CMSC 471
 Artificial Intelligence

Constraint Satisfaction

Frank Ferraro - ferraro@umbc.edu

A General Searching Algorithm

Informed vs. uninformed search

Uninformed search strategies (blind search)

-Use no information about likely direction of a goal
-Methods: breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional

Informed search strategies (heuristic search)
-Use information about domain to (try to) (usually) head in the general direction of goal node(s)
-Methods: hill climbing, best-first, greedy search, beam search, algorithm A, algorithm A^{*}

Recap

Evaluating search strategies

- Completeness
- Guarantees finding a solution whenever one exists
- Time complexity (worst or average case)
- Usually measured by number of nodes expanded
- Space complexity
- Usually measured by maximum size of graph/tree during the search
- Optimality/Admissibility
- If a solution is found, is it guaranteed to be an optimal one, i.e., one with minimum cost

Summary (Fig 3.11)

Strategy	Selection from Frontier	Path found	Space
Breadth-first	First node added	Fewest arcs	Exponential
Depth-first	Last node added	No	Linear
Iterative deepening	-	Fewest arcs	Linear
Greedy best-first	Minimal $h(p)$	No	Exponential
Lowest-cost-first	Minimal $\operatorname{cost}(p)$	Least cost	Exponential
A^{*}	Minimal $\operatorname{cost}(p)+h(p)$	Least cost	Exponential
IDA*	-	Least cost	Linear

Overview

- Constraint satisfaction is a powerful problemsolving paradigm
- Problem: set of variables to which we must assign values satisfying problem-specific constraints
- Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
- Backtracking (systematic search)
- Constraint propagation (k-consistency)
- Variable and value ordering heuristics
- Backjumping and dependency-directed backtracking

Some Core Terminology

- (algebraic) variable is a symbol used to denote features of possible worlds
- If X is a variable, $\operatorname{dom}(X)$ is X 's domain (the values X can take on)

Example: Variable

Let's consider rolling a standard, six-sided die

Let X_{i} be the variable corresponding to the outcome of the ith role

Q: What is $\operatorname{dom}\left(X_{i}\right)$?

Example: Variable

Let's consider rolling a standard, six-sided die

Let X_{i} be the variable corresponding to the outcome of the ith role

Q: What is $\operatorname{dom}\left(X_{i}\right)$?

$$
\begin{gathered}
\text { A: } \operatorname{dom}\left(X_{i}\right)= \\
\{1,2,3,4,5,6\}
\end{gathered}
$$

Types of Variables

- Discrete variables have finite or countable domains
- Binary variables have two values in their domain
- Boolean variables have two variables, TRUE and FALSE
- Other examples?
- Continuous have uncountably infinite domains
- Example types?

Example: Variable

Let's consider rolling a standard, six-sided die

Let X_{i} be the variable
 corresponding to the outcome of the ith role

Q: What is $\operatorname{dom}\left(X_{i}\right)$?

$$
\begin{gathered}
\mathrm{A}: \operatorname{dom}\left(X_{i}\right)= \\
\{1,2,3,4,5,6\}
\end{gathered}
$$

Q: Is X_{i} discrete or continuous?

Example: Variable

Let's consider rolling a standard, six-sided die

Let X_{i} be the variable
 corresponding to the outcome of the ith role

Q: What is $\operatorname{dom}\left(X_{i}\right)$?

$$
\begin{gathered}
\mathrm{A}: \operatorname{dom}\left(X_{i}\right)= \\
\{1,2,3,4,5,6\}
\end{gathered}
$$

Q: Is X_{i} discrete or continuous?

A: Discrete

Variable Assignments

Given N variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$

- An assignment is a setting of a subset X^{\prime} of those variables
- Total assignment: $X^{\prime}=\boldsymbol{X}$
- Partial assignment: $X^{\prime} \neq \boldsymbol{X}$
- A possible world is a possible way the world (the real world or some imaginary world) could be

Full vs. Partial Assignment Example

Let's say there are $\mathrm{N}=9$ rolls of the same die

Full assignment
Partial assignment

$$
\begin{aligned}
& X_{1}=\bullet \\
& X_{2}=\begin{array}{ll}
\bullet & 0 \\
0 & 0 \\
0
\end{array} \\
& X_{6}=\bullet \\
& X_{7}=88 \\
& X_{3}=\begin{array}{ll}
\bullet & \bullet \\
0 & 0
\end{array} \\
& X_{8}=\begin{array}{ll}
\bullet & 0 \\
0 & 0
\end{array} \\
& X_{4}=\bullet \bullet \\
& X_{9}=\begin{array}{ll}
\bullet & 0 \\
0 & 0
\end{array} \\
& X_{5}=\bullet \bullet
\end{aligned}
$$

