CMSC 471: Machine Learning

Frank Ferraro – ferraro@umbc.edu

Some slides courtesy Tim Finin

Why study learning?

- **Discover** new things or structure previously unknown
 - Examples: data mining, scientific discovery
- Fill in skeletal or **incomplete specifications** in a domain
 - Large, complex systems can't be completely built by hand
 & require dynamic updating to incorporate new info.
 - Learning new characteristics expands the domain or expertise and lessens the "brittleness" of the system
- Acquire models automatically directly from data rather than by manual programming
- Build agents that can adapt to users, other agents, and their environment
- Understand and improve efficiency of human learning

What does it mean to learn?

Wesley has been taking an AI course

Geordi, the instructor, needs to determine if Wesley has "learned" the topics covered, at the end of the course

What is a "reasonable" exam?
(Bad) Choice 1: History of pottery
Wesley's performance is not indicative of what was learned in AI
(Bad) Choice 2: Questions answered during lectures
Open book?

A good test should test ability to answer "related" but "new" questions on the exam

Generalization

Model, parameters and hyperparameters

Model: mathematical formulation of system (e.g., classifier)

Parameters: primary "knobs" of the model that are set by a learning algorithm

Hyperparameter: secondary "knobs"

http://www.uiparade.com/wp-content/uploads/2012/01/ui-design-pure-css.jpg

score(Instance of data ("datum")

Machine Learning Framework: Learning

Machine Learning Framework: Learning

Classify with Goodness

predicted label

= arg max label score(example, label)

Puppy classifier

What do we know *before* we see the data, and how does that influence our modeling decisions?

What do we know *before* we see the data, and how does that influence our modeling decisions?

Partition these into two groups...

What do we know *before* we see the data, and how does that influence our modeling decisions?

Partition these into two groups

Who selected red vs. blue?

What do we know *before* we see the data, and how does that influence our modeling decisions?

What do we know *before* we see the data, and how does that influence our modeling decisions?

AI & ML

Al and Learning Today

- 50s&60s: neural network learning popular Marvin Minsky did neural networks for his dissertation
- Mid 60s: replaced by paradigm of manually encoding & using symbolic knowledge
 Cf. <u>Perceptrons</u>, Minsky & Papert book showed limitations of perceptron model of neural networks
- 90s: more data & Web drove interest in statistical machine learning techniques & data mining
- Now: machine learning techniques & big data play biggest driver in almost all successful AI systems

... and neural networks are the current favorite approach

Neural Networks 1960

A man adjusting the random wiring network between the light sensors and association unit of scientist Frank Rosenblatt's Perceptron, or MARK 1 computer, at the Cornell Aeronautical Laboratory, Buffalo, New York, circa 1960. The machine is designed to use a type of artificial neural network, known as a perceptron.

Neural Networks 2020

Google's AIY Vision Kit (\$89.99 at Target) is an intelligent camera that can recognize objects, detect faces and emotions. Download and use a variety of image recognition neural networks to customize the Vision Kit for your own creation. Included in the box: Raspberry Pi Zero WH, Pi Camera V2, Micro SD Card, Micro USB Cable, Push Button.

Currently \$58.85 on Amazon

Machine Learning Successes

- Games: chess, go, poker
- Text sentiment analysis
- Email spam detection
- Recommender systems (e.g., Netflix, Amazon)
- Machine translation
- Speech understanding
- SIRI, Alexa, Google Assistant, ...

- Autonomous vehicles
- Individual face recognition
- Understanding digital images
- Credit card fraud detection
- Showing annoying ads

The Big Idea and Terminology

Given some data, learn a model of how the world works that lets you predict new data

- Training Set: Data from which you learn initially
- Model: What you learn; a "model" of how inputs are associated with outputs
- Test set: New data you test your model against
- Corpus: A body of text data (pl.: corpora)
- Representation: The computational expression of data

Major Machine learning paradigms (1)

- **Rote**: 1-1 mapping from inputs to stored representation, learning by memorization, association-based storage & retrieval
- Induction: Use specific examples to reach general conclusions
- Clustering: Unsupervised discovery of natural groups in data

Major Machine learning paradigms (2)

- **Analogy:** Find correspondence between different representations
- **Discovery**: Unsupervised, specific goal not given
- **Genetic algorithms:** *Evolutionary* search techniques, based on *survival of the fittest*
- **Reinforcement:** Feedback (positive or negative reward) given at the end of a sequence of steps
- **Deep learning:** *artificial neural networks* with *representation learning* for ML tasks

CORE TERMINOLOGY

Three Axes for Thinking About Your ML Problem

Classification	Fully-supervised	Probabilistic Neural
		Generative Memory- based
Regression	Semi-supervised	Conditional Exemplar
Clustering	Un-supervised	Spectral …
the task : what kind of problem are you	the data : amount of human input/number	the approach : how any data are being

of labeled examples

solving?

