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“AI can be 
summarized in two 
approaches: search, 

and averaging.”

My own 
undergrad AI 

professor



Today’s topics
• Goal-based agents

• Representing states and actions

• Example problems

• Generic state-space search algorithm

• Specific algorithms
– Breadth-first search
– Depth-first search
– Uniform cost search
– Depth-first iterative deepening

• Example problems revisited



Okay, but really? What is 
AI?

“Artificial intelligence, or AI, is the field that studies 
the synthesis and analysis of computational agents

that act intelligently.” --Poole & Mackworth

• Makes appropriate actions 
for circumstances & goals

• Balances short & long-term 
appropriately

• Flexible & reactive
• Learns/recognizes patterns

• Aware of 
computational/task 

budgets & limitations

something that acts in an 
environment; it does 

something.

Use “computation” to 
explain and traceback the 

actions

Recap



Agents

Fig. 2.1

“Sensors” “Actions”

Recap



(0) Table-driven agents 

Use percept sequence/action table to find next

action.  Implemented by a lookup table

(1) Simple reflex agents 

Based on condition-action rules, stateless devices 

with no memory of past world states

(2) Agents with memory 

represent states and keep track of past world states

(3) Agents with goals 

Have a state and goal information describing desirable 

situations; can take future events into consideration

(4) Utility-based agents 

base decisions on utility theory in order to act rationally

simple

complex

Courtesy Tim Finin

Recap

https://en.wikipedia.org/wiki/Utility


(3) Architecture for goal-based agent 
state and goal information describe desirable 
situations allowing agent to take future events into 
consideration 

Courtesy Tim Finin

Recap



Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into 
another, (3) constraints on applying operators and (4) 
control knowledge for deciding which operator to apply 
next."

Newell A & Simon H A. Human problem solving.

Englewood Cliffs, NJ: Prentice-Hall. 1972. 

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon


Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into 
another, (3) constraints on applying operators and (4) 
control knowledge for deciding which operator to apply 
next."

Newell A & Simon H A. Human problem solving.

Englewood Cliffs, NJ: Prentice-Hall. 1972. 

We’ll achieve this by 
formulating an appropriate 

graph and then applying 
graph search algorithms to it

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon


Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes, (𝑥, 𝑦)

G can be:
• Undirected: order of (𝑥, 𝑦) doesn’t matter

– These are symmetric

• Directed: order of (𝑥, 𝑦) does matter
• Weighted: cost function 𝑔(𝑥, 𝑦)
• (among other qualities)



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { a, b, c }

E = { (a, c), (b, c) }

undirected



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (b, c) }

a

b

c

directed



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (c, b) }

a

b

c

directed



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

g = ???

4

5

1



Remember: Graphs

• A graph G = (E, V)

• V = set of vertices (nodes)

• E = set of edges between pairs of nodes

a

b

c

V= { a, b, c }

E = { (a,c), (b, c), (c, b) }

g = {(a, c): 4, (b, c): 5, (c, b): 1}

4

5

1

weighted, directed



Some Key Terms: States, Goal, and 
Solution

State: a representation of the current 
world/environment (as needed for the agent)

Initial State: The state the agent/problem starts in

Goal State: The desired state

Solution: a sequence of actions that operate 
sequentially on states and allow the agent to 

achieve its goal



Example: 8-Puzzle

Given an initial configuration of 8 numbered 
tiles on a 3x3 board, move the tiles to 
produce a desired goal configuration



Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?

–What is the goal and how can we recognize it?

–What are the possible actions?

–What relevant information do we encode to describe 
states, actions and their effects and thereby solve the 
problem? 

initial state goal state



Representing states

• State of an 8-puzzle?



Representing states

• State of an 8-puzzle?

• A 3x3 array of integer in {0..8}

• No integer appears twice

• 0 represents the empty space

• In Python, we might implement this using a nine-
character string: “540681732”

• And write functions to map the 2D coordinates to 
an index



What’s the goal to be achieved?

• Describe situation we want to achieve, a set 
of properties that we want to hold, etc. 