Full vs. Partial Assignment Example

 Let's say there are $\mathrm{N}=9$ rolls of the same die Full assignment Partial assignment$$
\begin{aligned}
& X_{1}=\bullet \\
& X_{2}=\square_{0}^{\bullet}
\end{aligned}
$$

$$
X_{6}=\bullet
$$

$$
X_{7}=\text { ??? }
$$

$$
X_{3}=\text { ??? }
$$

$$
X_{8}=\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}
$$

$$
X_{4}=\bullet \bullet
$$

$$
X_{9}=\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}
$$

$$
X_{5}={ }^{\bullet} \bullet
$$

$$
\begin{aligned}
& X_{1}=\bullet \\
& X_{2}={ }_{0}^{0} 0 \\
& X_{6}=\bullet \\
& X_{7}=\begin{array}{ll}
8 & 8 \\
6 & 8 \\
\hline
\end{array} \\
& X_{3}=\begin{array}{ll}
\bullet & \bullet \\
0 & 0
\end{array} \\
& X_{4}=\bullet \bullet \\
& X_{5}={ }^{\bullet} \bullet \\
& X_{8}=\begin{array}{ll}
\bullet & 0 \\
0 & 0
\end{array} \\
& X_{9}=\begin{array}{ll}
\bullet & 0 \\
0 & 0
\end{array}
\end{aligned}
$$

Thinking About Possible Worlds

Let's say there are N variables. How many possible worlds are there if:

- Each variable's domain is of size 2?
- Each variable's domain is of size 10 ?
- Each variable's domain is uncountably infinite (the real numbers)?

Constraints

Many possible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Constraints

Many possible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Scheduling example (4.7)
A, B, C are variables representing dates of events

Each has possible values \{Jan, Feb, March, April\}
"A can't happen later than B; and B must happen in January or February; and B must be before C; and either A and B can't happen at the same time, or C can't occur in April"

Constraints

Many possible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Scheduling example (4.7)
A, B, C are variables representing dates of events

Each has possible values \{Jan, Feb, March, April\}
> "A can't happen later than B; and B must happen in January
> or February; and B must be before C; and either A and B can't happen at the same time, or C can't occur in April"

Constraints

Many posfible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Scheduling example (4.7)
A, B, C are variables representing dates of events

Each has possible values \{Jan, Feb, March, April\}
"A can't happen later than B; and B must happen in January or February; and B must be before C ; and either A
and B can't happen at the same time, or C can't occur in April"

$$
\begin{gathered}
A \leq B \wedge \\
B<\operatorname{March} \wedge \\
B<C \wedge \\
A \neq B \vee C<\text { April }
\end{gathered}
$$

Constraints

Many possible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Scheduling example (4.7)
A, B, C are variables representing dates of events

Each has possible values \{Jan, Feb, March, April\}
"A can't happen later than B; and B must happen in January or February; and B must be before C; and either A
and B can't happen at the same time, or C can't occur in April"

Scope (\{A, B\})

Constraints

Many possible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Scheduling example (4.7)
A, B, C are variables representing dates of events

Each has possible values \{Jan, Feb, March, April\}
"A can't happen later than B; and B must happen in January or February; and B must be before C ; and either A and B can't happen at the same time, or C can't occur in April"

Constraints

Many possible worlds... but are all of those possible worlds "possible?"

Constraint: a specification of allowed / disallowed combinations of assignments to individual variables

- Scope: the set of variables involved in the constraint
- Relation: Boolean function on the scope that indicates if the constraint is satisfied

Constraints are satisfied (an assignment that makes all constraints TRUE) or violated

Motivating example: 8 Queens

Place 8 queens on a chess board such That none is attacking another.

Generate-and-test, with no redundancies \rightarrow "only" 8^{8} combinations
$8^{* *} 8$ is $16,777,216$

Motivating example: 8-Queens

After placing these two queens, it's trivial to mark the squares we can no longer use

What more do we need for 8 queens?

