys?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
o	y	n	n	y	y
o	n	y	n	y	n
o	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features

Rating is the label

Rating					
	Easv?	AI?	Svs?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
o	n	n	n	n	y
o	y	n	n	y	y
o	n	y	n	y	n
o	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features
Responses are feature values
Rating is the label

Idea: Predict the label by forming a tree where each node branches on values of particular features

Rating	Easv?	AI?	Svs?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features
Responses are feature values Rating is the label

Rating	Easy?	AI?	Svs?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features
Responses are feature values Rating is the label

Rating	Easy?	AI?	Svs?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features
Responses are feature values Rating is the label

Rating	Easv?	AI?	Svs?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features
Responses are feature values Rating is the label

Rating	Easv?	AI?	Svs?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Example: Learning a decision tree

Course ratings dataset
Questions are features
Responses are feature values Rating is the label

Rating	Easv?	AI?	Sys?	Thy?	Morning?
+2	y	y	n	y	n
+2	y	y	n	y	n
+2	n	y	n	n	n
+2	n	n	n	y	n
+2	n	y	y	n	y
+1	y	y	n	n	n
+1	y	y	n	y	n
+1	n	y	n	y	n
0	n	n	n	n	y
0	y	n	n	y	y
0	n	y	n	y	n
0	y	y	y	y	y
-1	y	y	y	n	y
-1	n	n	y	y	n
-1	n	n	y	n	y
-1	y	n	y	n	y
-2	n	n	y	y	n
-2	n	y	y	n	y
-2	y	n	y	n	n
-2	y	n	y	n	y

Ensembles

Key Idea: "Wisdom of the crowd"
groups of people can often make better decisions than individuals

Apply this to ML
Learn multiple classifiers and combine their predictions

Combining Multiple Classifiers by Voting

Train several classifiers and take majority of predictions

For regression use mean or median of the predictions

For ranking and collective classification use some form of averaging

A common family of approaches is called bagging

Bagging: Split the Data

Option 1: Split the data into K pieces and with option 1? train a classifier on each

Bagging: Split the Data

Q: What can go wrong
Option 1: Split the data into K pieces and train a classifier on each
with option 1?
A: Small sample \rightarrow poor performance

Bagging: Split the Data

Option 1: Split the data into K pieces and train a classifier on each

Q: What can go wrong with option 1?

A: Small sample \rightarrow poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Bagging: Split the Data

Q: What can go wrong
Option 1: Split the data into K pieces and train a classifier on each
with option 1?
A: Small sample \rightarrow poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Obtain datasets $D_{1}, D_{2}, \ldots, D_{N}$ using bootstrap resampling from D

Given a
dataset D...

get new datasets \hat{D} by random sampling with replacement from D

Bagging: Split the Data

Q: What can go wrong
Option 1: Split the data into K pieces and train a classifier on each
with option 1?
A: Small sample \rightarrow poor performance

Option 2: Bootstrap aggregation (bagging) resampling
Obtain datasets $D_{1}, D_{2}, \ldots, D_{N}$ using bootstrap resampling from D
Train classifiers on each dataset and average their predictions

Given a
dataset D...

get new datasets $\hat{\text { D̂ by }}$ random sampling with replacement from D

Bagging Decision Trees

How would it work?

Bagging Decision Trees

How would it work?

Bootstrap sample S samples $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{S}, Y_{S}\right)\right\}$ Train a tree t_{s} on $\left(X_{s}, Y_{s}\right)$ At test time: $\hat{y}=\operatorname{avg}\left(t_{1}(x), \ldots t_{S}(x)\right)$

Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features of size \mathbf{k} and pick the best among these

Train decision trees of depth \mathbf{d}

Average results from multiple randomly trained trees

Q: What's the difference
between bagging decision
trees and random forests?

Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features of size \mathbf{k} and pick the best among these

Train decision trees of depth \mathbf{d}

Average results from multiple randomly trained trees

Q: What's the difference
between bagging decision trees and random forests?

```
    A: Bagging }->\mathrm{ highly
correlated trees (reuse good
    features)
```


LINEAR MODELS

Linear Models

- Can be used for either regression or classification
- A number of instances for classification. Common ones are:
- Perceptron
- Linear SVM
- Logistic regression
- (yes, even though "regression" is in the name ())

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts b are okay)

$$
Y=W^{T} X+b
$$

Items to learn: W, b

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts b are okay)

$$
Y=W^{T} X+b
$$

> For regression: the output of this equation is the predicted value

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts b are okay)

$$
Y=W^{T} X+b
$$

Items to learn: W, b

> For regression: the output of this equation is the predicted value

Linear Models in
 sklearn

1.1. Linear Models
1.1.1. Ordinary Least Squares
1.1.2. Ridge regression and
classification
1.1.3. Lasso
1.1.4. Multi-task Lasso
1.1.5. Elastic-Net
1.1.6. Multi-task Elastic-Net
1.1.7. Least Angle Regression
1.1.8. LARS Lasso
1.1.9. Orthogonal Matching Pursuit
(OMP)
1.1.10. Bayesian Regression
1.1.11. Logistic regression
1.1.12. Generalized Linear