• Defining a goal test function that when 
applied to a state returns True or False

• For our problem:
def isGoal(state):

return state == “123405678”



What are the actions?
• Primitive actions for changing the state

In a deterministic world: no uncertainty in an 
action’s effects (simple model)

• Given action and description of current 
world state, action completely specifies 

– Whether action can be applied to the current 
world (i.e., is it applicable and legal?) and 

– What state results after action is performed in 
the current world (i.e., no need  for history 
information to compute  the next state)



Representing actions

• Actions ideally considered as discrete events
that occur at an instant of time

• Example, in a planning context

– If  state:inClass and perform action:goHome, then 
next state is state:atHome

– There’s no time where you’re neither in class nor at 
home (i.e., in the state of “going home”)



Representing actions

• Actions for 8-puzzle?



Representing actions

• Actions for 8-puzzle?

• Number of actions/operators depends on the 
representation used in describing a state
– Specify 4 possible moves for each of the 8 tiles, 

resulting in a total of 4*8=32 operators

– Or: Specify four moves for “blank” square and we 
only need 4 operators

• Representational shift can simplify a problem!



Representing states

• Size of a problem usually described in 
terms of possible number of states

– Tic-Tac-Toe has about 39 states (19,683≈2*104)

– Checkers has about 1040 states

– Rubik’s Cube has about 1019 states

– Chess has about 10120 states in a typical game

– Go has 2*10170

– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty



Representing states

• Our estimates were loose upper bounds

• How many possible, legal states does tic-
tac-toe really have?

• Simple upper bound: nine board cells, each 
of which can be empty, O or X, so 39

• Only 593 states after eliminating

– impossible states

– Rotations and reflections
X

X

X X



Some example problems

• Toy problems and micro-worlds

–8-Puzzle

–Missionaries and Cannibals

–Cryptarithmetic

–8-Queens Puzzle

–Remove 5 Sticks

–Water Jug Problem

• Real-world problems



Example: The 8-Queens Puzzle 

Place eight queens 
on a chessboard 
such that no queen 
attacks any other

We can generalize 
the problem to a 
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle


Some more real-world problems

• Route finding

• Touring (traveling salesman)

• Logistics

• VLSI layout

• Robot navigation

• Theorem proving

• Learning



Water Jug Problem
• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water

– e.g.: full 5 gallon jug and empty 2 gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G2 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1 
liters, goal is to have 1 liter in each

https://en.wikipedia.org/wiki/Water_pouring_puzzle


So…

• How can we represent the states?
• What an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which ones 

can be performed in a given state; what is the 
resulting state

• How do we search for a solution from an initial 
state given a goal state

• What is a solution? The goal state achieved or a 
path to it?



Search in a state space
• Basic idea:

–Create representation of initial state

–Try all possible actions & connect states that result

–Recursively apply process to the new states until we 
find a solution or dead ends

• We need to keep track of the connections 
between states and might use a

–Tree data structure or

–Graph data structure

• A graph structure is best in general…



Formalizing state space search

• A state space is a graph (V, E) where V is a set 
of nodes and E is a set of arcs, and each arc is 
directed from a node to another node

• Nodes: data structures with state description 
and other info, e.g., node’s parent, name of 
action that generated it from parent, etc.

• Arcs: instances of actions, head is a state, tail 
is the state that results from action



Formalizing search in a state space
• Each arc has fixed, positive cost associated 

with it corresponding to the action cost
– Simple case: all costs are 1

• Each node has a set of successor nodes
corresponding to all legal actions that can be 
applied at node’s state
– Expanding a node = generating its successor nodes and 

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes

• A goal test predicate is applied to a state to 
determine if its associated node is a goal node



Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2

• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5-gallon jug and an empty 2-gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full

– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

5 2



Example: Water Jug Problem

Given full 5-gal. jug and 
empty 2-gal. jug, fill 2-
gal jug with one gallon

• State representation?

–General state?

–Initial state?

–Goal state?

• Possible actions?
–Condition?