- Not just a successor function and goal test
- But also
- a means to propagate constraints imposed by one queen on others
- an early failure test
\rightarrow Explicit representation of constraints and constraint manipulation algorithms

Informal definition of CSP

- CSP (Constraint Satisfaction Problem), given
(1) finite set of variables
(2) each with domain of possible values (often finite)
(3) set of constraints limiting values variables can take
- Solution: assignment of a value to each variable such that all constraints are satisfied
- Possible tasks: decide if solution exists, find a solution, find all solutions, find best solution according to some metric (objective function)

Example: 8-Queens Problem

- What are the variables?
- What are the variables domains, i.e., sets of possible values
- What are the constraints between (pairs of) variables?

Example: 8-Queens Problem

- Eight variables $\mathrm{Qi}, \mathrm{i}=1 . .8$ where Qi is the row number of queen in column i
- Domain for each variable $\{1,2, \ldots, 8\}$
- Constraints are of the forms:
-No queens on same row

$$
\mathrm{Qi}=\mathrm{k} \rightarrow \mathrm{Qj} \neq \mathrm{k} \text { for } \mathrm{j}=1 . .8, \mathrm{j} \neq \mathrm{i}
$$

-No queens on same diagonal

$$
Q i=\text { rowi, } Q j=\text { rowj } \rightarrow|i-j| \neq \mid \text { rowi-row } j \mid \text { for } j=1 . .8, j \neq i
$$

Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color

Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = \{red, green, blue\}
- Constraints: $A \neq B, A \neq C, A \neq E, A \neq D, B \neq C, C \neq D, D \neq E$
- A solution: $A=r e d, B=g r e e n, C=b l u e, D=g r e e n$, E=blue

Example: SATisfiability

- Given a set of logic propositions containing variables, find an assignment of the variables to $\{$ false, true $\}$ that satisfies them
- For example, the two clauses:
$-(A \vee B \vee \neg C) \wedge(\neg A \vee D)$
- equivalent to $(C \rightarrow A) \vee(B \wedge D \rightarrow A)$
are satisfied by
A = false, $B=$ true, $C=$ false, $D=$ false
- Satisfiability known to be NP-complete
- \Rightarrow worst case, solving CSP problems requires exponential time

Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Definition of a constraint network (CN)

A constraint network (CN) consists of

- Set of variables $X=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
-with associate domains $\left\{d_{1}, d_{2}, \ldots d_{n}\right\}$
-domains are typically finite
- Set of constraints $\left\{c_{1}, c_{2} \ldots c_{m}\right\}$ where -each defines a predicate that is a relation over a particular subset of variables (X)
-e.g., C_{i} involves variables $\left\{X_{i 1}, X_{i 2}, \ldots X_{i k}\right\}$ and defines the relation $R_{i} \subseteq D_{i 1} \times D_{i 2} \times \ldots D_{i k}$

Running example: coloring Australia

- Seven variables: $\{W A, N T, S A, ~ Q, ~ N S W, ~ V, ~ T\} ~$
- Each variable has same domain: \{red, green, blue\}
- No two adjacent variables can have same value:
$W A \neq N T, W A \neq S A, N T \neq S A, N T \neq Q, S A \neq Q, S A \neq N S W$, $S A \neq V, Q \neq N S W, N S W \neq V$

Unary \& binary constraints most common

 Binary constraints

- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints

Typical tasks for CSP

- Possible solution related tasks:
- Does a solution exist?
- Find one solution
- Find all solutions
- Given a metric on solutions, find best one
- Given a partial instantiation, do any of above
- Transform the constraint network into an equivalent one that's easier to solve

Binary CSP

- A binary CSP is a CSP where all constraints are binary or unary
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- A binary CSP can be represented as a constraint graph, with a node for each variable and an arc between two nodes iff there's a constraint involving them
- Unary constraints appear as self-referential arcs

General Methods of Solving CSPs

- Generate-and-Test, aka Brute Force
- Search (backtracking)
- Consistency checking
- Forward checking
- Arc consistency
- Domain splitting
- Variable Elimination
- Localized search

Brute Force methods

- Finding a solution by a brute force search is easy
- Generate and test is a weak method
- Just generate potential combinations and test each
- Potentially very inefficient
-With n variables where each can have one of 3 values, there are 3^{n} possible solutions to check
- There are ${ }^{\sim} 190$ countries in the world, which we can color using four colors
- 4^{190} is a big number!