32

used

Types of learning problems

- **Supervised**: learn from training examples
 - Regression:
 - Classification: Decision Trees, SVM
- Unsupervised: learn w/o training examples
 - Clustering
 - Dimensionality reduction
 - Word embeddings
- **Reinforcement learning:** improve performance using feedback from actions taken
- Lots more we won't cover
 - Hidden Markov models, Learning to rank, Semi-supervised learning, Active learning ... 33

Machine Learning Problems

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Supervised learning

- Given training examples of inputs & corresponding outputs, produce "correct" outputs for new inputs
- Two important scenarios:
 - -**Classification:** outputs typically labels (goodRisk, badRisk); learn decision boundary to separate classes
 - -Regression: aka *curve fitting* or *function approximation*; Learn a *continuous* input-output mapping from examples, e.g., for a zip code, predict house sale price given its square footage

Unsupervised Learning

Given only *unlabeled* data as input, learn some sort of structure, e.g.:

- **Clustering**: group Facebook friends based on similarity of post texts and friends
- **Embeddings**: Find sets of words whose meanings are related (e.g., doctor, hospital)
- **Topic modelling**: Induce N topics and words most common in documents about each
Inductive Learning Framework

- Raw input data from sensors or a database preprocessed to obtain feature vector, X, of relevant features for classifying examples
- Each **X** is a list of (attribute, value) pairs
- *n* attributes (a.k.a. features): fixed, positive, and finite
- Features have fixed, finite number # of possible values
 Or continuous within some well-defined space, e.g., "age"
- Each example is a point in an *n*-dimensional feature space
 - X = [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female]
 - X = [Cheese:f, Sauce:t, Bread:t]
 - X = [Texture:Fuzzy, Ears:Pointy, Purrs:Yes, Legs:4]

Inductive Learning Framework Example

Classification Examples

...

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Classification Examples

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input: an instance a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

Output: a predicted class c from C

Classification: Hand-coded Rules?

Assigning subject categories, topics, or genres

Spam detection

Age/gender identification Language Identification Sentiment analysis

Authorship identification

Rules based on combinations of words or other features spam: black-list-address OR ("dollars" AND "have been selected")

. . .

Accuracy can be high If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?

Classification: Supervised Machine Learning

. . .

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input:

an instance *d* a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ A training set of *m* hand-labeled instances $(d_1, c_1), ..., (d_m, c_m)$

Output:

a learned classifier $\ensuremath{\nu}$ that maps instances to classes

Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input:

an instance da fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ A training set of m hand-labeled instances $(d_1, c_1), ..., (d_m, c_m)$

Output:

a learned classifier $\ensuremath{\nu}$ that maps instances to classes

y learns to associate certain *features* of instances with their labels

Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

Input:

an instance da fixed set of classes $C = \{c_1, c_2, ..., c_J\}$ A training set of m hand-labeled instances $(d_1, c_1), ..., (d_m, c_m)$

Output:

a learned classifier $\ensuremath{\nu}$ that maps instances to classes

Naïve Bayes Logistic regression Support-vector machines k-Nearest Neighbors

...

Classification Example: Face Recognition

What is a good *representation* for images?

Pixel values? Edges?

Courtesy from Hamed Pirsiavash

Classification Example: Sequence & Structured Prediction

Courtesy Hamed Pirsiavash

Inject your knowledge into a learning system

Feature representation

Training data: labeled examples

Inject your knowledge into a learning system

Problem specific

Difficult to learn from bad ones

Feature representation

Training data: labeled examples

Inject your knowledge into a learning system

Problem specific	Labeling data == \$\$\$
Difficult to learn from bad ones	Sometimes data is available for "free"

Feature representation

Training data: labeled examples

Inject your knowledge into a learning system

		No single learning algorithm
Problem specific	Labeling data == \$\$\$	is always good ("no free
	0	lunch")
Difficult to learn from bad	Sometimes data is	
ones	available for "free"	Different learning
		algorithms work differently

Feature representation

Training data: labeled examples

Regression

Like classification, but real-valued

Regression Example: Stock Market Prediction

S&P 500 S&P Indices: .INX - Jan 16 4:30 PM ET

2,019.42 +26.75 (1.34%)

Unsupervised learning: Clustering

ML FOR USERS

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

What I actually do₅₈

Help you learn the ropes...

https://raftinginthesmokies.com/w pcontent/uploads/2019/02/ropeschallenge-course.jpeg

Help you learn the ropes...

https://raftinginthesmokies.com/ wpcontent/uploads/2019/02/ropeschallenge-course.jpeg

Help you learn the ropes...

https://raftinginthesmokies.com/ wpcontent/uploads/2019/02/ropeschallenge-course.jpeg ... so you can go into a job...

Help you learn the ropes...

... and apply your knowledge using whatever tools your org. uses!

from theme import

keras torch

What I actually do₆₂

https://raftinginthesmokies.com/w pcontent/uploads/2019/02/ropeschallenge-course.jpeg

... so you can go into a job...

Toolkit Basics

- Machine learning involves working with data
 - analyzing, manipulating, transforming, ...
- More often than not, it's numeric or has a natural numeric representation
- Natural language text is an exception, but this too can have a numeric representation
- A common data model is as a N-dimensional matrix or tensor
- These are supported in Python via libraries

Typical Python Libraries

numpy, scipy

 Basic mathematical libraries for dealing with matrices and scientific/mathematical functions

pandas, matplotlib

• Libraries for data science & plotting

sklearn (scikit-learn)

• A whole bunch of implemented classifiers

torch (pytorch) and tensorflow

• Frameworks for building neural networks

Lots of documentation available for all of these online!

What is Numpy?

