CMSC 471: Probability, and Reasoning and Learning with Uncertainty

Frank Ferraro – ferraro@umbc.edu

Some slides courtesy Tim Finin

Topics

- Review probability theory
- Bayesian inference
 - From the joint distribution
 - Using independence/factoring
 - From sources of evidence
- Representation and Learning
 - Bayes nets (a type probabilistic graphical models)
 - MLE (maximum likelihood estimation)
 - Naïve Bayes algorithm for inference and classification tasks

Many Sources of Uncertainty

- Uncertain inputs -- missing and/or noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even deductive, is uncertain
 - Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results

Decision making with uncertainty

Rational behavior: for each possible action:

- Identify possible outcomes and for each
 - Compute probability of outcome
 - Compute **utility** of outcome
- Compute probability-weighted (expected) utility over possible outcomes
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?
 - Someone has broken in!
 - It's a minor earthquake

Probability theory 101

- Random variables
 - Domain
- Atomic event: complete specification of state
- **Prior probability**: degree of belief without any other evidence or info
- Joint probability: matrix of combined probabilities of set of variables

- Alarm, Burglary, Earthquake
- Boolean (like these), discrete, continuous
- Alarm=T^Burglary=T^Earthquake=F alarm ^ burglary ^ ¬earthquake
- P(Burglary) = 0.1
 P(Alarm) = 0.1
 P(earthquake) = 0.000003
- P(Alarm, Burglary) =

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

Probability theory 101burglary.09.01-burglary.1.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
 - $P(a | b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a | b) * P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - P(B) = Σ_aP(B | a) P(a)
 (conditioning)

- P(burglary | alarm) = .47
 P(alarm | burglary) = .9
- P(burglary | alarm) = P(burglary ^ alarm) / P(alarm) = .09/.19 = .47
 - P(burglary ^ alarm) =
 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
 - P(alarm) = $P(alarm \land burglary) +$ $P(alarm \land \neg burglary)$ = .09+.1 = .19

Example: Inference from the joint

	alarm		-alarm	
	earthquake -earthquake		earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

 $P(burglary | alarm) = \alpha P(burglary, alarm)$

= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake) = α [(.01, .01) + (.08, .09)] = α [(.09, .1)]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19 - quizlet$: how can you verify this?)

P(burglary | alarm) = .09 * 5.26 = .474

P(¬burglary | alarm) = .1 * 5.26 = .526

Consider

- A student has to take an exam
- She might be smart
- She might have studied
- She may be prepared for the exam
- How are these related?

10

Exercise: Inference from the joint

smart -smart p(smart Λ study \land prep) study study -study -study prepared .16 .084 .432 .008 .16 .036 .048 .072 -prepared

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

Exercise: Inference from the joint

smart -smart p(smart \wedge study \land prep) study -study study -study prepared .432 .16 .084 .008 -prepared .048 .16 .036 .072

Queries:

– What is the prior probability of *smart*?

- What is the prior probability of study?
- What is the conditional probability of *prepared*, given *study* and *smart*?

p(smart) = .432 + .16 + .048 + .16 = 0.8

smart —smart study —study study —

.16

study \land prep)	study	_study	S
prepared	.432	.16	

.048

Queries:

p(smart

-prepared

S

р

- What is the prior probability of *smart*?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

-study

.008

.072

.084

.036

Exercise: Inference from the joint

Λ

p(smart 🔨	S	smart		mart
study \land prep)	study	−study	study	_study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given study and smart?

p(study) = .432 + .048 + .084 + .036 = 0.6

Exercise: Inference from the joint

p(smart 🔨	SI	mart	rt —smart	
study \land prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

Exercise: Inference from the joint

p(smart 🔨	sr	nart	art – smart	
study \land prep)	study	_study	study	—study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?

p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)
= .432 / (.432 + .048)
= 0.9

Independence

- rs' nrohahil-
- When variables don't affect each others' probabilities, they are independent; we can easily compute their joint & conditional probability: Independent(A, B) → P(A∧B) = P(A) * P(B) or P(A|B) = P(A)

 {moonPhase, lightLevel} might be independent of {burglary, alarm, earthquake}

- Maybe not: burglars may be more active during a new moon because darkness hides their activity
- But if we know light level, moon phase doesn't affect whether we are burglarized
- If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

p(smart 🔨	smart		smart	
study \land prep)	study	study	study	_study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- -Q1: Is *smart* independent of *study*?
- -Q2: Is *prepared* independent of *study*?