Running example: coloring Australia

- Seven variables: $\{W A, N T, S A, ~ Q, ~ N S W, ~ V, ~ T\} ~$
- Each variable has same domain: \{red, green, blue\}
- No two adjacent variables can have same value:
$W A \neq N T, W A \neq S A, N T \neq S A, N T \neq Q, S A \neq Q, S A \neq N S W$, $S A \neq V, Q \neq N S W, N S W \neq V$

A running example: coloring Australia

T

Tasmania

- Solutions: complete \& consistent assignments
- Here is one of several solutions
- For generality, constraints can be expressed as relations, e.g., describe WA $\neq N T$ as $\{($ red,green), (red,blue), (green,red), (green,blue), (blue,red),(blue,green)\}

Backtracking example

Backtracking example

Backtracking example

Backtracking example

CSP-backtracking(PartialAssignment a)

- If a is complete then return a
$-X \leftarrow$ select an unassigned variable
$-D \leftarrow$ select an ordering for the domain of X

Basic

 backtracking algorithm- For each value vin D do

If v consistent with a then

$$
\begin{aligned}
& \text { - Add }(X=v) \text { to a } \\
& \text { - result } \leftarrow \text { CSP-BACKTRACKING }(a) \\
& \text { - If result } \neq \text { failure then return result } \\
& \text { - Remove }(X=v) \text { from a }
\end{aligned}
$$

- Return failure

Start with CSP-BACKTRACKING(\{\})
Note: depth first search; can solve n-queens
problems for $n \sim 25$

Problems with Backtracking

- Thrashing: keep repeating the same failed variable assignments
- Things that can help avoid this:
-Consistency checking
-Intelligent backtracking schemes
- Inefficiency: can explore areas of the search space that aren't likely to succeed
-Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking
-Can we detect inevitable failure early?

- Which variable should be assigned next?
- In what order should its values be tried?

General Methods of Solving CSPs

- Generate-and-Test, aka Brute Force
- Search (backtracking)
- Consistency checking
- Forward checking
- Arc consistency
- Domain splitting
- Variable Elimination
- Localized search

Forward Checking

After variable X is assigned to value v, examine each unassigned variable Y connected to X by a constraint and delete values from Y 's domain inconsistent with v

Using forward checking and backward checking roughly doubles the size of N -queens problems that can be practically solved

Forward checking

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking

Tasmania

Forward checking

Forward checking

Constraint propagation

- Forward checking propagates info. from assigned to unassigned variables, but doesn't provide early detection for all failures
- NT and SA cannot both be blue!

Definition: Arc consistency

A constraint C_xy is arc consistent w.r.t. x if for each value v of x there is an allowed value of y

Similarly define C_xy as arc consistent w.r.t. y

Binary CSP is arc consistent iff every constraint C_xy is arc consistent w.r.t. x as well as y

AC3 Algorithm:

 Enforcing Arc Consistency

 Enforcing Arc Consistency}

When a CSP is not arc consistent, we can make it arc consistent by using the AC3 algorithm

Arc Consistency Example 1

- Domains

$$
\begin{aligned}
& -D_{-} x=\{1,2,3\} \\
& -D_{-} y=\{3,4,5,6\}
\end{aligned}
$$

- Constraint
- Note: for finite domains, we can represent a constraint as an set of legal value pairs
$-C_{-} x y=\{(1,3),(1,5),(3,3),(3,6)\}$
- C_xy isn't arc consistent w.r.t. x or y. By enforcing arc consistency, we get reduced domains
- D'_x = \{1, 3\}
- D'_y=\{3,5,6\}

Arc Consistency Example 2

- Domains

$$
\begin{aligned}
& -D_{-} x=\{1,2,3\} \\
& -D_{-} y=\{1,2,3\}
\end{aligned}
$$

- Constraint
-C_xy= lambda v1,v2: v1 < v2
- C_xy not arc consistent w.r.t. x or y; enforcing arc consistency, we get reduced domains:
-D'_x = \{1, 2\}
$-D^{\prime} _y=\{2,3\}$

Aside: Python lambda expressions

Previous slide expressed constraint between two variables as an anonymous Python function of two arguments

> lambda v1,v2: v1 < v2

```
>>> f = lambda v1,v2: v1 < v2
>>> f
<function <lambda> at 0x10fcf21e0>
>>> f(100, 200)
True
>>> f(200,100)
False
```

Python uses lambda after Alonzo Church's lambda calculus from the 1930s

Arc consistency

- Simplest form of propagation makes each arc consistent
- $\mathrm{X} \rightarrow \mathrm{Y}$ is consistent iff for every value x_{i} of X there is some allowed value y_{j} in Y

Arc consistency

- Simplest form of propagation makes each arc consistent
- $\mathrm{X} \rightarrow \mathrm{Y}$ is consistent iff for every value x_{i} of X there is some allowed value y_{j} in Y