- NumPy supports features needed for ML
 - Typed N-dimensional arrays (matrices/tensors)
 - Fast numerical computations (matrix math)
 - High-level math functions
- Python does numerical computations slowly and lacks an efficient matrix representation
- 1000 x 1000 matrix multiply
 - Python triple loop takes > 10 minutes!
 - Numpy takes ~0.03 seconds

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays, Basic Properties

```
>>> import numpy as np
>>> a= np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> print(a.ndim, a.shape, a.dtype)
2 (2, 3) float32
>> print(a)
[[1. 2. 3.]
[4. 5. 6.]]
```

- Arrays:
- 1. Can have any number of dimensions, including zero (a scalar)
- 2. Are **typed**: np.uint8, np.int64, np.float32, np.float64
- 3. Are dense: each element of array exists and has the same type

NumPy Array Indexing, Slicing

a[0,0] # top-left element

- a[0,-1] # first row, last column
- a[0,:] # first row, all columns
- a[:,0] # first column, all rows
- a[0:2,0:2] # 1st 2 rows, 1st 2 columns
 Notes:
 - Zero-indexing
 - Multi-dimensional indices are comma-separated)
 - Python notation for slicing

SciPy

- SciPy builds on the NumPy array object
- Adds additional mathematical functions and sparse arrays
- **Sparse array:** one where most elements = 0
- An efficient representation only implicitly encodes the non-zero values
- Access to a missing element returns 0

SciPy sparse array use case

- NumPy and SciPy arrays are numeric
- We can represent a document's content by a vector of features
- Each feature is a possible word
- A feature's value might be any of:
 - TF: number of times it occurs in the document;
 - TF-IDF: ... normalized by how common the word is
 - and maybe normalized by document length ...

SciPy sparse array use case

- Maybe only model 50k most frequent words found in a document collection, ignoring others
- Assign each unique word an index (e.g., dog:137)
 Build python dict w from vocabulary, so w['dog']=137
- The sentence "the dog chased the cat"
 - Would be a *numPy vector* of length 50,000
 - Or a *sciPy sparse vector* of length 4
- An 800-word news article may only have 100 unique words; <u>The Hobbit</u> has about 8,000

Docs

SciPy.org

SciPy v1.4.1 Reference Guide

SciPy Tutorial

- Introduction
- Basic functions
- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fft)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse eigenvalue problems with ARPACK
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
- File IO (scipy.io)

More on SciPy

See the <u>SciPy</u> <u>tutorial</u> Web

pages

Home Insta

https://sklearn.org/

scikit-learn

Simple and efficient tools for data mining and data analysis

- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Many tutorials

Documentation online

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition. Algorithms: SVM, nearest neighbors, random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

— Examples

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

 Applications: Visualization, Increased
 efficiency

 Algorithms: PCA, feature selection, non negative matrix factorization.

 — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

- Examples
How easy is this?

DATA & EVALUATION

 UCI Machine Learning Reposition C A archive.ics.uci.edu/ml/ UCI Archive.ics.uci.edu/ml/ Machine Learning Repository Center for Machine Learning and Intelligent Systems 	http://archive.	About Citation Policy Donate a Data Set Coogle" Custom Search Search Search Search Search Search Search Search Search Search Search
We currently maintain 233 data sets as a service to the machine learni format. For a general overview of the Repository, please visit our <u>Abou</u> our <u>donation policy</u> . For any other questions, feel free to <u>contact the Re</u>	Welcome to the UC Irvine Machine Learning Repository ng community. You may <u>view all data sets</u> through our searchable inter t page. For information about citing data sets in publications, please real apository librarians. We have also set up a <u>mirror site</u> for the Repository Supported By:	y! rface. Our <u>old web site</u> is still available, for those who prefer the old ad our <u>citation policy</u> . If you wish to donate a data set, please consult 233 data sets
Latest News:	Newest Data Sets:	Most Popular Data Sets (hits since 2007):
2010-03-01: Note from donor regarding Netflix data 2009-10-16: Two new data sets have been added. 2009-09-14: Several data sets have been added.	2012-10-21: UCI <u>QtyT40I10D100K</u>	386214: Iris
2008-07-23: Repository mirror has been set up. 2008-03-24: New data sets have been added!	2012-10-19: UC Legal Case Reports	272233: Adult
2007-06-25: Two new data sets have been added: UJI Pen Characters, MAGIC Gamma Telescope 2007-04-13: Research papers that cite the repository have been considered to exercise the term of the second for the term.	2012-09-29: UCI seeds	237503: Wine
associated to specific data sets.	2012-08-30: Individual household electric power	195947: Breast Cancer Wisconsin (Diagnostic)
Featured Data Set: Yeast Task: Classification Data Type: Multivariate	2012-08-15: UCI Northix	182423: Car Evaluation
# Attributes: 8 # Instances: 1484	2012-08-06: UCI PAMAP2 Physical Activity Monitoring	151635: Abalone
	2012-08-04: UCI Restaurant & consumer data	135419: Poker Hand
Predicting the Cellular Localization Sites of Proteins	2012-08-03: UCI <u>CNAE-9</u>	113024: Forest Fires 78

Abstract: Artificial, 7 classes of animals

http://archive.ics.uci.edu/ml/datasets/Zoo

Data Set Characteristics:	Multivariate	Number of Instances:	101	Area:	Life
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	17	Date Donated	1990-05- 15
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	18038

70

animal name: string hair: Boolean feathers: Boolean eggs: Boolean milk: Boolean airborne: Boolean aquatic: Boolean predator: Boolean toothed: Boolean backbone: Boolean breathes: Boolean venomous: Boolean fins: Boolean legs: {0,2,4,5,6,8} tail: Boolean domestic: Boolean catsize: Boolean type: {mammal, fish, bird, shellfish, insect, reptile, amphibian}

Zoo data

101 examples

aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish bear, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 4, 0, 0, 1, mammal boar, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 4, 1, 0, 1, mammal buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal cheetah, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 4, 1, 0, 1, mammal chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn *data* into *numbers*

Features that are not 0 are said to have fired

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn *data* into *numbers*

Features that are not 0 are said to have fired

Often binary-valued (0 or 1), but can be real-valued

Features

Define a feature f_{clue} (\square , label) for each type of clue you want to consider

The feature f_{clue} fires if the clue applies to/can be found in the (\square , label) pair

sklearn example (in-class, live coding)

Zoo example

- aima-python> python
- >>> from learning import *
- >>> zoo
- <DataSet(zoo): 101 examples, 18 attributes>
- >>> dt = DecisionTreeLearner()
- >>> dt.train(zoo)
- >>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0]) 'fish'
- >>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0]) 'mammal'

Central Question: How Well Are We Doing?