Regression
1.1.13. Stochastic Gradient Descent

- SGD
1.1.14. Perceptron
1.1.15. Passive Aggressive

Algorithms
1.1.16. Robustness regression:
outliers and modeling errors
1.1.17. Polynomial regression:
extending linear models with basis
functions

These all have easy-to-use interfaces, with the same core interface:

- Training: model.fit(X=training_features, $\mathrm{y}=$ training_labels)
- Prediction: model.predict(X=eval_features)

Linear Models in
 sklearn

1.1. Linear Models
1.1.1. Ordinary Least Squares
1.1.2. Ridge regression and
classification
1.1.3. Lasso
1.1.4. Multi-task Lasso
1.1.5. Elastic-Net
1.1.6. Multi-task Elastic-Net
1.1.7. Least Angle Regression
1.1.8. LARS Lasso
1.1.9. Orthogonal Matching Pursuit
(OMP)
1.1.10. Bayesian Regression
1.1.11. Logistic regression
1.1.12. Generalized Linear

Regression
1.1.13. Stochastic Gradient Descent

- SGD
1.1.14. Perceptron
1.1.15. Passive Aggressive

Algorithms
1.1.16. Robustness regression:
outliers and modeling errors
1.1.17. Polynomial regression:
extending linear models with basis
functions

These all have easy-to-use interfaces, with the same core interface:

- Training:
model.fit(X=training_features, $\mathrm{y}=$ =training_labels)
- Prediction: model.predict(X=eval_features)

Take CMSC 478 (or 678), or independent study to learn about this in more detail!

Linear Models in
 sklearn

1.1. Linear Models
1.1.1. Ordinary Least Squares
1.1.2. Ridge regression and
classification
1.1.3. Lasso
1.1.4. Multi-task Lasso
1.1.5. Elastic-Net
1.1.6. Multi-task Elastic-Net
1.1.7. Least Angle Regression
1.1.8. LARS Lasso
1.1.9. Orthogonal Matching Pursuit
(OMP)
1.1.10. Bayesian Regression
1.1.11. Logistic regression
1.1.12. Generalized Linear

Regression
1.1.13. Stochastic Gradient Descent

- SGD
1.1.14. Perceptron
1.1.15. Passive Aggressive

Algorithms
1.1.16. Robustness regression:
outliers and modeling errors
1.1.17. Polynomial regression:
extending linear models with basis
functions

These all have easy-to-use interfaces, with the same core interface:

- Training: model.fit(X=training_features, $\mathrm{y}=$ =training_labels)
- Prediction: model.predict(X=eval_features)

Take CMSC 478 (or 678), or independent study to learn about this in more detail!

Linear Models in pytorch

These are "building blocks" not full models.

- ~Linear.weight - the learnable weights of the module of shape (out_features, in_features) . The values are initialized from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$, where $k=\frac{1}{\text { in_features }}$
- ~Linear.bias - the learnable bias of the module of shape (out_features). If bias is True, the values are initialized from $\mathcal{U}(-\sqrt{k}, \sqrt{k})$ where $k=\frac{1}{\text { in_features }}$

Examples:
>>> m = nn.Linear (20, 30)
>>> input $=$ torch.randn $(128,20)$
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

Take CMSC 478 (or 678), or independent study to learn about this in more detail!

A Simple Linear Model

predict y_{i} from $\mathbf{x}_{\mathbf{i}}$

value y_{i}
data point x_{i}, as a vector of features

A Graphical View of Linear Models

A Simple Linear Model for Regression

A Simple Linear Model for Regression

A Simple Linear Model for Regression

A Simple Linear Model for Classification

A Simple Linear Model for Classification

A Simple Linear Model for Classification

A Simple Linear Model for Classification

A Simple Linear Model for Classification

A Simple Linear Model for Classification

Linear Models in Multiple Dimensions

Linear Models in the Basic Framework

Central Question: How Well Are : ${ }^{n}$ / - , ?

 Reminder!

How do we learn these linear classification methods? Change the loss function. (478/678 topics)

How do we evaluate these linear classification methods? Change the eval function.

What if

- We want a unified way to predict more than two classes?
- We want a probabilistic (bounded, interpretable) score?
- We want to use transformations of our data x to help make decisions?

What if

- We want a unified way to predict more than two classes?
- We want a probabilistic (bounded, interpretable) score?
- We want to use transformations of our data x to help make decisions?

