The 1998 Al Planning Systems Competition

Drew McDermott

April 17, 2000

Abstract

The 1998 Planning Competition at the AI Planning Systems Confer-
ence was the first of its kind. Its goal was to create planning domains
that a wide variety of planning researchers could agree on, so as to make
comparison among planners more meaningful, measure overall progress in
the field, and set up a framework for long-term creation of a repository of
problems in a standard notation. A rules committee for the competition
was created in 1997, and had long discussions on how the contest should
go. Onme result of those discussions was the PDDL notation for planning
domains. This notation was used to set up a set of planning problems,
and to get a modest problem repository started. As a result, five planning
systems were able to compete when the contest took place, in June, 1998.
All of these systems solved problems in the Strips framework, with some
slight extensions. The attempt to find domains for other forms of plan-
ning foundered because of technical and organizational problems. In spite
of this, the competition achieved its goals partially, in that it confirmed
that substantial progress had occurred in some subfields of planning, and
it allowed qualitative comparison among different planning algorithms. It
is urged that the competition continue to take place and to evolve.

1 History

In recent years, many subfields of AI have used competitions as a way of measur-
ing progress and guiding research directions (e.g., [10, 11, 1]). In a competition,
researchers run their programs on a common set of problems at the same time
with little tuning, and the results are compared. There are several purposes to
such an exercise:

It allows meaningful comparison of programs.

It can provide an indication of overall progress in the field.

It can provide a set of benchmark problems for others to use to compare
their systems to the state of the art.

It can focus attention on more realistic problems.

Of course, competitions have drawbacks. Preparing a program for a compe-
tition usually means polishing existing features, and suspending work on new
ones. “Realistic problems” may not be those of most interest in the long run.
The Message Understanding Competitions focused attention on “information
extraction” from newspaper articles or more restricted media. The programs
that did well on this task were those that were carefully engineered to detect
and dissect messages in the target category. Programs derived from research
programs with more ambitious goals, such as investigating the general theory of
natural-language understanding, did not work so well. One could argue that this
outcome is evidence that such a general theory is, at least for now, a chimera.
But many people would disagree, arguing that in the long run the discovery of
such a theory is the whole point of studying natural language.

Until the AT Planning Systems (AIPS) conference of 1998, there had never
been a competition in the field of automated planning. The broadest definition
of planning is reasoning about agent behavior. A system plans to the extent it
predicts the consequences of alternative behaviors before selecting one. Because
there are a wide range of agents, reasoning techniques, and ways of combining
plan inference with plan execution, the field is quite broad, encompassing every-
thing from factory scheduling to robot programming. Some of the application
areas are of immediate practical interest, while others are still rather abstract.

In spite of this immediate practical interest, there haven’t been many appli-
cations of planners that are actually used. The practical applications tend to
lie in three categories:

1. Scheduling problems, in which the actions that must be taken are known,
and the problem is to find an order in which to carry them out.

2. Plan management problems, in which the plans tend to consist of stereo-
typical structures of actions, usually hierarchical (longer-term actions be-
ing decomposed into structures of shorter-term ones), without many choices
about how to decompose.

3. Symbolic control problems, in which the focus is on execution of plans for
controlling a reactive system, where the plans were written by a human.

Applications in these areas tend to succeed because they eliminate or sharply
constrain the amount of search the planning system has to do. The focus of the
competition was intended to be planning problems that require a significant
amount of search. In the past few years, there has been a lot of work on search-
based planning algorithms, and a fair amount of progress. It would be premature
to say that practical algorithms exist, but planners are now finding solutions to
problems that are an order of magnitude larger than those they could solve ten
years ago. It seemed as if the time was ripe to hold a competition and see how
much progress had really been made, and possibly push the community further
in interesting directions.

Although some people (notably Manuela Veloso) had been arguing for a
planning competition for years, serious talk about a competition began in 1996,

and was a major topic among attendees at the Dagstuhl Workshop on Control
of Search in Planning, held in October. The fourth biennial AT Planning Sys-
tems (AIPS) Conference was scheduled for June of 1998, and that seemed like
the obvious time to have a competition. Veloso was program-co-chair for the
conference, and asked me to chair the rules committee for the competition.