Central Question: How Well Are We Doing?

Evaluation methodology (1)

Standard methodology:

- 1. Collect large set of examples with correct classifications (aka ground truth data)
- 2. Randomly divide collection into two disjoint sets: *training* and *test* (e.g., via a 90-10% split)
- 3. Apply learning algorithm to **training** set giving hypothesis H
- Measure performance of H on the held-out test set

Evaluation methodology (2)

- Important: keep the training and test sets disjoint!
- Study efficiency & robustness of algorithm: repeat steps 2-4 for different training sets & training set sizes
- On modifying algorithm, restart with step 1 to avoid evolving algorithm to work well on just this collection

Experimenting with Machine Learning Models

Evaluation methodology (3)

Common variation on methodology:

- 1. Collect set of examples with correct classifications
- Randomly divide it into two disjoint sets: *development* & *test;* further divide development into *devtrain* & *devtest*
- 3. Apply ML to devtrain, giving hypothesis H
- 4. Measure performance of H w.r.t. *devtest* data
- 5. Modify approach, repeat 3-4 as needed
- 6. Final test on test data

Evaluation methodology (4)

- Only **devtest** data used for evalua-
- 1. tion during system **development**
- 2. When all development has ended, **test** data used for **final evaluation**
 - Ensures final system not influenced by test data
- 3. If more development needed, get
- 4. new dataset!

devtest data

- 5. Modify approach, repeat 3-4 as needed
- 6. Final test on test data

Zoo evaluation

train_and_test(learner, data, start, end) uses
data[start:end] for test and rest for train

>>> dtl = DecisionTreeLearner

>>> train_and_test(dtl(), zoo, 0, 10)

1.0

- >>> train_and_test(dtl(), zoo, 90, 100)
- 0.8000000000000004
- >>> train_and_test(dtl(), zoo, 90, 101) 0.818181818181823
- >>> train_and_test(dtl(), zoo, 80, 90) 0.9000000000000002

Zoo evaluation

train_and_test(learner, data, start, end) uses
data[start:end] for test and rest for train

- We hold out 10 data items for test; train on the other 91; show the accuracy on the test data
- Doing this four times for different test subsets shows accuracy from 80% to 100%
- What's the true accuracy of our approach?

K-fold Cross Validation

- Problem: getting ground truth data expensive
- Problem: need different test data for each test
- **Problem:** experiments needed to find right *feature space* & parameters for ML algorithms
- Goal: minimize training+test data needed
- **Idea:** split training data into K subsets; use K-1 for *training* and one for *development testing*
- Repeat K times and average performance
- Common K values are 5 and 10

Zoo evaluation

- AIMA code has a cross_validation function that runs K-fold cross validation
- cross_validation(learner, data, K, N) does N iterations, each time randomly selecting 1/K data points for test, leaving rest for train

>>> cross_validation(dtl(), zoo, 10, 20) 0.9550000000000007

- This is a very common approach to evaluating the accuracy of a model during development
- Best practice is still to hold out a <u>final</u> test data set

Leave one out

- AIMA code also has a leave1out function that runs a different set of experiments to estimate accuracy of the model
- leave1out(learner, data) does len(data) trials, each using one element for test, rest for train
 >> leave1out(dtl(), zoo)
 0.97029702970297027
- K-fold cross validation can be too pessimistic, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative

Learning curve (1)

A <u>learning curve</u> shows accuracy on test set as a function of training set size or (for neural networks) running time

99

Learning curve

- When evaluating ML algorithms, steeper learning curves are better
- They represents faster learning with less data

Classification Evaluation: the 2-by-2 contingency table				
What is the actual label?				
What label does our system predict? (\downarrow)	Actually	Actually		
	Correct	Incorrect		
Selected/				
Guessed				
Not selected/				
not guessed				

Classification Evaluation: the 2-by-2 contingency table							
What is the actual label?							
What label does our system predict? (\downarrow)	Actually Correct	Actually Incorrect					
Selected/ Guessed	True Positive (TP) Guessed						
Not selected/ not guessed							

Classification Evaluation: the 2-by-2 contingency table				
	What is the actual label?			
What label does our system predict? (\downarrow)	Actually Correct	Actually Incorrect		
Selected/ Guessed	True Positive (TP) Guessed	False Positive		
Not selected/ not guessed				
		104		

Classes/Choices

Classification Evaluation: the 2-by-2 contingency table

	What is the actual label?						
What label does our	Actually	Actually					
system predict? (Ψ)	Correct	Incorrect					
Selected/	True Positive	False Positive					
Guessed	Actual (TP) Guessed	Actual (FP) Guessed					
Not selected/	False Negative						
not guessed	Actual (FN) OGuessed						

Classification Evaluation:
the 2-by-2 contingency table

	What is the actual label?				
What label does our	Actually	Actually			
system predict! (V)	Correct	Incorrect			
Selected/	True Positive	False Positive			
Guessed	Actual (TP) Guessed	Actual (FP) Guessed			
Not selected/	False Negative	True Negative			
not guessed	Actual (FN) OGuessed	Actual (TN) OGuessed			

