
1

1

Prolog IProlog I
2

Syllogisms

• “Prolog” is all about programming in logic.
– Socrates is a man.
– All men are mortal.
– Therefore, Socrates is mortal.

3

Facts, rules, and queries

• Fact: Socrates is a man.
man(socrates).

• Rule: All men are mortal.
mortal(X) :- man(X).

• Query: Is Socrates mortal?
mortal(socrates).

4

Running Prolog I

• Create your "database" (program) in any
editor

• Save it as text only, with a .pl extension
• Here's the complete "program":

man(socrates).
mortal(X) :- man(X).

2

5

Running Prolog II

• Prolog is completely interactive.
• Begin by invoking the Prolog interpreter.

– sicstus
• Then load your program.

– consult(‘mortal.pl’)
• Then, ask your question at the prompt:

– mortal(socrates).
• Prolog responds:

– Yes

6

On gl.umbc.edu
> sicstus
SICStus 3.7.1 … Licensed to umbc.edu
| ?- consult('mortal.pl').
{consulting

/home/faculty4/finin/cmsc/331/fall00/prolog/mortal.pl...}
{/home/faculty4/finin/cmsc/331/fall00/prolog/mortal.pl

consulted, 0 msec 624 bytes}
yes
| ?- mortal(socrates).
yes
| ?- mortal(X).
X = socrates ?
yes
| ?-

7

Syntax I: Structures or Terms

• Example structures:
– sunshine
– man(socrates)
– path(garden, south, sundial)

• <structure> ::=
<name> | <name> (<arguments>)

• <arguments> ::=
<argument> | <argument> , <arguments>

8

Syntax II: Base Clauses

• Base clauses are like simple facts.
• Example base clauses:

– debug_on.
– loves(john, mary).
– loves(mary, bill).

• <base clause> ::= <structure> .

3

9

Syntax III: Nonbase Clauses
• Non-base clauses are like rules.
• Example non-base clauses:

– mortal(X) :- man(X).
– mortal(X) :- woman(X)
– happy(X) :- healthy(X), wealthy(X), wise(X).

• <nonbase clause> ::=
<structure> :- <structures> .

• <structures> ::=
<structure> | <structures> , <structure>

10

Syntax IV: Predicates
• A predicate is a collection of clauses with the

same functor and arity.
loves(john, mary).
loves(mary, bill).
loves(chuck, X) :- female(X), rich(X).

• <predicate> ::=
<clause> | <predicate> <clause>

• <clause> ::=
<base clause> | <nonbase clause>

11

Syntax V: Programs

• A program is a collection of predicates.
• Predicates can be in any order.
• Predicates are used in the order in which

they occur.

12

Syntax VI: Assorted details
• Variables begin with a capital letter or an

underscore:
X, Socrates, _result

• Atomic symbols do not begin with a capital letter:
x, socrates

• Other atomic symbols must be enclosed in single
quotes:
– ‘Socrates’
– ‘C:/My Documents/examples.pl’

4

13

Syntax VII: Assorted details

• In a quoted atom, a single quote must be
quoted or backslashed: 'Can''t, or won\'t?'

• /* Comments are like this */
• Prolog allows some infix operators, such as :-

(turnstile) and , (comma). These are syntactic
sugar for the functors ':-' and ','.

• These are equivalent:
':-'(mortal(X), man(X)).
mortal(X) :- man(X).

14

Backtracking

• loves(chuck, X) :- female(X), rich(X).
• female(jane).
• female(mary).
• rich(mary).
Now, Suppose we ask: loves(chuck, X).
• female(X) = female(jane), X = jane.
• rich(jane) fails.
• female(X) = female(mary), X = mary.
• rich(mary) succeeds.

15

Additional answers

• female(jane).
female(mary).
female(susan).

• ?- female(X).
• X = jane ;
• X = mary
• Yes

16

Readings

• loves(chuck, X) :- female(X), rich(X).
• Declarative reading: Chuck loves X if X is

female and rich.
• Approximate procedural reading: To find

an X that Chuck loves, first find a female X,
then check that X is rich.

• Declarative readings are almost always
preferred.

5

17

Nonmonotonic logic

Prolog’s facts and rules can be changed at any
time.
assert(man(plato)).
assert((loves(chuck,X) :- female(X), rich(X))).
retract(man(plato)).
retract((loves(chuck,X) :- female(X), rich(X))).

18

Common problems

• Capitalization is extremely important!
• No space between a functor and its

argument list:
man(socrates), not man (socrates).

• Don’t forget the period! (But you can put it
on the next line.)