–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y)
Empty 5G 

jug

Empty2 (x,y)→(x,0)
Empty 2G 

jug

2to5 x ≤ 3 (x,2)→(x+2,0)
Pour 2G into 

5G

5to2 x ≥ 2 (x,0)→(x-2,2)
Pour 5G into 

2G

5to2part y < 2 (1,y)→(0,y+1)
Pour partial 

5G into 2G

Action table

5 2



Example: Water Jug Problem

Given full 5-gal. jug 
and empty 2-gal. jug, 
fill 2-gal jug with one 
gallon
•State = (x,y), where x is 
water in jug 1; y is water 
in jug 2

• Initial State = (5,0) 

•Goal State = (-1,1), where 
-1 means any amount 

Name Cond. Transition Effect

dump1 x>0 (x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &

y<C2

(x,y)→(x-D,y+D)

D = min(x,C2-y)

Pour from Jug 

1 to Jug 2

pour_2_1
y>0 &

X<C1

(x,y)→(x+D,y-D)

D = min(y,C1-x)

Pour from Jug 

2 to Jug 1

Action table

5 2



Formalizing search

• Solution: sequence of actions associated with 
a path from a start node to a goal node

• Solution cost: sum of the arc costs on the 
solution path

– If all arcs have same (unit) cost, then 
solution cost is length of solution (number 
of steps)

–Algorithms generally require that arc costs 
cannot be negative (why?)



Formalizing search
• State-space search: searching through state space for 

solution by making explicit a portion of an implicit
state-space graph to find a goal node

– Can’t materializing whole space for large problems 

– Initially V={S}, where S is the start node, E={}

– On expanding S, its successor nodes are generated and 
added to V and associated arcs added to E

– Process continues until a goal node is found

• Nodes represent a partial solution path (+ cost of 
partial solution path) from S to the node 

– From a node there may be many possible paths (and thus 
solutions) with this partial path as a prefix



A General Searching Algorithm

Core ideas:
1. Maintain a list of 

frontier (fringe) nodes
1. Nodes coming 

into the frontier
have been 
explored

2. Nodes going out 
of the frontier
have not been 
explored

2. Iteratively select 
nodes from the 
frontier and explore 
unexplored nodes 
from the frontier

3. Stop when you reach 

your goal

Figure 3.3



State-space search algorithm

;; problem describes the start state, operators, goal test, and operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

end

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops



Key procedures to be defined

• EXPAND

– Generate  a node’s successor nodes, adding them to the 
graph if not already there

• GOAL-TEST

– Test if state satisfies all goal conditions

•QUEUEING-FUNCTION

– Maintain ranked list of nodes that are candidates for 
expansion

– Changing definition of the QUEUEING-FUNCTION leads to 
different search strategies



Same general search algorithm, from 
Poole & Mackworth

(They formulate it in terms 
of paths, not individual 
nodes---conceptually, 

that’s fine!)



Same general search algorithm, from 
Poole & Mackworth

(They formulate it in terms 
of paths, not individual 
nodes---conceptually, 

that’s fine!)

Initialize the frontier



Same general search algorithm, from 
Poole & Mackworth

(They formulate it in terms 
of paths, not individual 
nodes---conceptually, 

that’s fine!)

Pick a path from the 
frontier



Same general search algorithm, from 
Poole & Mackworth

(They formulate it in terms 
of paths, not individual 
nodes---conceptually, 

that’s fine!)

If the end state in the path 
achieves our goal, return 

the path



Same general search algorithm, from 
Poole & Mackworth

(They formulate it in terms 
of paths, not individual 
nodes---conceptually, 

that’s fine!)

Else, add all one-hop 
extensions of this path to 

the frontier



What does “search” 
look like for a 

particular problem?
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Informed vs. uninformed search

Uninformed search strategies (blind search)

–Use no information about likely direction of a goal

–Methods: breadth-first, depth-first, depth-limited, 
uniform-cost, depth-first iterative deepening, 
bidirectional

Informed search strategies (heuristic search)

–Use information about domain to (try to) (usually) 
head in the general direction of goal node(s)

–Methods: hill climbing, best-first, greedy search, 
beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic


Evaluating search strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

• Space complexity

• Optimality/Admissibility
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• Space complexity
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Evaluating search strategies

• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

– Usually measured by number of nodes expanded

• Space complexity

– Usually measured by maximum size of graph/tree
during the search

• Optimality/Admissibility



Evaluating search strategies
• Completeness

– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)

– Usually measured by number of nodes expanded

• Space complexity

– Usually measured by maximum size of graph/tree
during the search

• Optimality/Admissibility

– If a solution is found, is it guaranteed to be an 
optimal one, i.e., one with minimum cost



Example of uninformed search strategies

S

CBA

D GE

3 1 8

15
20 5

3
7

Consider this search space where S is the start 

node and G is the goal. Numbers are arc costs. 