Terminology

common ML
as statistical
regression
based in
information theory
a form of
viewed as
to be cool today:)

Log-Linear Models
(Multinomial) logistic regression
Softmax regression
Maximum Entropy models (MaxEnt)
Generalized Linear Models
Discriminative Naïve Bayes
Very shallow (sigmoidal) neural nets

Turning Scores into Probabilities

s: Micha el Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h:The Bulls basketball team is based in Chicago.

| s: MichaelJordan, coach
 Phil Jackson and the star
 cast, including Scottie
 Pippen, took the Chicago
 Bulls to six National
 Basketball Association
 championships.
 h:The Bulls basketball
 team is based in Chicago. |
| :--- | :--- |

Core Aspects to Maxent Classifier $p(y \mid x)$

- features $f(x, y)$ between x and y that are meaningful;
- weights θ (one per feature) to say how important each feature is; and
- a way to form probabilities from f and θ

Discriminative Document Classification

s: Michael Jordan, coach Phil Jackson and the star cast, ENTAILED including Scottie Pippen, took the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team is based in Chicago.

Discriminative Document Classification

s: Michael Jordan, coach Phil Jackson and the star cast, includeding Scottie Pippen, took the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team
is based in Chicago.

ENTAILED

These extractions are all features that have fired (likely

have some significance)

Discriminative Document Classification

s: Michael Jordan, coach Phil
Jackson and the star cast. . . .
wincluding Scot,re-pippen, took the Chicago Bulls to six
National Basketball
Association championships.

h: The Bulls basketball team
is based in Chicago.

ENTAILED

These extractions are all features that have fired (likely
have some significance)

Discriminative Document Classification

s: Michael Jordan, coach Phil
Jackson and the star cast. _ . .
wincluding Scoty-⿸尸- Pippen, took the Chicago Bulls to six
National Basketball
Association champpionships.

h: The Bulls basketball team
is based in Chicago.

ENTAILED

These extractions are all features that have fired (likely

have some significance)

We need to score the different extracted clues.

 Jackson and the star
inceluding Scot, , iéPippen, took the Chicago Bulls to six $\quad-\quad$ National Basketball
Association changpil score $_{2}$ ((ENTAILED)
,-----------------
h : The Bulls basketball team
is based in Chicago.

$$
\mathrm{score}_{3}(\text { 籑, ENTAILED) }
$$

Score and Combine Our Clues

score ${ }_{1}$（悬，ENTAILED）
score $_{2}$（閊，ENTAILED）
score $_{3}$（䉣，ENTAILED）
score ${ }_{\mathbf{k}}$（筧，ENTAILED）

Combine

posterior
probability of
ENTAILED

Scoring Our Clues

（ignore the feature indexing
for now）
score $_{1}$（（管，ENTAILED）
score ${ }_{2}$（ 䉣，ENTAILED）
score $_{3}$（䍗，ENTAILED）

A linear scoring model！

Scoring Our Clues

score
s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h : The Bulls basketball team is based in Chicago.

Learn these scores... but how?

What do we optimize?
score $_{1}$ (
score $_{2}$ (管, ENTAILED)
score $_{3}$ (

A linear scoring model!

Turning Scores into Probabilities (More Generally)

$\operatorname{score}\left(x, y_{1}\right)>\operatorname{score}\left(x, y_{2}\right)$

$$
p\left(y_{1} \mid x\right)>p\left(y_{2} \mid x\right)
$$

Maxent Modeling

$\mid \alpha$

championships.
h : The Bulls basketball team is based in Chicago.
s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association

Entailed

p(

 -

A linear scoring model!

Maxent Modeling

Maxent Modeling

Maxent Modeling

weight $_{1} *$ applies $_{1}$ (
weight $_{2} *$ applies $_{2}$ ((ENTAILED)
weight $_{3} *$ applies $_{3}$ (算,
ENTAILED)

Maxent Modeling

K different for K different weights... features

Maxent Modeling

K different for K different weights... features...
multiplied and then summed

Maxent Modeling

е入〇（Dot＿product of weight＿vec feature＿vec（1）（1）

K different for K different
weights．．．
multiplied and then summed

Maxent Modeling

s: Michael Jordan, coach Phil Jackson and the star cast,

p(

ENTAILED

including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association championships.
h : The Bulls basketball team is based in Chicago.championships.

K different for K different
weights...
 \title{
$\exp ($
 \title{
$\exp ($

 $\theta^{T} f($ 窠, entalled
}

 $\theta^{T} f($ 窠, entalled
}
multiplied and then summed

Machine Learning Framework: Learning

A Graphical View of Logistic Regression/Classification

 (2 classes)

A Graphical View of Logistic Regression/Classification (4 classes)

sklearn.linear_model.LogisticRegression π

```
class sklearn.linear_model. LogisticRegression(penalty='l2', *,dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver= 'lbfgs', max_iter=100, multi_class='auto', verbose=0,
warm_start=False, n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.
In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.)

This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'Ibfgs' solvers. Note that regularization is applied by default. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only supported by the 'saga' solver.

Read more in the User Guide.

Parameters: penalty: \{'l1', 'l2', 'elasticnet', 'none'\}, default='l2'
Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only I2 penalties. 'elasticnet' is only supported by the 'saga' solver. If 'none' (not supported by the liblinear solver), no regularization is applied.

\section*{https://scikit-}
learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html```