How can we tell?

p(smart 🔨	smart		smart	
study \land prep)	study	study	study	—study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

p(smart ∧	smart		−smart	
study \land prep)	study	_study	study	study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

Q1 true iff p(smart|study) == p(smart)

p(smart|study) = p(smart,study)/p(study)
= (.432 + .048) / .6 = 0.8
0.8 == 0.8, so smart is independent of study

p(smart 🔨	smart		smart	
study \land prep)	study	study	study	study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- What is prepared?
- •Q2 true iff

p(smart 🔨	smart		smart	
study \land prep)	study	study	study	—study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

Q2 true iff p(prepared|study) == p(prepared) p(prepared|study) = p(prepared,study)/p(study) = (.432 + .084) / .6 = .86

0.86 ≠ 0.8, so prepared not independent of study

Bayes' rule

Derived from the product rule:

-P(A, B) = P(A|B) * P(B) # from definition of conditional probability -P(B, A) = P(B|A) * P(A) # from definition of conditional probability-P(A, B) = P(B, A) # since order is not important

So...

P(A|B) = P(B|A) * P(A)P(B)

Useful for diagnosis!

- C is a cause, E is an effect:
 P(C|E) = P(E|C) * P(C) / P(E)
- Useful for diagnosis:
 - -E are (observed) effects and C are (hidden) causes,
 - -Often have model for how causes lead to effects P(E|C)
 - May also have info (based on experience) on frequency of causes (P(C))
 - Which allows us to reason abductively from effects to causes (P(C|E))

Ex: meningitis and stiff neck

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a diagnostic symptom and estimate p(M|S)
- Studies can estimate p(M), p(S) & p(S|M), e.g. p(M)=0.7, p(S)=0.01, p(M)=0.00002
- Harder to directly gather data on p(M|S)
- Applying Bayes' Rule:
 p(M|S) = p(S|M) * p(M) / p(S) = 0.0014

Reasoning from evidence to a cause

• In the setting of diagnostic/evidential reasoning

hypotheses

evidence/manifestations

- $\begin{array}{ll} \ {\rm Know\ prior\ probability\ of\ hypothesis} & P(H_i) \\ & \ {\rm conditional\ probability} & P(E_j \,|\, H_i) \end{array}$
- Want to compute the *posterior probability* $P(H_i | E_j)$
- Bayes' s theorem:

$$P(H_i | E_j) = P(H_i) * P(E_j | H_i) / P(E_j)$$

Simple Bayesian diagnostic reasoning

- Naive Bayes classifier
- Knowledge base:
 - Evidence / manifestations: E₁, ... E_m
 - Hypotheses / disorders: H₁, ... H_n

Note: E_j and H_i are **binary**; hypotheses are **mutually exclusive** (non-overlapping) and **exhaustive** (cover all possible cases)

- Conditional probabilities: $P(E_i | H_i)$, i = 1, ..., n; j = 1, ..., m

- Cases (evidence for a particular instance): E₁, ..., E₁
- Goal: Find the hypothesis H_i with highest posterior
 Max_i P(H_i | E₁, ..., E_i)

Simple Bayesian diagnostic reasoning

• Bayes' rule:

 $P(H_i | E_1...E_m) = P(E_1...E_m | H_i) P(H_i) / P(E_1...E_m)$

- Assume each evidence E_i is conditionally independent of the others, given a hypothesis H_i, then:
 P(E₁...E_m | H_i) = ∏^m_{j=1} P(E_j | H_i)
- If only care about relative probabilities for H_i , then: $P(H_i | E_1...E_m) = \alpha P(H_i) \prod_{j=1}^m P(E_j | H_j)$

Naïve Bayes

- Use Bayesian modeling
- Make the simplest possible independence assumption:
 - Each attribute is independent of the values of the other attributes, given the class variable
 - In our restaurant domain: Cuisine is independent of Patrons, *given* a decision to stay (or not)

Bayesian Formulation

- $p(C | F_1, ..., F_n) = p(C) p(F_1, ..., F_n | C) / P(F_1, ..., F_n)$ = $\alpha p(C) p(F_1, ..., F_n | C)$
- Assume each feature F_i is conditionally independent of others given the class C. Then:
 p(C | F₁, ..., F_n) = α p(C) Π_i p(F_i | C)
- Estimate each of these conditional probabilities from the observed **counts** in the training data: p(F_i | C) = N(F_i ∧ C) / N(C)
 - One subtlety of using the algorithm in practice: when your estimated probabilities are zero, ugly things happen
 - Fix: Add one to every count (aka <u>Laplace smoothing</u>—they have a different name for *everything*!)

Naive Bayes: Example

p(Wait | Cuisine, Patrons, Rainy?) =

= α • p(Wait) • p(Cuisine | Wait) • p(Patrons | Wait) • p(Rainy? | Wait)

= p(Wait) • p(Cuisine | Wait) • p(Patrons | Wait) • p(Rainy? | Wait)
p(Cuisine) • p(Patrons) • p(Rainy?)

We can estimate all of the parameters (p(F) and p(C) just by counting from the training examples

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Bag of Words Classifier

Naïve Bayes (NB) Classifier

Start with Bayes Rule

Naïve Bayes (NB) Classifier

Adopt naïve bag of words representation X_t

Assume position doesn't matter

Learning for a Naïve Bayes Classifier

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Learning for a Naïve Bayes Classifier

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

A: $p(w_v|u_l)$, $p(u_l)$

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

A: $p(w_v|u_l)$, $p(u_l)$

Q: How many parameters must be learned?

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters
(values/weights) must
be learned?A: $p(w_v | u_l), p(u_l)$ Q: How many
parameters must be
learned?A: LK + L

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

Q: What distributions need to sum to 1?

A: $p(w_v|u_l)$, $p(u_l)$

A: LK + L

Assuming V vocab types $w_1, ..., w_V$ and L classes $u_1, ..., u_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

Q: What distributions need to sum to 1?

A: Each $p(\cdot | u_l)$, and the prior

A: LK + L

A: $p(w_v|u_l), p(u_l)$

Multinomial Naïve Bayes: Learning

From training corpus, extract Vocabulary

Calculate $P(c_j)$ terms For each c_j in C do $docs_j = all docs with class = c_j$

Calculate $P(w_k | c_j)$ terms $Text_j$ = single doc containing all $docs_j$ For each word w_k in *Vocabulary* n_k = # of occurrences of w_k in *Text_j*

$$p(c_j) = \frac{|docs_j|}{\# docs}$$

 $p(w_k | c_j) = \text{class (unigram) LM}$ $\propto \text{count(word } w_k \text{in doc}$ $\text{labeled with } c_j)$

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Limitations

- Can't easily handle multi-fault situations or cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider composite hypothesis $H_1 \wedge H_2$, where $H_1 \& H_2$ independent. What's relative posterior? P(H₁ \wedge H₂ | E₁, ..., E_I) = α P(E₁, ..., E_I | H₁ \wedge H₂) P(H₁ \wedge H₂)
 - = $\alpha P(E_1, ..., E_1 | H_1 \wedge H_2) P(H_1) P(H_2)$ = $\alpha \prod_{j=1}^{l} P(E_j | H_1 \wedge H_2) P(H_1) P(H_2)$
- How do we compute $P(E_j | H_1 \land H_2)$?