19

A Simple Prolog Model
• Imagine prolog as a system which has a database

composed of two components:
– FACTS - statements about true relations which hold

between particular objects in the world. For example:
parent(adam,able): adam is a parent of able
parent(eve,able): eve is a parent of able
male(adam): adam is male.

– RULES - statements about true relations which hold
between objects in the world which contain
generalizations, expressed through the use of variables.
For example, the rule

father(X,Y) :- parent(X,Y), male(X).
might express:

for any X and any Y, X is the father of Y if X is a parent of Y
and X is male. 20

Nomenclature and Syntax
• A prolog rule is called a clause.
• A clause has a head, a neck and a body:

father(X,Y) :- parent(X,Y) , male(X) .
head neck body

• the head is a rule's conclusion.
• The body is a rule's premise or condition.
• note:

– read :- as IF
– read , as AND
– a . marks the end of input

6

21

Prolog Database

father(X,Y) :- parent(X,Y),
male(X).

sibling(X,Y) :- ...

parent(adam,able)
parent(adam,cain)
male(adam)
...

Rules comprising the
“intensional database”

Facts comprising the
“extensional database”

22

Extensional vs. Intensional

father(X,Y) :- parent(X,Y),
male(X).

sibling(X,Y) :- ...

parent(adam,able)
parent(adam,cain)
male(adam)
...

Rules comprising the
“intensional database”

Facts comprising the
“extensional database”

Prolog
Database

The terms extensional and
intensional are borrowed from
the language philosophers use
for epistemology.

• Extension refers to whatever extends, i.e., “is
quantifiable in space as well as in time”.

• Intension is an antonym of extension,
referring to “that class of existence which
may be quantifiable in time but not in space.”

• NOT intentional with a “t”, which has to do
with “will, volition, desire, plan, …”

For KBs and DBs we use
• extensional to refer to that which is explicitly

represented (e.g., a fact), and

• intensional to refer to that which is
represented abstractly, e.g., by a rule of
inference.

Epistemology is “a branch of philosophy
that investigates the origin, nature,
methods, and limits of knowledge”

23

A Simple Prolog Session
| ?-

assert(parent(adam,able)).
yes
| ?- assert(parent(eve,able)).
yes
| ?- assert(male(adam)).
yes
| ?- parent(adam,able).
yes
| ?- parent(adam,X).
X = able
yes

| ?- parent(X,able).
X = adam ;
X = eve ;
no
| ?- parent(X,able) , male(X).
X = adam ;
no

24

A Prolog Session
| ?- [user].
| female(eve).
| parent(adam,cain).
| parent(eve,cain).
| father(X,Y) :- parent(X,Y),

male(X).
| mother(X,Y) :- parent(X,Y),

female(X).
| ^Zuser consulted 356 bytes

0.0666673 sec.
yes
| ?- mother(Who,cain).
Who = eve
yes

| ?- mother(eve,Who).
Who = cain
yes
| ?- trace, mother(Who,cain).

(2) 1 Call: mother(_0,cain) ?
(3) 2 Call: parent(_0,cain) ?
(3) 2 Exit: parent(adam,cain)
(4) 2 Call: female(adam) ?
(4) 2 Fail: female(adam)
(3) 2 Back to: parent(_0,cain) ?
(3) 2 Exit: parent(eve,cain)
(5) 2 Call: female(eve) ?
(5) 2 Exit: female(eve)
(2) 1 Exit: mother(eve,cain)

Who = eve
yes

7

25

| ?- [user].
| sibling(X,Y) :-
| father(Pa,X),
| father(Pa,Y),
| mother(Ma,X),
| mother(Ma,Y),
| not(X=Y).
^Zuser consulted 152 bytes 0.0500008

sec.
yes
| ?- sibling(X,Y).
X = able
Y = cain ;
X = cain
Y = able ;

trace,sibling(X,Y).
(2) 1 Call: sibling(_0,_1) ?
(3) 2 Call: father(_65643,_0) ?
(4) 3 Call: parent(_65643,_0) ?
(4) 3 Exit: parent(adam,able)
(5) 3 Call: male(adam) ?
(5) 3 Exit: male(adam)
(3) 2 Exit: father(adam,able)
(6) 2 Call: father(adam,_1) ?
(7) 3 Call: parent(adam,_1) ?
(7) 3 Exit: parent(adam,able)
(8) 3 Call: male(adam) ?
(8) 3 Exit: male(adam)
(6) 2 Exit: father(adam,able)
(9) 2 Call: mother(_65644,able) ?
(10) 3 Call: parent(_65644,able) ?
(10) 3 Exit: parent(adam,able)
(11) 3 Call: female(adam) ?
(11) 3 Fail: female(adam)
(10) 3 Back to: parent(_65644,able) ?
(10) 3 Exit: parent(eve,able)
(12) 3 Call: female(eve) ?
(12) 3 Exit: female(eve)
(9) 2 Exit: mother(eve,able)
(13) 2 Call: mother(eve,able) ?
(14) 3 Call: parent(eve,able) ?
(14) 3 Exit: parent(eve,able)
(15) 3 Call: female(eve) ?
(15) 3 Exit: female(eve)
(13) 2 Exit: mother(eve,able)
(16) 2 Call: not able=able ?
(17) 3 Call: able=able ?
(17) 3 exit: able=able
(16) 2 Back to: not able=able ?
(16) 2 Fail: not able=able
(15) 3 Back to: female(eve) ?
(15) 3 Fail: female(eve)