Arc consistency

- Arc consistency detects failure earlier than simple forward checking

- WA=red and $\mathrm{Q}=$ green is quickly recognized as a deadend, i.erament an impossible partial instantiation
- The arc consistency algorithm can be run as a preprocessor or after each assignment

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$\mathrm{Q} \leftarrow$ stack of all variables

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$Q \leftarrow$ stack of all variables
while Q is not empty and not contradiction do $\mathrm{x} \leftarrow \operatorname{UNSTACK}(\mathrm{Q})$

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$Q \leftarrow$ stack of all variables
while Q is not empty and not contradiction do
$X \leftarrow$ UNSTACK (Q)
For every variable Y adjacent to X do

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$Q \leftarrow$ stack of all variables
while Q is not empty and not contradiction do
$X \leftarrow$ UNSTACK (Q)
For every variable Y adjacent to X do If REMOVE-ARC-INCONSISTENCIES(X,Y)

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$Q \leftarrow$ stack of all variables
while Q is not empty and not contradiction do
$\mathrm{X} \leftarrow$ UNSTACK (Q)
For every variable Y adjacent to X do If REMOVE-ARC-INCONSISTENCIES(X,Y) If domain (Y) is non-empty then $\operatorname{STACK}(\mathrm{Y}, \mathrm{Q})$ else return false

General CP for Binary Constraints

Algorithm AC3
contradiction \leftarrow false
$\mathrm{Q} \leftarrow$ stack of all variables
while Q is not empty and not contradiction do
$X \leftarrow$ UNSTACK (Q)
For every variable Y adjacent to X do If REMOVE-ARC-INCONSISTENCIES(X,Y) If domain (Y) is non-empty then $\operatorname{STACK}(\mathrm{Y}, \mathrm{Q})$ else return false

Q: What is the time complexity of AC3?
e = \# of constraints
d = \# of values per variable

Complexity of AC3

- $e=n u m b e r$ of constraints (edges)
- $d=$ number of values per variable
- Each variable is inserted in queue up to d times
- REMOVE-ARC-INCONSISTENCY takes $\mathrm{O}\left(\mathrm{d}^{2}\right)$ time
- CP takes $\mathrm{O}\left(\mathrm{ed}^{3}\right)$ time

A Poole \& Mackworth Example (Fig 4.4)

Setup: 5 variables (A, B, C, D, E) each with domain $\{1,2,3,4\}$

> Constraints: $\begin{gathered}A \\ A\end{gathered}=B$ A A

A Poole \& Mackworth Example (Fig 4.4)

Setup: 5 variables (A, B, C, D, E) each with domain $\{1,2,3,4\}$

$$
\begin{gathered}
\text { Constraints: } \\
\begin{array}{c}
A \neq B \\
A
\end{array}=D \\
A \geq E \\
D \neq B \\
C \neq B \\
E<B \\
C<D \\
E<C \\
E<D \\
B \neq 3 \\
C
\end{gathered}
$$

A Poole \& Mackworth Example (Fig 4.4)

A Poole \& Mackworth Example (Fig 4.4)

Improving backtracking efficiency

- Some standard techniques to improve the efficiency of backtracking
- Can we detect inevitable failure early?
- Which variable should be assigned next?
- In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000-queen puzzles feasible

Most constrained variable

- Most constrained variable:

choose the variable with the fewest legal values

- a.k.a. minimum remaining values (MRV) heuristic
- After assigning value to WA, both NT and SA have only two values in their domains
- choose one of them rather than Q, NSW, V or T

Most constraining variable

- Tie-breaker among most constrained variables
- Choose variable involved in largest \# of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q \& NSW

Most constraining variable ${ }^{\text {we }}$

- Tie-breaker among most constrained variables
- Choose variable involved in largest \# of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q \& NSW

Least constraining value

- Given a variable, choose least constraining value:
- the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

- Combining these heuristics makes 1000 queens feasible
- What's an intuitive explanation for this?

Domain Splitting

Also called "case analysis"

Split a variable's domain into disjoint subsets, and consider them each separately

Domain Splitting

Also called "case analysis"

Split a variable's domain into disjoint subsets, and consider them each separately

- If $\operatorname{dom}\left(X_{i}\right)=\left\{a_{1}, \ldots, a_{M}\right\}$, then for each possible setting of $X_{i}=a_{m}$, find an assignment to all other variables that satisfy the constraints
- This is solved a reduced problem

Domain Splitting

Also called "case analysis"

Split a variable's domain into disjoint subsets, and consider them each separately

- If $\operatorname{dom}\left(X_{i}\right)=\left\{a_{1}, \ldots, a_{M}\right\}$, then for each possible setting of $X_{i}=a_{m}$, find an assignment to all other variables that satisfy the constraints
- This is solved a reduced problem

Q: how does this relate to search?

