
CMSC 471 HOMEWORK FOUR
Spring 2017

Please do not distribute or post on the Web or Internet.

Total points: 100 + 10 extra credit

1. Checking Validity (10 points, 2 each for 1.2-1.6)

2. p → p
>>> tt_true(expr('P >> P'))
True

3. p → (p v q)
>>> tt_true(expr('P >> (P | Q)'))
True

4. (p v q) → p
>>> tt_true(expr(' (P | Q) >> P'))
False

5. ((A ∧B) →C) ↔ (A → (B → C))
>>> tt_true(expr(' ((A & B) >> C) <=> (A >> (B >> C)) '))
True

6. ((a → b) → a) → a
>>> tt_true(expr(' ((A >> B) >> A) >> A '))
True

2. Satisfiability (9 points, 3 each)

2. ALIVE→ ¬DEAD ∧ ¬ALIVE∧ ¬DEAD
>>> dpll_satisfiable(expr('Alive>>~Dead&~Alive&~Dead'))
{Alive: False, Dead: False}

3. P → ¬ P v P
>>> dpll_satisfiable(expr('P>>~P|P'))
{P: True}

4. ~ (P v ¬ P)
>>> dpll_satisfiable(expr('~(P|~P)'))
False

3. Propositional Consequence (24 points, 3 each)

2. p |= p ^ q
False

3. p |= p v q
True

4. p |= ~~p
True

5. p-->q |= ~p-->~q
False

6. ~p |= p-->q
True

7. ~q |= p-->q
False

8. p, p-->q |= q
True

9. ~p, q-->p |= ~q
True

4. English to FOL (30 points, 3 each)

There are usually several reasonable ways to express natural language sentences in logic. One source of
variation is what to leave implicit and what to make explicit, e.g., omitting obvious types as in rendering
‘every person loves their mother’ as Ax mother(x,y) => loves(y,x). Another comes from the application
of standard tautologies, e.g., you can encode ‘no man is an island’ as ~Ex man(x) ^ island(x) or as Ax
man(x) => ~island(x).

2. Everything is either dead or alive.

Here are two ways, either is acceptable. Others might be if they are equivalent logic sentences.

Ax alive(x) v dead(x)
~Ex ~alive(x) ^ ~dead(x)

3. Dead things are not animate.

Since this was missing on the doc file we distributed, give everyone full credit whether they did
it or not. But, FWIW, here are two ways, either is acceptable. Others might be if they are
equivalent logic sentences.

Ax dead(x) => ~ animate(x)
~Ex dead(x) ^ animate(x))

4. Zombies are not alive but they are animate

Ax zombie(x) => ~ alive(x) ^ animate(x)

5. Good food is not cheap and cheap food is not good.

Here are three reasonable answers:

Ax ((food(x) ^ good(x)) => ~cheap(x)) ^ ((food(x) ^ cheap(x)) => ~good(x)))
Ax food(x) => (good(x) => ~ cheap(x)) ^ (cheap(x) => ~good(x))

But, this is redundant, since P=>Q = ~Q=>~P, so we can also write it as

Ax food(x) => (good(x) => ~ cheap(x))

6. John has exactly two brothers.

Here is one way that this can be expressed:

Ex1 Ex2 brother(john,x1) ^ brother(john,x2) ^ ~(x1=x2) ^
 (Vx3 brother(john,x3) => (x3=x1 v x3=x2))

7. No person can have two mothers

Here is one way that this can be expressed:

~ Ex person(x) ^ mother(x,ma1) ^ mother(x,ma2) ^ ma1≠ma2

8. If John has a sister, she is smart.

Two simple ways to say this

Ax hasSister(John,x) => smart(x)
~Ex hasSister(john,x) ^ ~ smart(x)

9. Every person is either male or female and no person can be both male and female.

Here are some variations:

Ax person(x) => ((male(x) ^ ~female(x)) v (~male(x) ^ female(x)))

Ax person(x) => ((male(x) v female(x)) ^ (male(x) => ~female(x)))

Alternatively we might assume that male and female apply only to persons and then have

 Ax ((male(x) v female(x)) ^ (male(x) => ~female(x)))

10. The enemy of your enemy is your friend.

Ax,y,z enemy(x,y) ^ enemy(y,z) => friend(x,z)

11. An ancestor of your ancestor is your ancestor.

Ax,y,z ancestor(x,y) ^ ancestor(y,z) => ancestor(x,z)

5. CNF and horn clauses (27 points, 3 each for 5.2-10)

1. ∀x knows(x x) ^ likes(x, x)

(a) Everyone knows and likes himself;
(b) this can be rewritten as a horn clause;
(c) set of clauses: [knows(x, x), likes(x, x)]