Classification Evaluation:
the 2-by-2 contingency table

	What is the actual label?				
What label does our	Actually	Actually			
system predict! (V)	Correct	Incorrect			
Selected/	True Positive	False Positive			
Guessed	Actual (TP) Guessed	Actual (FP) Guessed			
Not selected/	False Negative	True Negative			
not guessed	Actual (FN) OGuessed	Actual (TN) OGuessed			

Construct this table by *counting* the number of TPs, FPs, FNs, TNs

Contingency Table Example Predicted: Actual:

Contingency Table Example					
Predicted:		\bigcirc			
Actual:		\bigcirc			
	What is the a	actual label?			
What label does our system predict? (.).	Actually	Actually			
system predict: (W)	Correct	Incorrect			
Selected/	True Positive	False Positive			
Guessed	(TP)	(FP)			
Not selected/	False Negative	True Negative			
not guessed	(FN)	(TN) 109			

Contingency Table Example							
Predicted:	\bigcirc				\bigcirc		
Actual:				\bigcirc	\bigcirc		
		W	hat is	the c	actual l	label?	
What label does our system predict? (1)	Actually		А	ctuall	Y		
system predict. (V)	Correc				In	icorre	ct
Selected/	Tru	le Po	ositi	ve	Fals	e Posi	tive
Guessed		(TP) = 2				(FP)	
Not selected/	Fals	se N	egat	ive	True	e Nega	tive
not guessed		(Fl	N)			(TN)	110

Contingency Table Example							
Predicted:	\bigcirc				0		
Actual:				\bigcirc	\bigcirc		
		W	'hat is	the c	ictual label?		
What label does our system predict? (.).	Actually				Actually		
system predict: (W)	Correct				Incorrect		
Selected/	True Positive			False Positive			
Guessed	(TP) = 2			(FP) = 1			
Not selected/	Fal	False Negative			True Negative		
not guessed	(FN)			(TN) 111			
Contingency Table Example							
---------------------------	----------------	----------------	--	--	--	--	--
Predicted:		\bigcirc					
Actual:		\bigcirc					
	What is the a	actual label?					
What label does our	Actually	Actually					
system predict: (\v)	Correct	Incorrect					
Selected/	True Positive	False Positive					
Guessed	(TP) = 2	(FP) = 1					
Not selected/	False Negative	True Negative					
not guessed	(FN) = 1	(TN) 112					

Contingency Table Example							
Predicted:		\bigcirc					
Actual:		\bigcirc					
	What is the a	actual label?					
What label does our	Actually	Actually					
system predict: (V)	Correct	Incorrect					
Selected/	True Positive	False Positive					
Guessed	(TP) = 2	(FP) = 1					
Not selected/	False Negative	True Negative					
not guessed	(FN) = 1	(TN) = 1 ₁₁₃					

.

Contingency Table Example							
Predicted:		\bigcirc					
Actual:		\bigcirc					
	What is the a	actual label?					
What label does our system predict? (.).)	Actually	Actually					
system predict: (W)	Correct	Incorrect					
Selected/	True Positive	False Positive					
Guessed	(TP) = 2	(FP) = 1					
Not selected/	False Negative	True Negative					
not guessed	(FN) = 1	(TN) = 1 ₁₁₄					

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct $\frac{TP + TN}{TP + FP + FN + TN}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation: Accuracy, Precision, and Recall **Accuracy**: % of items correct TP + TNTP + FP + FN + TN**Precision**: % of selected items that are correct TP TP + FP

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation: Accuracy, Precision, and Recall **Accuracy**: % of items correct TP + TNTP + FP + FN + TN**Precision**: % of selected items that are correct TP TP + FP**Recall:** % of correct items that are selected TP TP + FN**Actually Correct Actually Incorrect** Selected/Guessed True Positive (TP) False Positive (FP) Not select/not guessed False Negative (FN) True Negative (TN) 117

Q: Where do you want your ideal model ?

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

 Computing the curve
You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall

2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC

AUC measures the area under this tradeoff curve

- Computing the curve You need true labels & predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute metrics
- 2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Main variant: ROC-AUC

Same idea as before but with some flipped metrics

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{(1+\beta^2) * P * R}{(\beta^2 * P) + R}$$

Balanced F1 measure:
$$\beta$$
=1
 $F_1 = \frac{2 * P * R}{P + R}$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\sum_{c} \frac{TP_{c}}{TP_{c} + FP_{c}} = \sum_{c} \text{precision}_{c}$$

(missing 1/C)

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

when to prefer the macroaverage?

macroprecision =
$$\sum_{c} \frac{TP_{c}}{TP_{c} + FP_{c}} = \sum_{c} \text{precision}_{c}$$

(missing 1/C)

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

when to prefer the microaverage?

Micro-vs. Macro-Averaging: Example

Class 1

Class 2

Micro Ave. Table

	Truth	Truth		Truth	Truth		Truth	Truth
	: yes	: no		: yes	: no		: yes	: no
Classifier: yes	10	10	Classifier: yes	90	10	Classifier: yes	100	20
Classifier:	10	970	Classifier:	10	890	Classifier:	20	1860
no			no			no		

Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

Microaveraged precision: 100/120 = .83

Microaveraged score is dominated by score on frequent classes

Q: Is this a good result?

Q: Is this a good result?

Q: Is this a good result?