(14) 3 Back to: parent(eve,able) ?
(14) 3 Fail: parent(eve,able)
(13) 2 Back to: mother(eve,able) ?
(13) 2 Fail: mother(eve,able)
(12) 3 Back to: female(eve) ?
(12) 3 Fail: female(eve)
(10) 3 Back to: parent(_65644,able) ?
(10) 3 Fail: parent(_65644,able)
(9) 2 Back to: mother(_65644,able) ?
(9) 2 Fail: mother(_65644,able)
(8) 3 Back to: male(adam) ?
(8) 3 Fail: male(adam)
(7) 3 Back to: parent(adam,_1) ?
(7) 3 Exit: parent(adam,cain)
(18) 3 Call: male(adam) ?
(18) 3 Exit: male(adam)
(6) 2 Exit: father(adam,cain)
(19) 2 Call: mother(_65644,able) ?
(20) 3 Call: parent(_65644,able) ?
(20) 3 Exit: parent(adam,able)
(21) 3 Call: female(adam) ?
(21) 3 Fail: female(adam)
(20) 3 Back to: parent(_65644,able) ?
(20) 3 Exit: parent(eve,able)
(22) 3 Call: female(eve) ?
(22) 3 Exit: female(eve)
(19) 2 Exit: mother(eve,able)
(23) 2 Call: mother(eve,cain) ?
(24) 3 Call: parent(eve,cain) ?
(24) 3 Exit: parent(eve,cain)
(25) 3 Call: female(eve) ?
(25) 3 Exit: female(eve)
(23) 2 Exit: mother(eve,cain)
(26) 2 Call: not able=cain ?
(27) 3 Call: able=cain ?
(27) 3 Fail: able=cain
(26) 2 Exit: not able=cain
(2) 1 Exit: sibling(able,cain)
X = able
Y = cain
yes no
| ?- 26

How to Satisfy a Goal
Here is an informal description of how Prolog satisfies
a goal (like father(adam,X)). Suppose the goal is G:
1.Conjunction: if G = P,Q then first satisfy P, carry

any variable bindings forward to Q, and then satiety
Q.

2.Disjunction: if G = P;Q then satisfy P. If that fails,
then try to satisfy Q.

3.Negation: if G = not(P) then try to satisfy P. If this
succeeds, then fail and if it fails, then succeed.

4.Simple goal: if G is a simple goal, then look for a
fact in the DB that unifies with G look for a rule
whose conclusion unifies with G and try to satisfy
its body

27

Note
• Two basic conditions are true, which always succeeds, and

fail, which always fails.
• A comma (,) represents conjunction (and) and a semi-colon

represents disjunction (or), as in:
grandParent(X,Y) :- grandFather(X,Y); grandMother(X,Y).

• There’s no real distinction between rules and facts, which are
just rules whose bodies are the trivial condition true. These are
equivalent:

parent(adam,cain)
parent(adam,cain) :- true.

• Goals can be posed with any combination of variables and
constants:
– parent(cain,able) - Is Cain Able's parent?
– parent(cain,X) - Who is a child of Cain?
– parent(X,cain) - Who is Cain a child of?
– parent(X,Y) - What two people have a parent/child relationship? 28

Terms
• The term is the basic data structure in Prolog.
• The term is to Prolog what the s-expression is to

Lisp.
• A term is either:

– a constant - e.g.
• john , 13, 3.1415, +, 'a constant'

– a variable - e.g.
• X, Var, _, _foo

– a compound term - e.g.
• part(arm,body)
• part(arm(john),body(john))

8

29

Compound Terms
• A compound term can be thought of as a

relation between one or more terms:
part_of(finger,hand)

and is written as:
1. the relation name (called the principle

functor) which must be a constant.
2. An open parenthesis
3. The arguments - one or more terms

separated by commas.
4. A closing parenthesis.

• The number of arguments of a compound
terms is called its arity.

Term arity
f 0
f(a) 1
f(a,b) 2
f(g(a),b) 2

30

The EndThe End