Classic uninformed search methods

• The four  classic uninformed search methods

–Breadth first search (BFS)

–Depth first search (DFS)

–Uniform cost search (generalization of BFS)

– Iterative deepening (blend of DFS and BFS)

• To which we can add another technique

–Bi-directional search (hack on BFS)



Breadth-First Search

• Enqueue nodes in FIFO (first-in, first-out) order

• Complete

• Optimal (i.e., admissible) finds shorted path, 
which is optimal if all operators have same cost

• Q? Time & space complexity

• Q? Potential issues



Breadth-First Search

• Enqueue nodes in FIFO (first-in, first-out) order

• Complete

• Optimal (i.e., admissible) finds shorted path, 
which is optimal if all operators have same cost

• Exponential time and space complexity, O(bd), 
where d is depth of solution; b is branching 
factor (i.e., # of children)

• Q? Potential issues



Breadth-First Search

• Enqueue nodes in FIFO (first-in, first-out) order

• Complete

• Optimal (i.e., admissible) finds shorted path, 
which is optimal if all operators have same cost

• Exponential time and space complexity, O(bd), 
where d is depth of solution; b is branching 
factor (i.e., # of children)

• Takes a long time to find solutions with large 
number of steps because must explore all 
shorter length possibilities first 



Breadth-First Search

Expanded node  Nodes list (aka Fringe)

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }   

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }         

D6 { E10 G18 G21 G13 }   

E10 { G18 G21 G13 }     

G18 { G21 G13 }

Note: we typically don’t check for goal until we expand node
Solution path found is S A G , cost 18
Number of nodes expanded (including goal node) = 7

Notation

G18

G is node; 18 is 
cost of shortest 

known path from  

start node S

weighted arcs



Breadth-First Search

Long time to find solutions with many steps: we 
must look at all shorter length possibilities first

• Complete search tree of depth d where nodes have b 
children has 1 + b + b2 + ... + bd = (b(d+1) - 1)/(b-1) 
nodes = 0(bd)

• Tree of depth 12 with branching 10 has more than 
a trillion nodes

• If BFS expands 1000 nodes/sec and nodes uses 100 
bytes, then it may take 35 years to run and uses 
111 terabytes of memory!



Depth-First (DFS)
• Enqueue nodes on nodes in LIFO (last-in, first-out) 

order, i.e.,  use stack data structure to order nodes

• May not terminate w/o depth bound, i.e., ending 
search below fixed depth D (depth-limited search)

• Not complete (with or w/o cycle detection, with or 
w/o a cutoff depth) 

• Exponential time, O(bd), but linear space, O(bd)

• Can find long solutions quickly if lucky (and short 
solutions slowly if unlucky!)

• On reaching deadend, can only back up one level 
at a time even if problem occurs because of a bad 
choice at top of tree 



Depth-First Search 

Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }    

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }               

G18 { B1 C8 } 

Solution path found is S A G, cost 18

Number of nodes expanded (including goal node) = 5



Uniform-Cost Search (UCS)
• Enqueue nodes by path cost. i.e., let g(n) = cost of 

path from start to current node n. Sort nodes by 
increasing value of g(n). 

• Also called Dijkstra’s Algorithm, similar to Branch 
and Bound Algorithm from operations research

• Complete (*)

• Optimal/Admissible (*)

Depends on goal test being applied when node is removed 
from nodes list, not when its parent node is expanded & 
node first generated 

• Exponential time and space complexity, O(bd) 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


Uniform-Cost Search 
Expanded node  Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G21 }

C8 { E10 G13 G18 G21 }       

E10 { G13 G18 G21 }

G13 { G18 G21 }                             

Solution path found is S C G, cost 13

Number of nodes expanded (including goal node) = 7



Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to 

depth 1, etc.