DECISION TREES & RANDOM FORESTS

Decision Trees

"20 Questions": http://20q.net/

Goals: 1. Figure out what questions to ask

- 2. In what order
- 3. Determine how many questions are enough
- 4. What to predict at the end

Course ratings dataset

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n	У	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	У	n
0	у	у	У	у	у
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	у	n	У	n	у
-2	n	n	У	У	n
-2	n	у	У	n	у
-2	у	n	У	n	n
-2	У	n	У	n	У

Course ratings dataset

Rating is the label

Rating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n	у	n
+2	у	у	n	у	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	У
+1	У	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	У
0	У	n	n	У	У
0	n	у	n	У	n
0	у	у	У	у	у
-1	у	у	У	n	У
-1	n	n	У	У	n
-1	n	n	У	n	У
-1	У	n	У	n	У
-2	n	n	у	У	n
-2	n	У	У	n	У
-2	У	n	у	n	n
-2	У	n	У	n	У

Course ratings dataset

Questions are features

Rating is the label

Rating	Easv?	AI?	Svs?	Thv?	Morning?
+2	у	у	n	у	n
+2	у	у	n	у	n
+2	n	у	n	n	n
+2	n	n	n	у	n
+2	n	у	У	n	у
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	У	n
0	у	у	У	У	у
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	у	n	у	n	У
-2	n	n	у	У	n
-2	n	у	у	n	У
-2	у	n	У	n	n
-2	у	n	У	n	у

Course ratings dataset

Questions are features Responses are feature values Rating is the label

Idea: Predict the label by forming a tree where each node branches on values of particular features

R	ating	Easv?	AI?	Svs?	Thv?	Morning?
	+2	У	у	n	у	n
	+2	у	у	n	У	n
	+2	n	у	n	n	n
	+2	n	n	n	У	n
	+2	n	у	У	n	у
	+1	у	у	n	n	n
	+1	у	у	n	у	n
	+1	n	у	n	У	n
	0	n	n	n	n	у
	0	у	n	n	у	у
	0	n	у	n	У	n
	0	у	у	У	У	у
	-1	у	у	У	n	у
	-1	n	n	У	У	n
	-1	n	n	У	n	у
	-1	у	n	У	n	у
	-2	n	n	У	у	n
	-2	n	у	У	n	у
	-2	у	n	У	n	n
	-2	у	n	у	n	у

Course ratings dataset

Questions are features Responses are feature values Rating is the label

Easy?

Rating	Easv?	AI?	Svs?	Thy?	Morning?
+2	У	у	n	У	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	У	n
+2	n	у	У	n	у
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	У	n
0	у	у	У	У	У
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	У
-1	у	n	У	n	У
-2	n	n	у	У	n
-2	n	у	у	n	У
-2	у	n	У	n	n
-2	у	n	у	n	у

Course ratings dataset

Questions are features Responses are feature values Rating is the label

Rating	Easv?	AI?	Svs?	Thv?	Morning?
+2	У	у	n	у	n
+2	у	у	n	у	n
+2	n	у	n	n	n
+2	n	n	n	у	n
+2	n	у	У	n	у
+1	у	у	n	n	n
+1	у	у	n	у	n
+1	n	у	n	У	n
ο	n	n	n	n	у
0	у	n	n	У	у
0	n	у	n	У	n
0	у	у	У	У	у
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	у	n	У	n	у
-2	n	n	у	У	n
-2	n	у	у	n	у
-2	у	n	у	n	n
-2	у	n	у	n	у
Example: Learning a decision tree

Course ratings dataset

Questions are features Responses are feature values Rating is the label

Rating	Easv?	AI?	Svs?	Thv?	Morning?
+2	У	у	n	У	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	у	n
+2	n	у	у	n	у
+1	у	у	n	n	n
+1	у	у	n	у	n
+1	n	у	n	у	n
0	n	n	n	n	у
0	у	n	n	у	у
0	n	у	n	у	n
0	у	у	У	У	у
-1	у	у	У	n	у
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	у	n	У	n	у
-2	n	n	У	У	n
-2	n	у	у	n	у
-2	у	n	у	n	n
-2	у	n	у	n	у

Example: Learning a decision tree

Course ratings dataset

Questions are features Responses are feature values Rating is the label

1	Rating	Easv?	AI?	Svs?	Thv?	Morning?
	+2	У	у	n	у	n
	+2	У	у	n	У	n
	+2	n	у	n	n	n
	+2	n	n	n	У	n
	+2	n	у	У	n	у
	+1	у	у	n	n	n
	+1	у	у	n	У	n
	+1	n	у	n	У	n
	0	n	n	n	n	у
	0	у	n	n	у	у
	0	n	у	n	У	n
	0	у	у	У	У	у
	-1	у	у	у	n	у
	-1	n	n	У	У	n
	-1	n	n	У	n	у
	-1	у	n	У	n	у
	-2	n	n	У	У	n
	-2	n	у	У	n	у
	-2	у	n	у	n	n
	-2	у	n	у	n	у

Example: Learning a decision tree

Course ratings dataset

Questions are features Responses are feature values Rating is the label

Rating	Easv?	AI?	Svs?	Thv?	Morning?
+2	У	у	n	у	n
+2	у	у	n	У	n
+2	n	у	n	n	n
+2	n	n	n	у	n
+2	n	у	у	n	у
+1	у	у	n	n	n
+1	у	у	n	у	n
+1	n	у	n	У	n
о	n	n	n	n	у
о	у	n	n	у	у
о	n	у	n	у	n
о	у	у	У	у	у
-1	у	у	у	n	у
-1	n	n	У	У	n
-1	n	n	У	n	у
-1	у	n	У	n	у
-2	n	n	У	у	n
-2	n	у	У	n	у
-2	у	n	у	n	n
-2	у	n	у	n	у

Ensembles

Key Idea: "Wisdom of the crowd" groups of people can often make better decisions than individuals

Apply this to ML

Learn multiple classifiers and combine their predictions

Combining Multiple Classifiers by Voting

Train several classifiers and take majority of predictions

For regression use mean or median of the predictions

For ranking and collective classification use some form of averaging

A common family of approaches is called bagging

Q: What can go wrong with option 1?