Summary

- Probability a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Answer queries by summing over atomic events
- Must reduce joint size for non-trivial domains
- Bayes rule: compute from known conditional probabilities, usually in causal direction
- Independence & conditional independence provide tools
- Next: Bayesian belief networks

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

A graph G that represents a probability distribution over random variables X_1, \ldots, X_N

A graph G that represents a probability distribution over random variables X_1, \ldots, X_N

Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

A graph G that represents a probability distribution over random variables X_1, \ldots, X_N

Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

A graph G that represents a probability distribution over random variables X_1, \dots, X_N

Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

Two main flavors: *directed* graphical models and *undirected* graphical models (come talk to me)

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

Benefit: the independence properties are *transparent*

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

A graph/joint distribution that follows this is a Bayesian network

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
- Nodes have associated prior probabilities or Conditional Proability Tables (CPTs)
 Figure 10.4 0.6 Total 0.99

Why? Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

Deciding on an action based on probabilities of the conditions

Recall Bayes Rule

P(H, E) = P(H | E)P(E) = P(E | H)P(H)

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Note symmetry: can compute probability of a *hypothesis given its evidence* as well as probability of *evidence given hypothesis*

Simple Bayesian Network

 $S \in \{no, light, heavy\}$ (Smoking)-Cancer

 $C \in \{none, benign, malignant\}$

Simple Bayesian Network

 $S \in \{no, light, heavy\}$ Smoking $C \in \{none, benign, malignant\}$ Nodes represent variables Smoking $C \in \{none, benign, malignant\}$ Links represent "causal" relations

Simple Bayesian Network

Prior probability of S

P(S=no)	0.80
P(S=light)	0.15
P(S=heavy)	0.05

 $C \in \{none, benign, malignant\}$

Nodes with no in-links have prior probabilities

Conditional distribution of S and C

Nodes with in-links have joint probability distributions	Smoking=	no	light	heavy
	C=none	0.96	0.88	0.60
	C=benign	0.03	0.08	0.25
	C=malignant	0.01	0.04	0.1564

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

 $p(x_1, x_2, x_3, x_4, x_5) = ???$

 $p(x_1, x_2, x_3, x_4, x_5) =$ $p(x_1)p(x_3)p(x_2|x_1,x_3)p(x_4|x_2,x_3)p(x_5|x_2,x_4)$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

exact inference in general DAGs is NP-hard inference in trees can be exact

Can we predict likelihood of lung tumor given values of other 6 variables?

- Model has 7 variables
- Complete joint probability distribution will have 7 dimensions!
- Too much data required ⊗
- BBN simplifies: a node has a CPT with data on itself & parents in graph

Independence & Conditional Independence in BBNs

Read these independence relationships right from the graph!

There are two common concepts that can help:

- 1. Markov blanket
- 2. D-separation (not covering)

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

Markov blanket of a node x is its parents, children, and children's parents

(in this example, shading does not show observed/latent)

Markov blanket of a node x is its parents, children, and children's parents

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

p() |

=

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

(in this example, shading does not show observed/latent)

Independence

Age and Gender are independent.

There is no path between them in the graph

$$P(A,G) = P(G) * P(A)$$

P(A | G) = P(A)P(G | A) = P(G)

P(A,G) = P(G|A) P(A) = P(G)P(A)P(A,G) = P(A|G) P(G) = P(A)P(G)

Conditional Independence

Cancer is independent of Age and Gender given Smoking

 $P(C \mid A,G,S) = P(C \mid S)$

If we know value of smoking, no need to know values of age or gender

Conditional Independence

Cancer is independent of Age and Gender given Smoking

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models
 (2³ +2²) rather than 16 (2⁴)

Conditional Independence: Naïve Bayes

Serum Calcium and Lung Tumor are dependent

Serum Calcium is independent of Lung Tumor, given Cancer

 $P(L \mid SC,C) = P(L \mid C)$ $P(SC \mid L,C) = P(SC \mid C)$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