Domain Splitting Example

Original
Domains:
\{1,2,3,4\}
\{1,2,3,4\}
\{1,2,3,4\}

Setup: 3 variables (A, B, C) each with domain $\{1,2,3,4\}$

After arc consistency: $\quad\{1,2\}$
$\{2,3\}$
$\{3,4\}$

Constraints:
 $A<B$ $B<C$

Domain
Splitting:

\{2\}
$\{3,4\}$

$\{1,2\}$
\{3\}
$\{3,4\}$

Domain Splitting Example

Original
Domains:
\{1,2,3,4\}
\{1,2,3,4\}
\{1,2,3,4\}

Setup: 3 variables (A, B, C) each with domain $\{1,2,3,4\}$

After arc consistency: $\quad\{1,2\} \quad\{2,3\}$
$\{3,4\}$

Constraints:
 $$
A<B
$$
 $$
B<C
$$

Domain
Splitting:

$\xrightarrow[B=2, C=3]{ }$	$\{1, z\}$	$\{2\}$	$\{3,4\}$
$\xrightarrow[B=2, C=4]{ }$	$\{1,-z\}$	$\{2\}$	$\{3,4\}$
$\xrightarrow[B=3, A=1]{ }$	$\{1,-z\}$	$\{3\}$	$\{3,4\}$
$\xrightarrow[B=3, A=2]{ }$	$\{1,2\}$	$\{3\}$	$\{3,4\}$

Variable Elimination

- Simplify the network by incrementally removing variables
- Remove a variable, and create a new constraint on the remaining variables to account for its removal

Variable Elimination Algorithm

1: procedure $V E_{-} C S P(V s, C s)$
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output
6: a relation containing all of the consistent variable assignments
7: if Vs contains just one element then
8: return the join of all the relations in Cs
9: else

Variable Elimination Algorithm

1: procedure $V E_{-} C S P(V s, C s)$
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output
6: a relation containing all of the consistent variable assignments
7: if Vs contains just one element then
8: return the join of all the relations in Cs
9: else

10:

select variable $X s$ to eliminate

Variable Elimination Algorithm

1: procedure $V E_{-} C S P(V s, C s)$
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output
6: a relation containing all of the consistent variable assignments
7: if Vs contains just one element then
8: return the join of all the relations in Cs
9: else
10: \quad select variable $X s$ to eliminate
11: $\mathrm{Vs}^{\prime}:=\mathrm{Vs} \backslash\{X\}$

Remove X from the set of variables

Variable Elimination Algorithm

1: procedure $V E_{-} C S P(\mathrm{Vs}, \mathrm{Cs})$
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output
6: a relation containing all of the consistent variable assignments
7: if Vs contains just one element then
8: return the join of all the relations in Cs
9: else
10: \quad select variable $X s$ to eliminate
11: $\quad \mathrm{Vs}^{\prime}:=\mathrm{Vs} \backslash\{X\}$
12: $\quad \mathrm{Cs}_{X}:=\{T \in \mathrm{Cs}: T$ involves $X\}$
Identify the constraints involving X
that need to be reformulated/accounted for

Variable Elimination Algorithm

1: procedure $V E_{-} C S P(V s, C s)$
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output
10: \quad select variable $X s$ to eliminate
11: $\mathrm{Vs}^{\prime}:=\mathrm{Vs} \backslash\{X\}$
12: $\quad \operatorname{Cs}_{X}:=\{T \in \mathrm{Cs}: T$ involves $X\}$
13: \quad let R be the join of all of the constraints in Cs_{X}

14: \quad let R^{\prime} be R projected onto the variables other than X
Based on individual assignments to X, identify the set of allowed assignments to other variables in those constraints'

Variable Elimination Algorithm

1: procedure $V E_{-} C S P(\mathrm{Vs}, \mathrm{Cs})$
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output

10: \quad select variable $X s$ to eliminate
11: $\quad \mathrm{Vs}^{\prime}:=\mathrm{Vs} \backslash\{X\}$
12: $\quad \operatorname{Cs}_{X}:=\{T \in \mathrm{Cs}: T$ involves $X\}$
13: \quad let R be the join of all of the constraints in Cs_{X}
14: \quad let R^{\prime} be R projected onto the variables other than X
15: $\quad S:=\mathrm{VE} _\mathrm{CSP}\left(\mathrm{Vs}^{\prime},\left(\mathrm{Cs} \backslash \mathrm{Cs}_{X}\right) \cup\left\{R^{\prime}\right\}\right)$
16: \quad return $R \bowtie S$