Option 1: Split the data into K pieces and train a classifier on each

Option 1: Split the data into K pieces and train a classifier on each

Q: What can go wrong with option 1?

A: Small sample \rightarrow poor performance

Option 1: Split the data into K pieces and train a classifier on each

Q: What can go wrong with option 1?

A: Small sample \rightarrow poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Option 1: Split the data into K pieces and train a classifier on each

Q: What can go wrong with option 1?

A: Small sample \rightarrow poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Obtain datasets D_1 , D_2 , ..., D_N using bootstrap resampling from D

get new datasets D by random sampling with replacement from D

Courtesy Hamed Pirsiavash

Option 1: Split the data into K pieces and train a classifier on each

Q: What can go wrong with option 1?

A: Small sample \rightarrow poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Obtain datasets D_1 , D_2 , ..., D_N using bootstrap resampling from D

Train classifiers on each dataset and average their predictions

get new datasets D by random sampling with replacement from D

Courtesy Hamed Pirsiavash

Bagging Decision Trees

How would it work?

Bagging Decision Trees

How would it work?

Bootstrap sample S samples {(X₁, Y₁), ..., (X_S, Y_S)} Train a tree t_s on (X_s, Y_s) At test time: $\hat{y} = avg(t_1(x), ..., t_S(x))$

Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features of size **k** and pick the best among these

Train decision trees of depth **d**

Average results from multiple randomly trained trees

Q: What's the difference between bagging decision trees and random forests?

Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features of size **k** and pick the best among these

Train decision trees of depth **d**

Average results from multiple randomly trained trees

Q: What's the difference between bagging decision trees and random forests? A: Bagging → highly correlated trees (reuse good features)

LINEAR MODELS

Linear Models

- Can be used for either regression or classification
- A number of instances for classification. Common ones are:
 - Perceptron
 - Linear SVM
 - Logistic regression
 - (yes, even though "regression" is in the name ☺)

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts *b* are okay)

$$Y = W^T X + b$$

Items to learn: W, b

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts *b* are okay)

$$Y = W^T X + b$$

Items to learn: W, b

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts *b* are okay)

 $Y = W^T X + b$

Items to learn: W, b

For classification: one class is on one side of this line, the other class is on the other

1.1. Linear Models

1.1.1. Ordinary Least Squares 1.1.2. Ridge regression and classification 1.1.3. Lasso 1.1.4. Multi-task Lasso 1.1.5. Elastic-Net 1.1.6. Multi-task Elastic-Net 1.1.7. Least Angle Regression 1.1.8. LARS Lasso 1.1.9. Orthogonal Matching Pursuit (OMP) 1.1.10. Bayesian Regression 1.1.11. Logistic regression 1.1.12. Generalized Linear Regression 1.1.13. Stochastic Gradient Descent - SGD 1.1.14. Perceptron 1.1.15. Passive Aggressive Algorithms 1.1.16. Robustness regression: outliers and modeling errors 1.1.17. Polynomial regression: extending linear models with basis functions

Linear Models in sklearn

These all have easy-to-use interfaces, with the same core interface:

- Training: model.fit(X=training_features, y=training_labels)
- Prediction: model.predict(X=eval_features)

https://scikit-learn.org/stable/modules/linear_model.html

1.1. Linear Models

1.1.1. Ordinary Least Squares 1.1.2. Ridge regression and classification 1.1.3. Lasso 1.1.4. Multi-task Lasso 1.1.5. Elastic-Net 1.1.6. Multi-task Elastic-Net 1.1.7. Least Angle Regression 1.1.8. LARS Lasso 1.1.9. Orthogonal Matching Pursuit (OMP) 1.1.10. Bayesian Regression 1.1.11. Logistic regression 1.1.12. Generalized Linear Regression 1.1.13. Stochastic Gradient Descent - SGD 1.1.14. Perceptron 1.1.15. Passive Aggressive Algorithms 1.1.16. Robustness regression: outliers and modeling errors 1.1.17. Polynomial regression: extending linear models with basis functions

Linear Models in sklearn

These all have easy-to-use interfaces, with the same core interface:

- Training: model.fit(X=training_features, y=training_labels)
- Prediction: model.predict(X=eval_features)

Take CMSC 478 (or 678), or independent study to learn about this in more detail!

https://scikit-learn.org/stable/modules/linear_model.html

1.1. Linear Models

1.1.1. Ordinary Least Squares 1.1.2. Ridge regression and classification 1.1.3. Lasso 1.1.4. Multi-task Lasso 1.1.5. Elastic-Net 1.1.6. Multi-task Elastic-Net 1.1.7. Least Angle Regression 1.1.8. LARS Lasso 1.1.9. Orthogonal Matching Pursuit (OMP) 1.1.10. Bayesian Regression 1.1.11. Logistic regression 1.1.12. Generalized Linear Regression 1.1.13. Stochastic Gradient Descent - SGD 1.1.14. Perceptron 1.1.15. Passive Aggressive Algorithms 1.1.16. Robustness regression: outliers and modeling errors 1.1.17. Polynomial regression: extending linear models with basis functions

Linear Models in sklearn

These all have easy-to-use interfaces, with the same core interface:

- Training: model.fit(X=training_features, y=training_labels)
- Prediction: model.predict(X=eval_features)

Take CMSC 478 (or 678), or independent study to learn about this in more detail!

https://scikit-learn.org/stable/modules/linear_model.html

LINEAR

CLASS torch.nn.Linear(in_features, out_features, bias=True)

Applies a linear transformation to the incoming data: $y=xA^T+b$

This module supports TensorFloat32.

