
Assignment 2

CMSC 471 (03/01) — Artificial Intelligence

Item Summary
Assigned Friday February 26th
Due Friday March 12th, 11:59 PM Baltimore time
Topic Constraint Satisfaction Problems
Points 90 (+20 Extra credit)

In this assignment you will gain experience with CSPs: algorithms/heuristics for solving them,
and experience casting a problem as a CSP (that can be solved by a dedicated CSP solver).

You are to complete this assignment on your own: that is, the code and writeup you submit must
be entirely your own. However, you may discuss the assignment at a high level with other students
or on the discussion board. Note at the top of your assignment who you discussed this with or what
resources you used (beyond course staff, any course materials, or public Piazza discussions).

The following table gives the overall point breakdown for this assignment.

Question 1 2 3 4
Points 15 25 25 25 (+20 Extra Credit)

Language and External Resources You may use whatever language you prefer, however we
must be able to call your program as specified in the assignment. If necessary, we must be able to
compile it as well. You may use and reference code from https://github.com/aimacode,
though acknowledge if you do so. Failure to do so, or the use of other external resources without
prior written permission from the instructor, will be considered an academic integrity violation and
result, in a minimum, in a 0 on this assignment.

What To Turn In You must turn in two items:

1. A writeup in PDF format that answer the questions.

2. A single zip or tar.gz file containing all code, environment files (if applicable) and
execution instructions necessary to replicate your output.

As part of your submission, be sure to include specific instructions on how to build (compile) your
code. Answers to the following questions should be long-form. Provide any necessary analyses
and discussion of your results.

How To Submit Submit the assignment on the submission site:

https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01 03/submit.

Be sure to select “Assignment 2.”

1

https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/submit


Questions
1. (15 points) In the following sub-parts, “briefly describe” means provide a description of a

problem in a couple of sentences such that the constraints are clear, and identify the variables,
their domains, and what aspect of the problem they correspond to. For example, if you were
to “briefly describe” the map coloring problem from the slides, an acceptable answer would
be, “Color the regions of a map with different colors, drawn from a fixed, finite set of colors,
such that neighboring (touching) regions do not have the same color. Each region is a finite
variable, whose domain is the set of available colors.”

(a) Briefly describe a CSP where the variables have a finite domain. You may not use map
coloring.

(b) Briefly describe a CSP where the variables have an infinite, but discrete, domain.

(c) Briefly describe a CSP where the variables have a continuous domain.

2. (25 points) From Ch 4.12 of Poole and Mackworth, answer question 6. For clarity, I’ve
copied it below. You do not have to follow their linear output requirement in part (a), but
your answer must convey the same information.

Consider a scheduling problem, where there are five activities to be scheduled in four time
slots. Suppose we represent the activities by the variables A,B,C,D, and E, where the
domain of each variable is {1, 2, 3, 4} and the constraints are A > D,D > E,C 6= A,C >
E,C 6= D,B ≥ A,B 6= C, and C 6= D + 1.

(a) Show how backtracking solves this problem. To do this, you should draw the search
tree generated to find all answers. Indicate clearly the valid schedule(s). Make sure you
choose a reasonable variable ordering.

(b) Show how arc consistency solves this problem. To do this you must:

• draw the constraint graph;
• show which elements of a domain are deleted at each step, and which arc is re-

sponsible for removing the element;
• show explicitly the constraint graph after arc consistency has stopped; and
• show how splitting a domain can be used to sove this problem.

3. (25 points) From Ch 4.12 of Poole and Mackworth, answer question 12. For ease, I’ve
copied it below (except for the figure, and with two clarifying changes, in italics).

Consider the constraint graph of Figure 4.16 with named binary constraints. r1 is a relation
on A and B, which we can write as r1(A,B), and similarly for the other relations. This
question has you work through two steps of solving this network with VE.

(a) Suppose you were to eliminate variable A. Which constraints are removed? A con-
straint is created on which variables? (You can call this r11).

(b) Suppose you were to subsequently eliminate B (i.e., after eliminating A). Which rela-
tions are removed? Which variables are in the scope of this new constraint?

http://artint.info/2e/html/ArtInt2e.Ch4.S12.html
http://artint.info/2e/html/ArtInt2e.Ch4.S12.html


4. (25 points, +20 Extra Credit) This question has you formulate the “exact cover” problem as
a CSP. There is some starter Python code available at https://www.csee.umbc.edu/
courses/undergraduate/471/spring21/01_03/materials/a2/code but you
are not required to use this code (or Python, even). The starter code assumes the use of the
python-constraint library we went over in class. However, for this assignment, you
may use code provided by the aimacode github organization: https://github.com/
aimacode. There is a csp file, which contains the implementation of different CSP algo-
rithms. If you are coding in Python, this will be csp.py in the aima-python repo. You
are welcome to use these pre-implemented search functions, but you are not required to.