• Usually used with a tree search

• Complete 

• Optimal/Admissible if all operators have unit 
cost, else finds shortest solution (like BFS)

• Time complexity a bit worse than BFS or DFS
Nodes near top of search tree generated many times, 
but since almost all nodes are near tree bottom, 
worst case time complexity still exponential, O(bd) 



• If branching factor is b and solution is at depth d, 
then nodes at depth d are generated once, nodes 
at depth d-1 are generated twice, etc. 
–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd). 

– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes 
searched than exist at depth d (in worst case)

• Linear space complexity, O(bd), like DFS 

• Has advantages of BFS (completeness) and DFS 
(i.e., limited space, finds longer paths quickly) 

• Preferred for large state spaces where solution 
depth is unknown

Depth-First Iterative Deepening (DFID)



How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G 

– Solution found: S A G (cost 18)

• Breadth-First Search: 
– 7 Expanded nodes: S A B C D E G 

– Solution found: S A G (cost 18)

• Uniform-Cost Search: 
– 7 Expanded nodes: S A D B C E G 

– Solution found: S C G (cost 13)

Only uninformed search that worries about costs

• Iterative-Deepening Search: 
– 10 nodes expanded: S S A B C S A D E G 

– Solution found: S A G (cost 18)



Searching Backward from Goal

• Usually a successor function is reversible

– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s  
properties), we could search backward to the 
initial state

• It might be more efficient

– Depends on whether the graph fans in or out



Bi-directional search

•Alternate searching from the start state toward the goal 
and from the goal state toward the start

• Stop when the frontiers intersect

•Works well only when there are unique start & goal states

• Requires ability to generate “predecessor” states

• Can (sometimes) lead to finding a solution more quickly



Comparing Search Strategies 



Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions



Big idea: heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\):  adj. [from Greek heuriskein to discover] 
involving or serving as an aid to learning, discovery, or problem-solving 
by experimental and especially trial-and-error methods 

The Free On-line Dictionary of Computing (15Feb98) 

heuristic  1. <programming> A rule of thumb, simplification or educated 
guess that reduces or limits the search for solutions in domains that are 
difficult and poorly understood. Unlike algorithms, heuristics do not 
guarantee feasible solutions and are often used with no theoretical 
guarantee. 2. <algorithm> approximation algorithm. 

From WordNet (r) 1.6

heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to 
a general formulation that serves to guide investigation [ant: algorithmic] 
n : a commonsense rule (or set of rules) intended to increase the 
probability of solving some problem [syn: heuristic rule, heuristic 
program] 

https://en.wikipedia.org/wiki/Heuristic


Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal
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ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual 
cost from 𝑛-to-goal



Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual 
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛′)



Informed methods add 
domain-specific information

• Select best path along which to continue 
searching

• h(n): estimates goodness of node n

• h(n) = estimated cost (or distance) of 
minimal cost path from n to a goal state. 

• Based on domain-specific information and 
computable from current state description 
that estimates how close we are to a goal



Heuristics
• All domain knowledge used in search is encoded 

in the heuristic function, h(<node>)

• Examples:
–8-puzzle: number of tiles out of place 
–8-puzzle: sum of distances each tile is from its goal
–Missionaries & Cannibals: # people on starting river 

bank

• In general
– ℎ 𝑛 ≥ 0 for all nodes n 
– ℎ(𝑛) = 0 implies that n is a goal node 
– ℎ 𝑛 = ∞ implies n is a dead-end that can’t lead to 

goal



Example 3.13

(Partial) Heuristic ℎ(𝑛)
for goal r123
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Heuristic ℎ(𝑛) for goal 
r123

Q: Is this an admissible
heuristic?



Example 3.13

Heuristic ℎ(𝑛) for goal 
r123

Q: Is this an admissible
heuristic?

Q: Is it an accurate 
heuristic?