Variables

- ~Linear.weight the learnable weights of the module of shape (out_features, in_features). The values are initialized from $\mathcal{U}(-\sqrt{k},\sqrt{k})$, where $k = \frac{1}{\text{in_features}}$
- ~Linear.bias the learnable bias of the module of shape (out_features). If bias is True, the values are initialized from $\mathcal{U}(-\sqrt{k},\sqrt{k})$ where $k = \frac{1}{\text{in features}}$

These are "building blocks" not full models.

Examples:

>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

Take CMSC 478 (or 678), or independent study to learn about this in more detail!

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

Linear Models in pytorch

A Simple Linear Model

predict y_i from $\mathbf{x_i}$ value y_i

data point x_i, as a vector of features

A Graphical View of Linear Models

A Simple Linear Model for Regression

A Simple Linear Model for Regression

A Simple Linear Model for Regression

A Simple Linear Model for Classification

A Simple Linear Model for Classification

Linear Models in Multiple Dimensions

Linear Models in the Basic Framework

How do we learn these linear classification methods? Change the loss function. (478/678 topics)

How do we evaluate these linear classification methods? Change the eval function.

What if

- We want a unified way to predict more than two classes?
 - We want a probabilistic (bounded, interpretable) score?
- We want to use *transformations* of our data x to help make decisions?

What if

- We want a unified way to predict more than two classes?
- We want a probabilistic (bounded, interpretable) score?
- We want to use *transformations* of our data x to help make decisions?

Terminology

common ML term	Log-Linear Models
as statistical regression	(Multinomial) logistic regression
	Softmax regression
based in information theory	Maximum Entropy models (MaxEnt)
a form of	Generalized Linear Models
viewed as	Discriminative Naïve Bayes
to be cool today :)	Very shallow (sigmoidal) neural nets

Turning Scores into Probabilities

Core Aspects to Maxent Classifier p(y|x)

- features f(x, y) between x and y that are meaningful;
- weights θ (one per feature) to say how important each feature is; and
- a way to form probabilities from f and θ

 $\exp(\theta^T f(x, y))$ p(y|x) = $\overline{\sum_{v'} \exp(\theta^T f(x, y'))}$

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

These extractions are all **features** that have **fired** (likely have some significance)

s: Michael Jordan, coach Phil Jackson and the star <u>cast</u>, _ _ _ _ including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

These extractions are all **features** that have **fired** (likely have some significance)

s: Michael Jordan, coach Phil Jackson and the star cast, _____ including Scottie Pippen, took the Chicago Bulls to six National Basketball Association charpionships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

These extractions are all **features** that have **fired** (likely have some significance)

We need to *score* the different extracted clues.

Score and Combine Our Clues

score₁(B, ENTAILED) score₂(B, ENTAILED) score₃(B, ENTAILED)

posterior probability of ENTAILED

```
score<sub>k</sub>(圕, ENTAILED)
```

Scoring Our Clues

score

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took the
Chicago Bulls to six National
Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

, ENTAILED) =

(ignore the feature indexing for now) score₁(\square , ENTAILED) score₂(\square , ENTAILED) score₃(\square , ENTAILED)

A linear scoring model!

Scoring Our Clues

score

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took the
Chicago Bulls to six National
Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

, ENTAILED) =

╋

♣

Learn these scores... but how?

What do we optimize?

score₁(È, ENTAILED)

score₂(\blacksquare , ENTAILED) score₃(\blacksquare , ENTAILED) A linear scoring model! Turning Scores into Probabilities (More Generally)

$score(x, y_1) > score(x, y_2)$

$p(y_1|x) > p(y_2|x)$

KEY IDEA

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

exp(score(

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

A linear scoring model!

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

 $) \propto$

exp(

score₁(\blacksquare , ENTAILED) score₂(\blacksquare , ENTAILED) score₃(\blacksquare , ENTAILED)

p(ENTAILED

exp(

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

score₁(\square , ENTAILED) score₂(\square , ENTAILED)

score₃([□], ENTAILED)

Learn the scores (but we'll declare what combinations should be looked at)

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

weight₃ ∗ applies₃(≧, ENTAiLED)

exp(

D ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h: The Bulls basketball team is based in Chicago.

 $)\propto$

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

multiplied and then summed

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

 $)\propto$

EXD Dot_product of weight_vec feature_vec(
B, ENTAILED)

K differentfor K differentweights...features...

multiplied and then summed

p(ENTAILED

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

 $)\propto$

$exp(\theta^T f(\mathbb{B}, \text{ENTAILED}))$

K different for K different weights...

multiplied and then summed

A Graphical View of Logistic Regression/Classification (2 classes)

A Graphical View of Logistic Regression/Classification (4 classes)

sklearn.linear_model.LogisticRegression¶

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.)

This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only supported by the 'saga' solver.

Read more in the User Guide.

Parameters: penalty: {'l1', 'l2', 'elasticnet', 'none'}, default='l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. If 'none' (not supported by the liblinear solver), no regularization is applied.

https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html