By the summer of 1997, we had assembled the following Rules Committee:

e Drew McDermott (chair), Yale University

e Malik Ghallab, Ecole Nationale Superieure D’ingenieur des Constructions
Aeronautiques

e Adele Howe, Colorado State University

e Craig Knoblock, University of Southern California
e Ashwin Ram, Georgia Tech

e Manuela Veloso, Carnegie Mellon University

e Daniel Weld, University of Washington

e David Wilkins, SRI

This paper focuses on how the committee designed and ran the competi-
tion, with an overall summary of results. This issue of AI Magazine contains
a companion paper by those who actually competed, with Derek Long serving
as overall author and editor. It focuses more on what strengths and weak-
nesses each planner embodied, with detailed comparison of their performance
on various problems.

There were several matters that had to be dealt with in order to have a
competition. First, exactly what sort of planning problems would we give people
to work on? As suggested above, even after eliminating scheduling and other
areas, we are still left with several different types of problem area:

e Classical planning: In this kind of problem, you are given an initial situ-
ation, a set of action definitions, and a proposition (goal) to be brought
about. A solution is a sequence of actions which, when executed beginning
in the initial situation, brings about a situation in which the goal is true.
It is assumed that the planner knows everything that is true in the initial
situation, and knows the effect of every action.

e Hierararchical planning: Here you are given, in addition to the material
of classical planning, a set of abstract actions. An abstract action cannot
be executed directly, but must be executed by executing an ezpansion (or
reduction) of it in terms of less abstract actions, typically one found in a
“plan library.” A problem may specify, in addition to a goal, an abstract
action to be executed. A solution is a sequence of primitive actions that
(a) achieves the goal; and (b) corresponds to an expansion of the given
abstract action.

e Reactive planning: This is a much vaguer classification, in which the as-
sumption of perfect information is relaxed. There are many different types
of reactive-planning problem, depending on what is assumed about the
sensors and effectors available.

e Learning in planning: This is not a problem type so much as an approach
to the other types. A learning planner, not surprisingly, does better and
better as it gains experience with planning problems of a given type. The
style of learning usually studied is case-based reasoning, in which new
problems are solved by adapting solutions to similar problems previously
encountered.

The Rules Committee spent the summer of 1997 in discussion of how to
proceed. It seemed clear that it would be hard to find one problem domain that
would be attackable by planners in all these categories. Hence it was decided
to try to create several “tracks,” in which different categories of planner would
compete.

Regardless of how many tracks we settled on in the end, it was clear that we
would need a notation to use as an input language for the competing programs.
So the committee set itself the goal of designing such a language, to be called
the Planning Domain Definition Language, or PDDL.

Meanwhile, we engaged in serious discussion of (at least) four “tracks”:

1. A Strips track: Classical planning with action-definition notation of the
same expressive power as the Strips planner [6].

2. An ADL track: Classical planning with an enhanced notation allowing
actions with quantified preconditions and context-dependent effects[12].

3. Hierarchical planning: A classical domain, but with explicitly given com-
pound actions (canned plans) that the planner must be able to reason
about ([5, 14]).

4. Reactive planning: Planning in a complex simulated domain, such as the
Phoenix fire-fighting simulator [7].

2 PDDL — The Planning Domain Definition
Language

The PDDL language was designed to be a neutral specification of planning
problems. “Neutral” means that it doesn’t favor any particular planning system.
The slogan we used to summarize this goal, was: “physics, not advice.” That
is, every piece of a representation would be a necessary part of the specification
of what actions were possible and what their effects are. All traces of “hints” to
a planning system would be eliminated. For instance, an implication (P D Q)
have several uses, including these:

1. To prove that @ is true in a world situation, adopt proving P as a subgoal.
2. To achieve @) (make it true), adopt achieving P as a subgoal.