Explaining Away

Exposure to Toxics and Smoking are independent

P(E=heavy | C=malignant) > P(E=heavy
| C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of <u>Occam's Razor</u> (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Conditional Independence

Example from the Book: 8.15

http://artint.info/2e/html/ArtInt2e.Ch8.S3.SS2.html

Some questions:

What's the joint factorization? That is, simplify the joint distribution

p(F, T, A, S, L, R)

- 2. Are A & S independent?
- 3. Are there any nodes that make A & S conditionally independent?
- 4. How many different conditional distributions do we need?

D-Separation: Testing for Conditional Independence

d-separation

X & Y are d-separated if for **all** paths P, one of the following is true:

Variables X & Y are conditionally independent given Z if all (undirected) paths from (any variable in) X to (any variable in) Y are d-separated by Z

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a "v-structure" or "collider" with all unobserved descendants

Variables X & Y are conditionally independent given Z if all (undirected) paths from (any variable in) X to (any variable in) Y are d-separated by Z

Advanced

topic

d-separation

X & Y are d-separated if for **all** paths P, one of the following is true:

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a "v-structure" or "collider" with all unobserved descendants

X Z Y

observing Z blocks the path from X to Y

observing Z blocks the path from X to Y

not observing Z blocks the path from X to Y

D-Separation: Testing for **Conditional Independence**

Variables X & Y are conditionally independent given Z if all (undirected) paths from (any variable in) X to (any variable in) Y are d-separated by Z

p(x,y) =

observing Z blocks the path from X to Y

observing Z blocks the path from X to Y

not observing Z blocks the path from X to Y

p(x, y, z) = p(x)p(y)p(z|x, y)

Advanced

topic

d-separation

X & Y are d-separated if for all paths P, one of the following is true:

P has a chain with an observed middle node

P has a fork with an observed parent node

P includes a "v-structure" or "collider" with all unobserved descendants

Probabilistic Graphical Models

A graph G that represents a probability distribution over random variables X_1, \ldots, X_N

Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

Two main flavors: *directed* graphical models and *undirected* graphical models (come talk to me)

Advanced topics

Maxent Models Make a Reappearance

- features f(x, y) between x and y that are meaningful;
- weights θ (one per feature) to say how important each feature is; and
- a way to form probabilities from f and θ

 $p(y|x) \propto \exp(\theta^T f(x,y))$

Markov Random Fields: Undirected Graphs

clique: subset of nodes, where nodes are pairwise connected

maximal clique: a clique that cannot add a node and remain a clique

$$p(x_1, x_2, x_3, \dots, x_N) = \frac{1}{Z} \prod_{C} \exp(-E_C(x_C))$$
variables part
of the clique C
global
normalization
maximal
cliques
Energy function
(reweighted features)

BBN Construction

- The <u>knowledge acquisition</u> process for a BBN involves three steps
 - **KA1**: Choosing appropriate variables
 - KA2: Deciding on the network structure
 - **KA3**: Obtaining data for the conditional probability tables

KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively *exhaustive*, *mutually exclusive* values

$$x_1 \lor x_2 \lor x_3 \lor x_4$$

$$\neg (x_i \land x_j) \quad i \neq j$$
Error Occurred
No Error

• They should be values, not probabilities

Heuristic: Knowable in Principle

Example of good variables

- Weather: {Sunny, Cloudy, Rain, Snow}
- Gasoline: Cents per gallon {0,1,2...}
- Temperature: { $\geq 100^{\circ}$ F , < 100° F}
- User needs help on Excel Charts: {Yes, No}
- User's personality: {dominant, submissive}

KA2: Structuring

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its **parents**
- For variables w/o parents, we have prior probabilities

 $S \in \{no, light, heavy\}$ $C \in \{none, benign, malignant\}$

(Smoking)	→ (Cancer)
	Connect

smoking priors	
no	0.80
light	0.15
heavy	0.05

	smoking		
cancer	no	light	heavy
none	0.96	0.88	0.60
benign	0.03	0.08	0.25
malignant	0.01	0.04	0.15 97

Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

Deciding on an action based on probabilities of the conditions

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1, \dots, x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

Advanced topics

Predictive Inference

Predictive and diagnostic combined

Explaining away

- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up
- If we then observe heavy smoking, the probability of exposure to toxics goes back down

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
 - Beliefs/Uncertainties
 - Alternatives/Decisions
 - Objectives/Utilities

Decision Problem

Should I have my party inside or outside?