The exact cover problem is as follows: Given a set of X = {x1, x2, . . . , xN} of values, and a
set S = {S1, S2, . . . , SJ} of J subsets of X , identify K elements of S such that they are all
pairwise disjoint, and the union across them all is X . For example, given X = {1, 2, 3, 4}
and S = {S1 = {}, S2 = {1, 3}, S3 = {2, 3}, S4 = {2, 4}}, then {S2, S4} is an exact cover,
but neither {S2, S3} nor {S3, S4} is an exact cover. (Another exact cover is {S1, S2, S4}.)
Note that if you added 5 to X but kept S the same, no exact cover would be possible.

The specification for a given exact cover problem requires X and S: these are provided by a
JSON file. This JSON file is a dictionary with two keys: vertices, a list (set) of elements,
and subsets, a list (set) of lists (subsets of vertices). See

https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_
03/materials/a2/code/simple_exact_cover.json.

for an example encoding the above. We will test your program on examples you won’t have
seen. You may assume that the elements of X are hashable, but do not assume they will be
ints. For full credit, your program must work appropriately for these other files we test.

(a) In your writeup, formulate (precisely, with formulas but without code) the exact cover
problem as a CSP. Specifically, given an arbitrary exact cover specification:

• define the variables (including their domain and meaning with regard to the exact
cover problem);
• write out the constraints. For each constraint, provide a brief written justifica-

tion for why your formulation is a correct formulation for that constraint. (You
may have multiple constraints that are essentially the same, except for a couple of
values. In that case, justify each type of constraint.)

(b) Implement your CSP, and make sure you can save your solutions out in a JSON file. If
you are using the starter code, the write solutions function saves your solutions
in the appropriate form.

(i) Once you’ve implemented the constraints, programmatically test them: make sure
the “solution” your program returns satisfies your constraints. How you do so is
up to you, but provide the output (e.g., screenshot, or copy the terminal output)
and include it in your writeup.

(ii) Verify that your solution is correct. Run
python3 check solution.py your solutions.json
on the file your implementation generated. You don’t have to turn anything in for
this part.

https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/a2/code
https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/a2/code
https://github.com/aimacode
https://github.com/aimacode
https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/a2/code/simple_exact_cover.json
https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/a2/code/simple_exact_cover.json


(iii) Demonstrate that your solver can find the correct answers by applying it to the
simple exact cover.json and simple exact cover no solution.json
examples provided, using a backtracking solver. Save the resulting solution file as
q4-b-yes-backtracking.json (for the json with a solution) and
q4-b-no-min-conflicts.json (for the json without a solution) and in-
clude these in your submission.

(iv) In your writeup, describe (in writing) how you implemented the variables and
constraints.

(c) Now add support for the min-conflicts solver. Demonstrate that your solver can
find the correct answers by applying it to the simple exact cover.json exam-
ples provided. Save the resulting solution files as q4-c-yes-min-conflicts.json
and include this in your submission.

(d) [Optional: +20 Extra Credit] Use the script generate exact cover.py to au-
tomatically generate some problem files. You can generate problems with no answer,
problems with a unique answer, and problems with multiple answers. You can also
choose the size of X . In this problem, you will be generating a bunch of problem files,
running your CSP implementation on them, and then analyzing the differences (both in
solutions and time required) for backtracking vs. min-conflicts. Specifically:

• Pick a reasonable maximum size for X . It should be at least 5, though I’d recom-
mend no greater than 10. Let this value be M .
• For each size of X between 2 and M , generate at least three problem files for each

of the “none,” “unique,” and “multiple” settings. This step should result in at least
(M − 1) ∗ 3 ∗ 3 files. Make sure you save these with unique names. Include these
files in your submission.
• Run both your backtracking and min-conflicts solvers on all of these files. Record

the time taken to find a solution. Make sure these files have unique names. Include
them in your submission.

Having done that, for each of the three types of problems (none, unique, and multiple),
plot the average time taken to solve the problem as you vary the size of X . Each graph
should be a bar (column) chart, where the horizontal axis is the sizes of X , the vertical
axis is the average time taken to solve problems of the size given on horizontal axis,
and each of backtracking and min-conflicts is a data series. Provide these three graphs
in your writeup, and write down some observations about the results you obtained.

Code/Running Requirements Your code must be runnable via the bash script
https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/

a2/code/run_exact_cover.bash.
Usage is as follows (the backslash is how your split a command across multiple lines):

bash run_exact_cover.bash problem_file.json solution_file.json \
{backtracking,min-conflicts}

The first argument is the path to an JSON file that has the problem specification.

https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/a2/code/run_exact_cover.bash
https://www.csee.umbc.edu/courses/undergraduate/471/spring21/01_03/materials/a2/code/run_exact_cover.bash


The second argument is the path to a JSON file that will be created (or overwritten) with your
solution(s).

The third argument is a string indicating the name of the solver to use. Your program must sup-
port “backtracking” (where a basic backtracking search will be used) and “min-conflicts” (where a
min-conflicts search will be used). You are welcome to make your program work with others, but
you do not have to.