A specification of which of these, if either, was actually a good idea would
constitute advice. On the other hand, consider these two interpretations of
PDOQ:

1. In every world situation, either P is false or () is true.

2. Any plan that causes P to become true without) being false is invalid
no matter what other virtues it has.

The latter interpretation is a safety condition, which has a completely different
meaning from the former. This distinction is one of “physics,” although not in
the traditional sense. In the first interpretation, P D () is automatically always
satisfied. In the second, it might well be violated, but no legal plan is allowed
to do so.

We anticipated that most planners would require some kind of advice, be-
cause planners search very large spaces and often fail without a bit of help.
We didn’t want to outlaw advice, just make sure it was properly labeled and
accounted for; and omitted entirely from the core language.

It is harder than it sounds to create a notation that avoids advice entirely,
for a variety of reasons. Historically, most planning researchers have not made
the distinction, so existing input notations are full of it. For example, there are
actions that are useful only under certain disagreeable circumstances. If you
need three nuts to attach a wheel to an axle, one way to do it is to take one nut
from each of the other wheels. This is a reasonable strategy if all other nuts are
lost. However, with this action in the database, some planners might consider
deliberately throwing all the nuts away in order to make this action feasible.
Although they would presumably reject this plan at some point, it might be
useful to tell the planner that the condition, “There are no unattached nuts”
should be treated only as a “filter” condition, used to select among alternative
actions but never to be achieved if false. Many planning researchers have de-
veloped sophisticated notations for expressing advice like this, and have made
it so easy to include the advice in the action specifications that one is likely to
overlook the fact that it’s not actually part of the definition of what the action
does.

The field in which advice has reigned supreme is in hierarchical planning,
which studies planners that assemble solutions from large canned plans stored in
some kind of plan library. These plans typically look suspiciously like programs,
and some of their steps are essentially procedures for setting up data structures,
making sure the plan is appropriate, and so forth. It is hard to extract the pure
physics from a representation like that, and just as hard to then represent the
advice part as a separate set of hints.

Nonetheless, we felt it was important to try to define a purely physical
hierarchical notation, to support the proposed hierarchical-planning track for
the competition. Given the way hierarchical planners are often used, this project

might be viewed as of questionable sanity. The main reason to have a library of
plans in the first place is to focus the planner’s attention on those sequences of
actions and away from others that are less likely to be useful. In other words,
a plan library can be thought of as a hint library. If that’s what it is, then
specifying it is not part of the PDDL project. A team that wanted to use a
plan library would have to treat it as an advice structure superimposed on an
underlying physics specified without the use of hierarchy.

However, there is a sense in which a canned plan can be thought of as a
purely “physical” entity, and that is when it represents a standard procedure
whose functioning can’t easily be expressed in more basic terms. A procedure
for starting a nuclear reactor is in principle derivable from a more detailed
specification of exactly what actions are possible and what their effects are, but
that specification may not be available to the planner. It may just know that
if it carries out the plan specified in the manual, then it will achieve certain
things, and that it can interleave steps of other plans with the steps of this one
provided certain constraints are honored.

From this point of view it seemed reasonable to visualize the Hierarchical
Planning track of the competition in these terms: for one or more domains we
would specify some canned plans, and then stipulate that no problem solution
could include any steps that were not part of an instance of one of those plans.
In concrete terms, if you had to pump out radioactive waste and restart the
reactor, you weren’t allowed to flick switch 203 unless one of the protocols for
pumping and restarting called for that switch to be flicked at some point, and
the other did not forbid it. It turned out that making this precise was extremely
difficult, as we will discuss below.

The second most important desideratum in the design of PDDL was that
it resemble existing input notations. Most input notations were Lisp-like, for
historical reasons, but beyond that there were many divergences. The Univer-
sity of Washington UCPOP input language was the closest thing to a standard.
However, it didn’t have a simple notation for object types, used Lisp procedures
for arithmetic operations, and didn’t address the representation of hierarchical
plans at all. PDDL was produced by adding to the UCPOP language a sim-
ple uniform typing syntax, some arithmetic facilities, and the notion of action
expansion. Actions were classified as primitive or expandable. An expandable
action could not be executed directly, but had to be instantiated by selecting
one of its methods, each a structure of actions.