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast
 The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - Assign a utility to each of four situations: (rain | no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: decision and utility
- Decision node computes the expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- **Utility** node computes utility value given its parents, e.g. a decision and weather
 - Assign utility to each situations: (rain | no rain) x (umbrella, no umbrella)
 - Utility value assigned to each is probably subjective

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1, \dots, x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

Advanced topics

108

Variable Elimination

- Inference: Compute posterior probability of a node given some other nodes $p(Q|x_1, ..., x_j)$
- Variable elimination: An algorithm for exact inference
 - Uses dynamic programming
 - Not necessarily polynomial time!

Variable Elimination (High-level)

Goal: $p(Q|x_1, ..., x_i)$

(The word "factor" is used for each CPT.)

- 1. Pick one of the non-conditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3.Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
P(Alarm Tampering, Fire)	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Fire

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

tional Probability	Factor
npering)	$f_0 (Tampering)$
	f_1 (<i>Fire</i>)
$rm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$oke = yes \mid Fire)$	f_3 (Fire)
$ving \mid Alarm)$	f_4 (Alarm, Leaving)
$port = yes \mid Leaving)$	f_5 (Leaving)
	tionalProbability mpering) e) $arm \mid Tampering, Fire)$ $oke = yes \mid Fire)$ $aving \mid Alarm)$ $port = yes \mid Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

f1(Fire) f2(Tampering, Fire, Alarm) f3(Fire)

f6(Tampering, Alarm) =

$$= \sum_{u} f_{1}(\text{Fire} = u) f_{2}(T, F = u, A) f_{3}(F = u)$$
$$= \sum_{u} p(\text{Fire} = u) p(A \mid T, F = u) p(S = y \mid F = u)_{114}$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

 $= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$ = $p(\text{Fire} = y)p(A \mid T, F = y)p(S = y \mid F = y) +$

$$p(Fire = n)p(A | T, F = n)p(S = y | F = n)$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

$= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$			
	Tamp.	Alarm	f6
	Yes	Yes	p(Fire = y)p(A = y T = y, F = y)p(S = y F = y) + p(Fire = n)p(A = y T = y, F = n)p(S = y F = n)
7	Yes	No	
	No	No	•••
	No	Yes	

TTD

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Alarm

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

...other computations not shown---see the book...

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
P (Alarm Tampering, Fire)	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P (Leaving Alarm)	f_4 (Alarm, Leaving)
	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute p(Tampering)

We'll have a single factor f9(Tampering):

$$p(T = u) = \frac{f_9(T = u)}{\sum_{\nu} f_9(T = \nu)}$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute p(Tampering)

We'll have a single factor f9(Tampering):

$$p(T = y) = \frac{f_9(T = y)}{f_9(T = y) + f_9(T = n)}$$

Learning Bayesian networks

- Given training set **D** = {**x**[1],..., **x**[**M**]}
- Find graph that best matches **D**
 - model selection
 - parameter estimation

Data D

Learning Bayesian Networks

- Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
- Both can be learned from data, but
 - -learning structure much harder than learning parameters
 - –learning when some nodes are hidden, or with missing data harder still
- Four cases:
 - Structure Observability Method

Known	Full	Maximum Likelihood Estimation
Known	Partial	EM (or gradient ascent)
Unknown	Full	Search through model space
Unknown space	Partial	EM + search through model

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Fundamental Inference Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1, \dots, x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

