UNIVERSITY OF BRISTOL DEPARTMENT OF COMPUTER SCIENCE

Examination for the Degrees of BSc, BEng, BA, Meng and MSc

MAY/JUNE 1999 2 Hours

COMS 30106

ARTIFICIAL INTELLIGENCE 3/4a & MSc

This paper contains *FOUR* questions. The best *THREE* answers will be used for assessment.

From the Computer Science Past Paper Archive

Q1 Logic and incomplete information

Given is the following set of clauses *P*:

knows(T,S):-student_of(S,T). knows(X,Y):-friend_of(Y,X). knows(X,Y):-friend_of(Z,X),knows(Z,Y). student_of(paul,peter). friend_of(peter,jan).

a) Draw the SLD-tree for the query ?-knows(X,paul), and list the answers in the order they are found by Prolog.

[4 marks]

b) Find, by means of resolution-refutation, somebody who knows both Peter and Paul.

[4 marks]

c) Determine *CWA*(*C*), restricted to the predicate knows.

[4 marks]

d) Determine Comp(P).

[4 marks]

e) Give three abductive explanations of the observation knows(jan,maria).

[4 marks]

Q2 Search

Given is the following problem. There are two jugs of 7 and 5 litres, initially empty, and an unlimited supply of water. There are three ways to change the amount of water in a jug:

- 1. a jug can be filled completely;
- 2. a jug can be emptied completely;
- 3. water can be poured from one jug into the other, until one jug is empty or the other is full.
- a) Sketch part of the search space, starting from the initial situation (0,0) (two empty jugs) and at least containing the situation (0,2) (i.e. large jug is empty, small jug contains 2 litres of water).

[4 marks]

cont.

- b) Suppose you are searching for a way to reach a certain situation, such as (0,4). Discuss **briefly** for each of the following search strategies to what extent it is suitable for solving the given problem:
 - 1. depth-first;
 - 2. breadth-first;
 - 3. depth-bounded search;
 - 4. iterative deepening;
 - 5. best-first.

[6 marks]

c) A certain search algorithm finds the following solution for reaching (0,4) first:

$$(0,0) - (0,5) - (5,0) - (5,5) - (7,3) - (0,3) - (3,0) - (3,5) - (7,1) - (0,1) - (1,0) - (1,5) - (6,0) - (6,5) - (7,4) - (0,4)$$

Which search strategy can be applied here? Justify your answer.

[6 marks]

d) The following Prolog clauses represent part of the search space.

arc(s(X,Y),s(7,Y)):-X<7. arc(s(X,Y),s(X,5)):-Y<5. arc(s(U,V),s(0,Y)):-U>0,Y is U+V,Y=<5. arc(s(U,V),s(X,0)):-V>0,X is U+V,X=<7.</pre>

Give the remaining 4 clauses.

[4 marks]

Q3 Natural language

Given is the following Definite Clause Grammar:

S	>	nl(N), vp(N).
vp(N)	>	iv(N),c.
vp(N)	>	tv(N),np.
С	>	[like],np.
np	>	art,n2.
n1(singular)	>	[fruit].
n1(plural)	>	[fruit,flies].
<pre>iv(singular)</pre>	>	[flies].
tv(plural)	>	[like].
art	>	[a].
n2	>	[banana].

a) Draw the search space belonging to a top-down parse of the sentence 'fruit flies like a banana'.

[6 marks] cont. b) Draw both parse trees for this sentence.

[4 marks]

c) Consider the following heuristic: h(s) = the number of non-terminals in partially parsed sentence *s*.

Which parse tree is found first if best-first search with depth-count g(s) is applied, i.e. an A algorithm? Motivate your answer.

[4 marks]

d) Is this heuristic optimistic and/or monotonic for an arbitrary DCG? Justify your answer.

[6 marks]

Q4. Inductive reasoning

Given are the following three clauses:

p([P|Q]):-p(Q). p([U,V|W]):-p([V|W]). p([X,Y|Z]):-p(Z).

a) Determine all pairs of clauses C_1 , C_2 such that C_1 is more general than C_2 under θ -subsumption.

[4 marks]

b) Determine all pairs of clauses C_1 , C_2 such that C_1 is more general than C_2 under logical consequence.

[4 marks]

- c) Determine the θ-LGG of the following two clauses: r(c,[a,b,c],[a,b]):-r(c,[b,c],[b]). r(2,[1,2],[1]):-r(2,[2],[]).
 [4 marks]
- d) Give two specialisations of the clause e(X, [Y|Z]).

[4 marks]

b) Describe briefly the difference between bottom-up and top-down induction.

[4 marks]