Table 1 gives an example of a simple domain, called “Logistics,” one of
those used in the competition. There were actually two versions, Logistics-adl
and Logistics-strips. This one requires the use of ADL constructs like typing
and quantification. Types are indicated by hyphens. The type appears after
the objects it qualifies. Variables are indicated by question marks.

However, some planners cannot handle types. In fact, for almost every aspect
of problem definition, there is some planner that cannot handle it. To cope with
this issue, we borrowed an idea from the UCPOP language, namely to specify
explicitly the requirements a planner would have to be satisfy in order to handle
this domain. That explains the field (:requirements :adl) that appearsin the

domain definition. If a planner can’t handle the :adl package of requirements,
then it can issue a warning when it sees this flag.

After the :requirements specification, the next field defines the :types
that are specific to this domain. (Types like object and integer are inherited
by all domains.) Then there is a list of :predicates, each of which is given
with its argument types.

There are four actions in this domain. Each is defined by giving a precon-
dition, which must be true for the action to be feasible, and an effect, which
specifies what happens when the action is executed. The effect is typically a
conjunction. A conjunct of the form (not p) means that p becomes false. A
conjunct of the form (when ¢ e) means that effect e happens only if condition
¢ is true before the action occurs. (This is a “context-dependent effect.”) A
conjunct of the form (forall (—wars—) e) means that e happens for every
instance of the variables.

So the fly-airplane action is defined as follows: You can fly an airplane
from airport A to airport B if the airplane is at A; you can’t fly any other vehicle
between any other types of location. The effect of flying is that the airplane is
at B, and no longer at A. Furthermore, everything that is in the airplane is also
at B, and no longer at A. Note that we have to specify both that an object is
at B and that it is no longer at A.

For comparison, Tables 2 and 3 gives the same domain with no extra re-
quirements at all. We call this baseline notation the Strips notation because it
is essentially the same as the notation used by the Strips planner [6]. Here are
the changes required to transform the ADL version into the Strips version:

1. Types are replaced by unary predicates. This ultimately requires splitting
the actions load and unload into two versions each, one dealing with
trucks and the other with airplanes.

2. Context-dependent effects (“whens”) must be eliminated. In this case,
the semantics of actions change. In the ADL version, an object is at the
destination as soon as its vehicle moves there. In the Strips version, it is
at the destination only when it is unloaded.

We will return to this issue of domain notation in Section 3.

Numbers are built in to all PDDL domains, but only those declaring require-
ment :expression-evaluation can have arithmetic expressions such as (+ 7x
1). These occur in special contexts such as (eval e v), where e is an arith-
metic expression, and v must unify with its value. If e evaluates to a Boolean,
then (test e) succeeds if and only if the value of e is true. (equation e
es) tries to bind variables in such a way as to make e; and ey evaluate to the
same value. For instance, the goal (equation (+ 7x 1) 3) can be satisfied by
binding 7x to 2. Currently that’s about the only pattern that implementations
are required to handle.

For example, in defining a “grid world” in which a robot can move between
locations with integer-valued coordinates, we can use these facilities to specify

(define (domain logistics-adl)
(:requirements :adl)
(:types physobj - object
obj vehicle - physobj
truck airplane - vehicle
location city - object
airport - location)
(:predicates (at 7x - physobj 7?1 - location)
(in ?x - obj 7t - vehicle)
(in-city 71 - location 7c - city)
(loaded 7x - physobj)) ; ?7x is loaded on a vehicle