Heuristics for 8-puzzle 

The number of 

misplaced tiles

(not including 

the blank)

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

In this case, only “8” is misplaced, so heuristic 

function evaluates to 1

In other words, the heuristic says that it thinks a 

solution may be available in just 1 more move

Goal 

State

Current 

State

1 2 3

4 5 6

7 8

1 2 3

4 5 6

7 8

N N N

N N N

N Y



Heuristics for 8-puzzle 

Manhattan 

Distance (not 

including the 

blank)

• The 3, 8 and 1 tiles are misplaced (by 2, 3, 

and 3 steps)  so the heuristic function 

evaluates to 8

• Heuristic says that it thinks a solution may 

be available in just 8 more moves.

• The misplaced heuristic’s value is 3

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal 

State

Current 

State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8



5

6 4

3

4 2

1 3 3

0 2

We can use heuristics 

to guide search

Manhattan Distance 

heuristic helps us 

quickly find a 

solution to the 8-

puzzle

h(n)

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 3

4 2 5

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5 6

7 8

1 2 3

4 5

7 8 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2 3

4 8 5

7 6

1 2

4 8 3

7 6 5

1 2 3

4 8

7 6 5

goal



Best-first search

• Search algorithm that improves depth-
first search by expanding most promising 
node chosen according to heuristic rule

• Order nodes on nodes list by increasing 
value of an evaluation function, f(n), 
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search


Best-first search

• Search algorithm that improves depth-
first search by expanding most promising 
node chosen according to heuristic rule

• Order nodes on nodes list by increasing 
value of an evaluation function, f(n), 
incorporating domain-specific information

• This is a generic way of referring to the 
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search


Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of 

finding a global optimum

• Uses evaluation function f(n) = h(n), sorting nodes by 
increasing values of f

• Selects node to expand appearing closest to goal (i.e., node 
with smallest f value) 

• Not complete 

• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost 

of 5

–Optimal solution is path to goal with cost 3

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule


Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy 

search finds goal g, with 
solution cost of 5

– Optimal solution is path to 
goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0



Beam search
• Use evaluation function f(n), but maximum size 

of the nodes list is k, a fixed constant 

• Only keep k best nodes as candidates for 
expansion, discard rest 

• k is the beam width

• More space efficient than greedy search, but 
may discard nodes on a solution path 

• As k increases, approaches best first search

• Complete?

• Admissible?

http://en.wikipedia.org/wiki/Beam_search


Beam search
• Use evaluation function f(n), but maximum size 

of the nodes list is k, a fixed constant 

• Only keep k best nodes as candidates for 
expansion, discard rest 

• k is the beam width

• More space efficient than greedy search, but 
may discard nodes on a solution path 

• As k increases, approaches best first search

• Not complete 

• Not admissible

http://en.wikipedia.org/wiki/Beam_search


We’ve got to be able to do 
better, right?

Let’s think about car trips…



A* Search

Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from 
the start state to state n

cost estimate from state n 
to the goal

estimated total cost from 
start to goal via state n



A* Search

•Use an evaluation function

f(n) = g(n) + h(n)

•g(n) term adds “breadth-first” component to evaluation 
function

•Ranks nodes on search frontier by estimated cost of solution 
from start node via given node to goal

•Not complete if h(n) can = ∞

• Is it admissible?

minimal-cost path from 
the start state to state n

cost estimate from state n 
to the goal

estimated total cost from 
start to goal via state n



A*

• Pronounced “a star” 

• h is admissible when h(n) <= h*(n) holds

–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st 
solution found will be an optimal one

• A* is complete whenever branching factor is finite 
and every action has fixed, positive cost 

• A* is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of 

Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers


Implementing A*

Q: Can this be an 
instance of our 
general search 

algorithm?

Figure 
3.3



Implementing A*

Q: Can this be an 
instance of our 
general search 

algorithm?

