
1

1

Prolog IIProlog II
2

The Notion of Unification

• Unification is when two things “become one”
• Unification is kind of like assignment
• Unification is kind of like equality in algebra
• Unification is mostly like pattern matching
• Example:

– loves(john, X) can unify with loves(john, mary)
– and in the process, X gets unified with mary

3

Unification I

• Any value can be unified with itself.
– weather(sunny) = weather(sunny)

• A variable can be unified with another variable.
– X = Y

• A variable can be unified with (“instantiated
to”) any Prolog term.
– Topic = weather(sunny)

4

Unification II

• Two different structures can be unified if
their constituents can be unified.
– mother(mary, X) = mother(Y, father(Z))

• A variable can be unified with a structure
containing that same variable. This is
usually a Bad Idea.
– X = f(X)

2

5

Unification III

• The explicit unification operator is =
• Unification is symmetric:

Cain = father(adam)
means the same as

father(adam) = Cain
• Most unification happens implicitly, as a

result of parameter transmission.

6

Scope of Names

• The scope of a variable is the single clause in
which it appears.

• The scope of the “anonymous” (“don't care”)
variable, _, is itself.
– loves(_, _) = loves(john, mary)

• A variable that only occurs once in a clause is
a useless singleton; you should replace it
with the anonymous variable

7

Writing Prolog Programs

• Suppose the database contains
loves(chuck, X) :- female(X), rich(X).
female(jane).

and we ask who Chuck loves,
?- loves(chuck, Woman).

• female(X) finds a value for X , say, jane
• rich(X) then tests whether Jane is rich

8

Clauses as Cases

• A predicate consists of multiple clauses,
each of which represents a “case”

grandson(X,Y) :- son(X,Z), son(Z,Y).

grandson(X,Y) :- daughter(X,Z), son(Z,Y).

abs(X, Y) :- X < 0, Y is -X.

abs(X, X) :- X >= 0.

3

9

Ordering

• Clauses are always tried in order
• buy(X) :- good(X).

buy(X) :- cheap(X).

cheap(‘Java 2 Complete’).
good(‘Thinking in Java’).

• What will buy(X) choose first?

10

Ordering II

• Try to handle more specific cases (those
having more variables instantiated) first.

dislikes(john, bill).

dislikes(john, X) :- rich(X).

dislikes(X, Y) :- loves(X, Z), loves(Z, Y).

11

Ordering III

• Some "actions" cannot be undone by
backtracking over them:
– write, nl, assert, retract, consult

• Do tests before you do undoable actions:
– take(A) :-

at(A, in_hand),
write('You\'re already holding it!'),
nl.

12

Recursion

• Handle the base cases first

• Recur only with a simpler case

ancestor(X, Y) :- child(Y, X).
(X is an ancestor of Y if Y is a child of X.)

ancestor(X, Y) :-
child(Z, X), ancestor(Z, Y).

(X is an ancestor of Y if Z is a child of X and
Z is an ancestor of Y).

4

13

Case Level

• You can often choose the "level" at which
you want cases to be defined.

son(isaac, steven).
child(X, Y) :- son(X, Y).

male(isaac).
child(isaac, steven).
son(X, Y) :- male(X), child(X, Y).

14

Recursive Loops

• Prolog proofs must be tree structured, that
is, they may not contain recursive loops.
– child(X,Y) :- son(X,Y).
– son(X,Y) :- child(X,Y), male(X).

– ?- son(isaac, steven). <−− May loop!

• Why? Neither child/2 nor son/2 is atomic

15

Cut and Cut-fail

• The cut, !, is a commit point. It commits to:
– the clause in which it occurs (can't try another)
– everything up to that point in the clause

• Example:
– loves(chuck, X) :- female(X), !, rich(X).
– Chuck loves the first female in the database, but only if

she is rich.
• Cut-fail, (!, fail), means give up now and don't

even try for another solution.
16

What you can't do

• There are no functions, only predicates

• Prolog is programming in logic, therefore
there are few control structures

• There are no assignment statements; the state
of the program is what's in the database

5

17

Workarounds II

• There are few control structures in Prolog,
BUT…

• You don't need IF because you can use multiple
clauses with "tests" in them

• You seldom need loops because you have
recursion

• You can, if necessary, construct a "fail loop"

18

Fail Loops

• Use fail loops sparingly, if at all.

notice_objects_at(Place) :-
at(X, Place),
write('There is a '), write(X),
write(' here.'), nl,
fail.

notice_objects_at(_).

19

Workarounds II
• There are no functions, only predicates,

BUT…
• A call to a predicate can instantiate variables:

female(X) can either
– look for a value for X that satisfies female(X), or
– if X already has a value, test whether female(X)

can be proved true
• By convention, output variables are put last

20

Workarounds II
• Functions are actually a subset of relations, so you can

define a function like factorial as a relation
factorial(N,0) :- N<1.
factorial(1,1).
factorial(N,M) :-

N2 is N-1,
factorial(N2,M2),
M is N*M2.

• The last argument to the relation is used for the
value that the function returns.

• How would you define:
fib(n)=fib(n-1)+fib(n-2) where fib(0)=0 and fib(1)=1

6

21

Workarounds III

• There are no assignment statements, BUT…
• the Prolog database keeps track of program state

– assert(at(fly, bedroom))
– bump_count :-

retract(count(X)),
Y is X + 1,
assert(count(Y)).

• Don't get carried away and misuse this!
22

The End