(:action load
:parameters (7obj ?veh 7loc)
:precondition (and (vehicle 7veh)
(location 7loc)
(at 7obj ?7loc)
(at ?veh ?loc)
(not (loaded 7o0bj)))
:effect (and (in 7obj 7veh)
(loaded ?0bj)))
(:action unload
:parameters (7obj ?veh 7loc)
:precondition (and (vehicle 7veh)
(location ?loc)
(in 7obj ?veh)
(at ?veh 7loc))
:effect (and (not (in 7obj ?7veh))
(not (loaded 7obj))))
(:action drive-truck
:parameters (7truck - truck 7loc-from 7loc-to - location
7city - city)
:precondition (and (at 7truck 7loc-from)
(in-city ?loc-from 7city)
(in-city 7loc-to 7city))
effect (and (at 7truck ?loc-to)
(not (at ?truck ?loc-from))
(forall (?x - obj)
(when (and (in ?x 7truck))
(and (not (at ?x ?loc-from))
(at ?x ?loc-to0))))))
(:action fly-airplane
:parameters (7plane - airplane ?loc-from ?loc-to - airport)
:precondition (and (at 7plane 7loc-from))
:effect (and (at ?plane 7loc-to)
(not (at ?plane ?loc-from))
(forall (?x - obj)
(when (and (in 7x 7plane))
(and (fbt (at ?x 7loc-from))
(at ?x ?loc-to0)))))))

Table 1: The Logistics Domain — ADL Version

(define (domain logistics-strips)
(:requirements :strips)
(:predicates (obj 7obj)
(truck ?7truck)
(location 7loc)
(airplane 7airplane)
(city 7city)
(airport 7airport)
(at 7obj 7loc)
(in 7objl 7obj2)
(in-city ?7obj 7city))
(:action load-truck
:parameters (7obj 7truck 7loc)
:precondition (and (obj 7obj)
(truck ?7truck)
(location 7loc)
(at ?truck 7loc)
(at 7obj 7loc))
:effect (and (not (at 7obj 7loc))
(in ?70bj 7truck)))
(:action load-airplane
:parameters (7obj 7airplane 7loc)
:precondition (and (obj 7obj)
(airplane 7airplane)
(location 7loc)
(at 7obj 7loc)
(at 7airplane 7loc))
:effect (and (not (at 7obj 7loc))
(in 7obj 7airplane)))

(:action unload-truck
:parameters (7obj 7truck 7loc)
:precondition (and (obj 7obj)
(truck ?truck)
(location 7loc)
(at ?truck ?loc)
(in 7obj ?7truck))
:effect (and (not (in 7obj ?truck))
(at ?70obj 7?loc)))

(:action unload-airplane
:parameters (7obj 7airplane 7loc)
:precondition (and (obj 7obj)
(airplane 7airplane)
(LOCATION ?7loc)
(in 7obj 7airplane)
(at 7airplane 7loc))
:effect (and (not (in 7obj 7airplane))
(at ?ob? ?loc)))

Table 2: The Logistics Domain — Strips Version, Part 1

(:action drive-truck
:parameters (7truck 7loc-from 7loc-to 7city)
:precondition (and (truck 7truck)
(location 7loc-from)
(location ?loc-to)
(city 7city)
(at ?truck ?loc-from)
(in-city 7loc-from 7city)
(in-city ?loc-to 7city))
:effect (and (not (at 7truck ?loc-from))
(at ?truck ?loc-to)))
(:action fly-airplane
:parameters (7airplane 7loc-from 7loc-to)
:precondition (and (airplane 7airplane)
(airport ?loc-from)
(airport 7loc-to)
(at 7airplane 7loc-from))
:effect (and (not (at 7airplane 7loc-from))
(at 7airplane 7loc-to)))

Table 3: The Logistics Domain — Strips Version, Part 2

10

(define (domain jug-pouring)
(:requirements :typing :fluents)
(:types jug)
(:functors
(amount 7j - jug)
(capacity ?7j - jug)
- (fluent number))
(:action empty
:parameters (7jugl 7jug2 - jug)
:precondition (fluent-test
(>= (- (capacity 7jug2) (amount ?7jug2))
(amount 7jugl)))
:effect (and (change (amount 7jugl)
0)
(change (amount ?7jug?2)
(+ (amount ?7jug2)
(amount 7jugl)))))

Table 4: The Jug-Pouring Domain

what it means for two coordinates to be adjacent. Here is a piece of that
specification:

(:axiom
:vars (71 7j 7il - integer)
:implies (adjacent 7i ?7j 7il ?7j right)
:context (and (equation (+ 7i 1) 7il)
(legal_coord 7i)
(legal_coord 7il1)))

This example also illustrates PDDL’s ability to represent axioms that delimit
the meanings of symbols, such as adjacent and right. (There are three other
axioms, for left, up, and down.)