2. ∀x ∀y married(x, y) → loves(x, y) v hates(x, y)

(a) if you are married to someone, you either love them or hate them
(b) cannot be written as horn clauses
(c) [loves(x,y) V ~married(x,y) V hates(x,y))]

3. ∀x ∀y loves(x, y) ↔ loves(y, x)

(a) Everybody is loved by everyone they love
(b) can be written as 2 horn clause statements
(c) [(~loves(x,y) v loves(y,x)) , (~loves(y,x) v loves(x,y))]

4. ∀x ∀y dating(x, y) v engaged(x, y) → knows(x, y) ^ likes(x, y)

(a) You know and like the people you date or are engaged to.
(b) can be written as 4 horn statements
(c) [(~dating(x,	y)	v	knows(x,	y)),	(~engaged(p,	q)	v	knows(p,	q))	,(~dating(r,	s)	v	likes(r,	s)),	(~engaged(t,	
u)	v	likes(t,	u))]	
	
	5. ∀x ∀y loves(x, y) → ¬ hates(x, y)

(a) You don’t hate someone you love
(b) can be written as horn clause
(c) [~loves(x,y) v ~hates(x,y)]

6. ∀x ∀y ¬ knows(x, y) → ¬ likes(x, y)

(a) You don’t like someone you don’t know.
(b) can be written as horn clause
(c) [knows(x,y) v ~likes(x,y)]

7. ∀x ∃y knows(x, y) ^ hates(x, y)

(a) Everyone has someone they know and hate
(b) can be written as horn clause
(c) [knows(x, hated(x)), hates(x, hated(x))]

Note: hated is a Skolem function that refers to one of the people who its argument knows and hates

8. ∃y ∀x knows(x, y) ^ hates(x, y)

(a) There is someone that everyone knows and everyone hates
(b) can be written as horn clause
(c)) [knows(x,A), hates(x, A)]

Note: A is a Skolem constant

9. ¬ (∀x loves(x, x))

(a) There is someone who does not love himself.
(b) can be written as horn clause. (NOTE: give full credit if they said no, since the slides were ambiguous
about whther or not a negative assertion was a hone clause)
(c) [~loves(x,A)]

Note: A is a Skolem constant

10. ¬ (∃x ∀y knows(x, y))

(a) There is no one who knows everyone
(b) can be written as horn clause. (NOTE: give full credit if they said no, since the slides were ambiguous
about whther or not a negative assertion was a hone clause)
(c) [~knows(x, stranger(x))]

note: stranger is a Skolem function

Extra credit: Logic puzzle (10 points)

Which answer in this list below is the correct answer to this question?
1. All of the below.
2. None of the below.
3. All of the above.
4. One of the above.
5. None of the above.
6. None of the above.

Explain your reasoning by (a) mapping the problem into propositional logic and (b) showing how the
AIMA code can be used to solve this problem.

The correct answer is #5

Each possible answer corresponds to a constraint:
• A1 is true iff A2 through A6 are all True
• A2 is true iff A3 through A6 are all False
• A3 is True iff both A1 and A2 are True
• A4 is True if at least one of A1, A2 or A3 is True
• A5 is True iff all of A1 through A4 are False
• A6 is True iff all of A1 through A5 are False

We can represent the constraints as a conjunction of logic sentences using AIMA’s logic.py code
and then use the DPLL algorithm to see if there is a way to assign each propositional variable
(A1...A6) to either True or False such that the constraints are satisfied.

~>	python	
Python	2.7.11	(v2.7.11:6d1b6a68f775,	Dec		5	2015,	12:54:16)		…	
	

>>>	from	aima.logic	import	*	
	

>>>	sentences	=	"""(A1	<=>	(A2	&	A3	&	A4	&	A5	&	A6))	&	\	

...	(A2	<=>	(~A3	&	~A4	&	~A5	&	~A6))	&	\	

...	(A3	<=>	(A1	&	A2))	&	\	

...	(A4	<=>	(A1	|	A2	|	A3))	&	\	

...	(A5	<=>	(~A1	&	~A2	&	~A3	&	~A4))	&	\	

...	(A6	<=>	(~A1	&	~A2	&	~A3	&	~A4	&	~A5))	"""	
	

#	the	following	shows	that	there	is	a	way	to	satisfy	the	constraints	with	A5	True	and	the	rest	FALSE	
	

>>>	dpll_satisfiable(expr(sentences))	
{A2:	False,	A3:	False,	A1:	False,	A6:	False,	A4:	False,	A5:	True}	
	
#	if	we	add	a	constraint	that	A5	is	false,	the	constraints	are	unsatisfiable	
	

>>>	dpll_satisfiable(expr(sentences	+	"	&	~A5	"))	
False	