Figure 
3.3

A: Yup! Just make the 
fringe a priority 

queue ordered by 
𝑓(𝑛)



Alternative A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN 

2 If OPEN is empty, exit with failure 

3 Select node in OPEN with minimal f(n) and place on CLOSED

4 If n is a goal node, collect path back to start and stop

5 Expand n, generating all its successors and attach to them 
pointers back to n.  For each successor n' of n 

1 If n’ not already on OPEN or CLOSED

• put n' on OPEN

• compute h(n'),  g(n')=g(n)+ c(n,n'),  f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new 
version of n', then:

• Redirect pointers backward from n’ on path with lower g(n’)

• Put n' on OPEN



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done
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heuristic and A* acts like uniform-cost search
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• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done

• Null heuristic: If h(n) = 0 for all n, then it is an admissible 
heuristic and A* acts like uniform-cost search

• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal 
nodes, then h2 is a better heuristic than h1 

– If A1* uses h1, and A2* uses h2, then every node 
expanded by A2* is also expanded by A1* 

i.e., A1 expands at least as many nodes as A2*

–We say that A2* is better informed than A1*



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done

• Null heuristic: If h(n) = 0 for all n, then it is an admissible 
heuristic and A* acts like uniform-cost search

• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal 
nodes, then h2 is a better heuristic than h1 

– If A1* uses h1, and A2* uses h2, then every node 
expanded by A2* is also expanded by A1* 

i.e., A1 expands at least as many nodes as A2*

–We say that A2* is better informed than A1*

• The closer h to h*, the fewer extra nodes expanded 



Example search space

S
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D GE
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start state
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arc cost
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0

1 85

4 8 9

g value (current)



Example search space

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8
4 3

 0

start state

goal state

arc cost

h value

0

1

4 8 9

85

g value (current)



Example search space

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8
4 3

 0

start state

goal state

arc cost

h value

parent pointer

(current)
0

1

4 8 9

85

g value (current)



Example

n g(n) h(n) f(n) h*(n)

S 0 8 8 9

• h*(n) is (hypothetical) perfect heuristic (an oracle)

• Since h(n) <= h*(n) for all n, h is admissible (optimal)

• Optimal path = S B G with cost 9

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



Example

n g(n) h(n) f(n) h*(n)
S 0 8 8 9

A 1 8 9 9

B 5 4 9 4

C 8 3 11 5

D 4 inf inf inf

E 8 inf inf inf

G 9 0 9 0

• h*(n) is (hypothetical) perfect heuristic (an oracle)

• Since h(n) <= h*(n) for all n, h is admissible (optimal)

• Optimal path = S B G with cost 9

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



Greedy search

f(n) = h(n)

node expanded    nodes list

{ S(8) }

what’s next???

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



Greedy search

f(n) = h(n)

node expanded    nodes list

{ S(8) }

S         { C(3) B(4) A(8) }

C         { G(0) B(4) A(8) }

G         { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded. 

• See how fast the search is!! But it is NOT optimal. 

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



A* search
f(n) = g(n) + h(n)

node exp.     nodes list

{ S(8) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



A* search
f(n) = g(n) + h(n)

node exp.     nodes list

{ S(8) }

S         { A(9) B(9) C(11) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



A* search
f(n) = g(n) + h(n)

node exp.     nodes list

{ S(8) }

S         { A(9) B(9) C(11) }

A         { B(9) G(10) C(11) D(inf) E(inf) }

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



A* search
f(n) = g(n) + h(n)

node exp.     nodes list

{ S(8) }

S         { A(9) B(9) C(11) }

A         { B(9) G(10) C(11) D(inf) E(inf) }

B         { G(9) G(10) C(11) D(inf) E(inf) }     

What’s next?

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



A* search
f(n) = g(n) + h(n)

node exp.     nodes list

{ S(8) }

S         { A(9) B(9) C(11) }

A         { B(9) G(10) C(11) D(inf) E(inf) }

B         { G(9) G(10) C(11) D(inf) E(inf) }     

G         { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..  
• Still pretty fast. And optimal, too.