Advanced topics

124

Parameter estimation

- Assume known structure
- Goal: estimate BN parameters θ
 entries in local probability models, P(X | Parents(X))
- A parameterization θ is good if it is likely to generate the observed data:

$$L(\theta: D) = P(D | \theta) = \prod_{m} P(x[m] | \theta)$$

i.i.d. samples

 Maximum Likelihood Estimation (MLE) Principle: Choose θ* so as to maximize L

Parameter estimation II

• The likelihood **decomposes** according to the structure of the network

 \rightarrow we get a separate estimation task for each parameter

- The MLE (maximum likelihood estimate) solution for **discrete** data & RV values:
 - for each value x of a node X
 - and each instantiation u of Parents(X)

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$

– Sometimes written $g(\mathcal{X}; \phi)$

- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

- Central to machine learning:
- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ, i.e., f_θ(X)
 Sometimes written f(X; θ)

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i [p(w_i)]$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

p(1) = ? p(2) = ?

- p(3) = ? p(4) = ?
- p(5) = ? p(6) = ?

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are "reasonable" estimates for p(w)?

$$p(1) = 2/9$$
 $p(2) = 1/9$
 $p(3) = 1/9$ $p(4) = 3/9$ maximum
likelihood
estimates
 $p(5) = 1/9$ $p(6) = 1/9$

Core concept in intro statistics:

- Observe some data $\mathcal X$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(X)$
 - Sometimes written $g(\mathcal{X}; \phi)$
- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

How do we "learn appropriate value(s) of φ?"

Many different options: a common one is maximum likelihood estimation (MLE)

- Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized
- Independence assumptions are very useful here!
- Logarithms are also useful!

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn φ such that g correctly models, as accurately as possible, the amount of snow likely

Advanced topic

Learning: Maximum Likelihood Estimation (MLE) tics: Example: How much does it

Core concept in intro statistics:

- Observe some data $\mathcal X$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} X
- Assume *g* is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, ..., x_N\})$ is maximized

snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that gcorrectly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others $\log g_{\phi}(x_i)$ max

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn φ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

Ν $\log g_{\phi}(x_i)$ max

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

Example: How much does it snow?

Advanced

topic

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X
- Gamma? 🗸
- Exponential? √
- Bernoulli? 🗡
- Poisson? 🗡

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that gcorrectly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from q

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X
- Gamma? $\sqrt{p(X = x)} =$
- Exponential?
- Bernoulli? X
- Poisson? X

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that gcorrectly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful/nice-to-compute-andgood-enough probability distribution for x_i ?

- Normal? X \checkmark p(X = x) =Gamma? \checkmark ? $\frac{1}{\sqrt{2\pi}\sigma} \exp(\frac{-(x x)}{2\sigma^2})$
- Exponential? \checkmark ?
- Bernoulli? X X
- Poisson? X X

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

 $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^N \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

 $x_i \sim Normal(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu,\sigma^2}(x_i) = \\ \max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

 $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu,\sigma^2}(x_i) =$$
$$\max_{\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

 $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu,\sigma^2}(x_i) = \max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

A: Differentiate and find that

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{N}$$
$$\sigma^{2} = \frac{\sum_{i} (x_{i} - \hat{\mu})^{2}}{N}$$

- Central to machine learning:
- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ, i.e., f_θ(X)
 Sometimes written f(X; θ)

Learning:

Maximum Likelihood Estimation (MLE)

- Central to machine learning:
- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(\mathcal{X})$ – Sometimes written $f(\mathcal{X}; \theta)$
- Parameters are learned to minimize error (loss) &

Advanced topic

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of f is a *probability distribution* on $\mathcal{Y}|\mathcal{X}...$ $\gg f(\mathcal{X}) \rightarrow$
 - $\{p(yes|\mathcal{X}), p(no|\mathcal{X})\}\$
- Then re: θ, {predicting, explaining, generating}
 𝒱 means... what?