Variable Elimination Example

Eliminate B

Variable Elimination Example

Setup: 3 variables
(A, B, C) each with domain $\{1,2,3,4\}$

\mathbf{A}	\mathbf{B}
1	2
1	3
1	4
2	3
2	4

B	C
1	2
1	3
1	4
2	3
2	4
3	4

Initial Constraints:

$$
\begin{aligned}
& A<B \\
& B<C
\end{aligned}
$$

Identify possible, legal combinations. Red rows are not feasible.

Variable Elimination Example

Setup: 3 variables (A, B, C) each with domain $\{1,2,3,4\}$

A	B		B
1	2		1
1	3		1
1	4		1
2	3		2
2	4		2
3	4		3
	A	B	C
	1	2	3
	1	2	4
	1	3	4
	2	3	4

Variable Elimination Example

Setup: 3 variables (A, B, C) each with domain $\{1,2,3,4\}$

Initial Constraints:

```
A<B
    B<C
```

Reformulate constraints/constraint table... into one that doesn't involve B, and solve the simpler problem

Characteristics of Variable Elimination

- Depends entirely on the tree-width
- Finding a good elimination order is NP-hard (!!!)
- Heuristic 1: min-factor: select the variable that results in the smallest relation
- Heuristic 2: minimum fill: select the variable that adds the fewest arcs to the resulting graph (don't make the graph more complicated)

General Methods of Solving CSPs

- Generate-and-Test, aka Brute Force
- Search (backtracking)
- Consistency checking
- Forward checking
- Arc consistency
- Domain splitting
- Variable Elimination
- Localized search

Is AC3 Alone Sufficient?

Consider the four queens problem

Solving a CSP still requires search

- Search:
- can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
- can rule out non-solutions, but this is not the same as finding solutions

Solving a CSP still requires search

- Search:
- can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
- can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation \& search:
- perform constraint propagation at each search step

4-Queens Problem

4-Queens Problem

4-Queens Problem

X2 $=3$ eliminates $\{X 3=2, X 3=3, X 3=4\}$ \Rightarrow inconsistent!

4-Queens Problem

X2 $=4 \Rightarrow \mathrm{X} 3=2$, which eliminates $\{\mathrm{X} 4=2, \mathrm{X} 4=3\}$
\Rightarrow inconsistent!

4-Queens Problem

X1 can't be 1, let's try 2

4-Queens Problem

Can we eliminate any other values?

4-Queens Problem

4-Queens Problem

Arc constancy eliminates $x 3=3$ because it's not consistent with X2's remaining values

4-Queens Problem

There is only one solution with $\mathbf{X 1 = 2}$

Sudoku

- Digit placement puzzle on 9×9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3×3 sub-grids must contain all nine digits

- Some initial configurations are easy to solve and others very difficult

Sudoku Example

					2			6		
	9			3		5				1
				8		6		4		
				1		2		9		
	7									8
			6	7		8		2		
			2	6		9		5		
	8			2		3				9
			5		1			3		

initial problem

	1	2	3	4	5	6	7	8	
A	4	8	3	9	2	1	6	5	7
B	9	6	7	3	4	5	8	2	1
C	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
E	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
H	8	1	4	2	5	3	7	6	9
1	6	9	5	4	1	7	3	8	2

a solution

How can we set this up as a CSP?
def sudoku(initValue):
p = Problem()
\# Define a variable for each cell: 11,12,13...21,22,23...98,99
for i in range $(1,10)$:

```
    p.addVariables(range(i*10+1, i*10+10), range(1, 10))
```