S

CBA

D GE

1 5
8

9
4

5

3

7

8

8
4 3

 0

0

1

4 8 9

85



Proof of the optimality of A*
• Assume that A* has selected G2, a goal state 

with a suboptimal solution, i.e., g(G2) > f*

• Proof by contradiction shows it’s impossible



Proof of the optimality of A*
• Assume that A* has selected G2, a goal state 

with a suboptimal solution, i.e., g(G2) > f*

• Proof by contradiction shows it’s impossible
–Choose a node n on an optimal path to G

–Because h(n) is admissible,  f* >= f(n)

– If we choose G2 instead of n for expansion, then
f(n) >= f(G2)

–This implies f* >= f(G2)

–G2 is a goal state: h(G2) = 0, f(G2) = g(G2). 

–Therefore f* >= g(G2)

–Contradiction



Dealing with hard problems
• For large problems, A* may require too much 

space

• Variations conserve memory: IDA* and SMA*

• IDA*, iterative deepening A*, uses successive 
iteration with growing limits on f, e.g.

– A* but don’t consider a node n where f(n) >10

– A* but don’t consider a node n where f(n) >20

– A* but don’t consider a node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*

– Uses queue of restricted size to limit memory use



IDA*: iterative deepening A*

Use successive iteration with growing limits on f, e.g.

– A* but don’t consider a node n where f(n) >10

– A* but don’t consider a node n where f(n) >20

– A* but don’t consider a node n where f(n) >30, ...



SMA*: Simplified Memory-Bounded A*

Uses queue of restricted size to limit memory use



How to find good heuristics
Some options (mix-and-match):

• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than 
(dominates) h1

• Relaxing problem: remove constraints for easier 
problem; use its solution cost as heuristic function

• Max of two admissible heuristics is a Combining 
heuristics: admissible heuristic, and it’s better!

• Use statistical estimates to compute h; may lose 
admissibility

• Identify good features, then use machine learning to 
find heuristic function; also may lose admissibility



Pruning: 
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe 
if you’ve already expanded it 
(it’s already on a path you’ve 
considered/are considering)

Q: What type of search-space 
would this be approach be 

applicable for?

Multiple-path pruning



Pruning: 
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe 
if you’ve already expanded it 
(it’s already on a path you’ve 
considered/are considering)

Q: What type of search-space 
would this be approach be 

applicable for?

Multiple-path pruning

Core idea: there may be 
multiple possible solutions, 

but you only need one

Maintain an “explored” 
(sometimes called “closed”) 
set of nodes at the ends of 

paths; discard a path if a path 
node appears in this set

Q: Does this return an optimal 
solution?



Optimality with Multiple-Path Pruning

Some options to find the optimal solution 
(pulled from Ch 3.7.2)

• Make sure that the first path found to any 
node is a lowest-cost path to that node, then 
prune all subsequent paths found to that 
node. OR



Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled 
from Ch 3.7.2)

• Make sure that the first path found to any node is 
a lowest-cost path to that node, then prune all 
subsequent paths found to that node. OR

• If the search algorithm finds a lower-cost path to 
a node than one already found, it could remove 
all paths that used the higher-cost path to the 
node. OR



Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch 
3.7.2)
• Make sure that the first path found to any node is a lowest-

cost path to that node, then prune all subsequent paths 
found to that node. OR

• If the search algorithm finds a lower-cost path to a node 
than one already found, it could remove all paths that used 
the higher-cost path to the node. OR

• Whenever the search finds a lower-cost path to a node 
than a path to that node already found, it could incorporate 
a new initial section on the paths that have extended the 
initial path.



A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path 
pruning will find an optimal solution

Core Idea: Why?



A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path 
pruning will find an optimal solution

Core Idea: Why? (proof by contradiction: see
Proposition 3.2 in Ch 3.7.2)



Summary: Informed search

•Best-first search is general search where minimum-cost 
nodes (w.r.t. some measure) are expanded first

•Greedy search uses minimal estimated cost h(n) to goal 
state as measure; reduces search time, but is neither 
complete nor optimal

•A* search combines uniform-cost search & greedy 
search: f(n) = g(n) + h(n).  Handles state repetitions & 
h(n) never overestimates

–A* is complete & optimal, but space complexity high

–Time complexity depends on quality of heuristic function

–IDA* and SMA* reduce the memory requirements of A* 



Summary (Fig 3.11)