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of *f* is a *probability distribution* on *Y*|*X*...
- Then re: θ, {predicting, explaining, generating}
 𝒱 means... what?

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of *f* is a *probability distribution* on *Y*|*X*...
- Then re: θ, {predicting, explaining, generating}
 𝒴 means finding a value for θ that maximizes the probability of 𝒴 given 𝒴

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:

 $- y_{n+1}^*$ from x_{n+1}

- If we assume the output of f is a *probability* distribution on $\mathcal{Y}|\mathcal{X}...$
- Then re: θ, {predicting, explaining, generating} Y means finding a value for θ that maximizes the probability of Y given X, according to f
- To model \mathcal{X} : learn a distribution g, on \mathcal{X}

Extended examples of MLE

N different (independent) rolls

Advanced

topic

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2)\cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

Generative Story for roll i = 1 to N: $w_i \sim Cat(\theta)$

Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log p_{\theta}(w_{i})$$
$$= \sum_{i} \log \theta_{w_{i}}$$

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i} \text{ s.t.} \sum_{k=1}^{6} \theta_k = 1$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

solve using Lagrange multipliers

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

$$\frac{\partial \mathcal{F}(\theta)}{\partial \theta_k} = \sum_{i:w_i=k} \frac{1}{\theta_{w_i}} - \lambda \qquad \frac{\partial \mathcal{F}(\theta)}{\partial \lambda} = -\sum_{k=1}^6 \theta_k + 1$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\lambda}$$

optimal
$$\lambda$$
 when $\sum_{k=1}^{6} \theta_k = 1$

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\sum_k \sum_{i:w_i=k} 1} = \frac{N_k}{N}$$

optimal
$$\lambda$$
 when $\sum_{k=1}^{6} \theta_k = 1$

Example: Conditionally Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2)\cdots p(w_N) = \prod_i p(w_i)$$

add complexity to better explain what we see

 $p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$ $= \prod_i p(w_i|z_i) p(z_i)$

Example: Conditionally Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

add complexity to better explain what we see

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

First flip a coin...

$$\sum_{i=1}^{\infty} z_1 = T$$
$$\sum_{i=1}^{\infty} z_2 = H$$

Example: Conditionally Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i=1}^{N} p(w_i)$$

add **complexity** to better explain what we see

ĺ

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

First flip a coin...

...then roll a different die depending on the coin flip

$$\bigcirc z_1 = T$$

$$w_1 =$$

$$z_1 = T \quad w_1 = 1$$
$$z_2 = H \quad w_2 = 5$$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$\int_{explain what we see}^{add \ complexity \ to \ better} explain what we see$$

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

If you observe the z_i values, this is easy!

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood $p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$ If you observe the z_i values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for die when coin comes up heads}$ $\gamma^{(T)} = \text{distribution for die when coin comes up tails}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$

 $w_i \sim \operatorname{Cat}(\gamma^{(z_i)})$

Learning in Conditional Die
Roll Model: Maximize
(Log-)Likelihood
$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i
values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin}(z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$

Lagrange multiplier constraints

Learning in Conditional Die
Roll Model: Maximize
(Log-)Likelihood
$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i
values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin}(z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

Learning in Conditional Die
Roll Model: Maximize

$$(Log-)Likelihood$$

 $p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$
If you observe the z_i But if you don't observe the
values, this is easy! z_i values, this is not easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin}(z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

Model selection

Goal: Select the best network structure, given the data

Input:

- Training data
- Scoring function

Output:

- A network that maximizes the score

Structure selection: Scoring

- Bayesian: prior over parameters and structure
 - get balance between model complexity and fit to data as a byproduct
 Marginal likelihood
- Score (G:D) = log P(G|D) α log [P(D|G) P(G)]
- Marginal likelihood just comes from our parameter estimates

Prior

Prior on structure can be any measure we want; typically a function of the network complexity

Same key property: Decomposability

Score(structure) = Σ_i Score(family of X_i)

Heuristic search