\# Each row has different values
for i in range $(1,10)$: p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
\# Each column has different values
for i in range $(1,10)$:
p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
\# Each 3x3 box has different values
p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
p.addConstraint(AllDifferentConstraint(), $[14,15,16,24,25,26,34,35,36])$
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
\# add unary constraints for cells with initial non-zero values
for i in range $(1,10)$:
for j in range $(1,10)$:
value $=$ initValue[$[-1][j-1]$
if value:
p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
return p.getSolution()

$$
\begin{aligned}
& \text { \# Sample problems } \\
& \text { easy }=\text { [} \\
& \text { [0,9,0,7,0,0,8,6,0], } \\
& \text { [0,3,1,0,0,5,0,2,0], } \\
& \text { [8,0,6,0,0,0,0,0,0], } \\
& \text { [0,0,7,0,5,0,0,0,6], } \\
& \text { [0,0,0,3,0,7,0,0,0], } \\
& \text { [5,0,0,0,1,0,7,0,0], } \\
& \text { [0,0,0,0,0,0,1,0,9], } \\
& \text { [0,2,0,6,0,0,0,5,0], } \\
& \text { [0,5,4,0,0,8,0,7,0]] } \\
& \text { hard }=\text { [} \\
& \text { [0,0,3,0,0,0,4,0,0], } \\
& \text { [0,0,0,0,7,0,0,0,0], } \\
& \text { [5,0,0,4,0,6,0,0,2], } \\
& \text { [0,0,4,0,0,0,8,0,0], } \\
& \text { [0,9,0,0,3,0,0,2,0], } \\
& \text { [0,0,7,0,0,0,5,0,0], } \\
& \text { [6,0,0,5,0,2,0,0,1], } \\
& \text { [0,0,0,0,9,0,0,0,0], } \\
& \text { [0,0,9,0,0,0,3,0,0]] } \\
& \begin{array}{c}
\text { very_hard = [} \\
{[0,0,0,0,0,0,0,0,0],} \\
{[0,0,9,0,6,0,3,0,0],} \\
{[0,7,0,3,0,4,0,9,0],} \\
{[0,0,7,2,0,8,6,0,0],} \\
{[0,4,0,0,0,0,0,7,0],} \\
{[0,0,2,1,0,6,5,0,0],} \\
{[0,1,0,9,0,5,0,4,0]} \\
{[0,0,8,0,2,0,7,0,0],} \\
[0,0,0,0,0,0,0,0,0]]
\end{array}
\end{aligned}
$$

Local search for constraint problems

- Basic idea:
- generate a random "solution"
- Use metric of "number of conflicts"
- Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search like....?

Min Conflict Example

-States: 4 Queens, 1 per column

- Operators: Move a queen in its column
- Goal test: No attacks
- Evaluation metric: Total number of attacks

How many conflicts does each state have?

Basic Local Search Algorithm

Assign one domain value d_{i} to each variable v_{i} while no solution \& not stuck \& not timed out:
bestCost $\leftarrow \infty$; bestList $\leftarrow[] ;$
for each variable v_{i} where Cost $\left(\right.$ Value $\left.\left(v_{i}\right)\right)>0$ for each domain value d_{i} of v_{i} if $\operatorname{Cost}\left(\mathrm{d}_{\mathrm{i}}\right)<$ bestCost bestCost $\leftarrow \operatorname{Cost}\left(\mathrm{d}_{\mathrm{i}}\right)$ bestList $\leftarrow\left[\mathrm{d}_{\mathrm{i}}\right]$ else if $\operatorname{Cost}\left(\mathrm{d}_{\mathrm{i}}\right)=$ bestCost bestList \leftarrow bestList $\cup d_{i}$
Take a randomly selected move from bestList ${ }_{\text {fire }}$

Eight Queens using Local Search

Backtracking Performance

Local Search Performance

Min Conflict Performance

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- Can solve arbitrary size (i.e., millions) NQueens problems in constant time
- Appears to hold for arbitrary CSPs with the caveat...

Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.

Famous example: labeling line drawings

- Waltz labeling algorithm, earliest AI CSP application (1972)
- Convex interior lines labeled as +
- Concave interior lines labeled as -
- Boundary lines labeled as with background to left

Labeling line drawings II

Here are some illegal labelings

Labeling line drawings

Waltz labeling algorithm: propagate constraints repeatedly until a solution is found

solution for one labeling problem

labeling problem with no solution

Labeling line drawings

This line drawing is ambiguous, with two interpretations

Shadows add complexity

CSP was able to label scenes where some of the lines were caused by shadows

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
- Hard vs. soft constraints vs. preferences
- Degree of constraint satisfaction
- Cost of violating constraints
- What if constraints are of different forms?
- Symbolic constraints
- Logical constraints
- Numerical constraints [constraint solving]
- Temporal constraints
- Mixed constraints

Challenges for constraint reasoning

- What if constraints are represented intentionally?
- Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
- Dynamic constraint networks
- Temporal constraint networks
- Constraint repair
- What if multiple agents or systems are involved in constraint satisfaction?
- Distributed CSPs
- Localization techniques