There is also a notion of a term whose value changes in different situations,
called fluents, following [9]. This feature is especially useful in domains where
quantities can change. The classical domain in which water can be poured from
jug to jug might be defined as in Table 4. The (change f e) says that the
value of fluent f changes to the value of e before the change. The :functors
declaration is used to add new function-defining symbols. Currently it can be
used only to define new fluent constructors. So the type of amount is (fluent
number), meaning that (amount z) is a number that varies from situation to
situation.

Fluents are a natural generalization of traditional effects; instead of spec-
ifying how truth values change, they allow specification of how terms change.

11

Without fluents, one could make the same definitions, but their meaning would
be less clear. The precondition of empty would be

(and (amount-in ?7jugl 7al)
(amount-in 7jug2 7a2)
(capacity 7jug2 7c2)

(test >= (- ?7c2 7a2) 7al))

and the effect would be

(and (not (amount-in 7jugl 7al))
(amount-in ?7jugl 0)
(not (amount-in 7jug2 7a2))
(amount-in ?7jug2 (+ 7a2 7al)))

While this formulation causes little trouble in inferring the effects of a known
action, it is difficult to use to constrain the arguments and preconditions of
an empty action given a goal such as (and (amount-in jugB ?x) (> 7x 5)).
The problem is that there may be many ways to make the first conjunct true,
but the result is to leave some number of gallons in jugB. That number is either
greater than 5 or it isn’t; there’s no way to cause it to become bigger. Expressing
the goal as (> (amount jugB) 5) is much more perspicuous.

To support hierarchical planning, PDDL allows actions to be defined that
are carried out by executing a structure of more primitive actions. Our nuclear-
reactor example appears in Table 5. In English: “To restart reactor ?r, make
sure it is not already running and not melting down, then open the two valves,
toggle the switch, and close one of the valves, in that order.” The :vars clause
is used to declare local variables that are inconvenient to consider as parameters
of the action. Every reactor is supposed to have one auxiliary valve, one main
valve, and one main switch, so there is no need to name them as part of the
action.

This definition is misleading in that it appears that there is only one way to
expand an action. In general it is possible to specify multiple methods for an
action expansion, as in the fragment shown in Table 6 from a domain involving
shipping packages from one place to another. Here there are two methods
for carrying out (ship z I ls). The first, carrying it in a plane, works only
if x is a piece of mail. The second, using a truck, works for any cargo item.
The expressions (in-context A :precondition p) means that p must be true
before this occurrence of A in order for the plan to be valid.

In addition to defining domains, PDDL allows for the definition of problems.
Table 7 gives an example in the Logistics domain. This is one of the examples
used in the competition. A problem is defined as a domain, a set of :objects, an
initial situation, and a goal pattern to be made true. In domains with action
expansions, a problem can have an :expansion field, like this:

(define (problem trans-1)
(:domain transportation)
(:init)

12

(:action restart

:parameters (?r - reactor)

:vars (7valvel ?valve2 - valve 7switchl - switch)

:precondition (and (not (running ?r))
(not (melting-down 7r))
(aux-valve ?r 7valvel)
(main-valve ?7r ?valve?2)
(main-switch ?r ?7switch))

:effect (running 7r)

:expansion (series (verify-valves-shut 7r)
(parallel (open 7valvel)

(open ?7valve2))

(toggle ?switch)
(close 7valvel)))

Table 5: The Nuclear-Reactor Action

(:action ship
:parameters (7pkg - cargo 7orig 7dest - location)
:precondition (at ?7pkg 7orig)
:effect (at 7pkg 7dest)
rexpansion :methods)
(:method ship
:parameters (7pkg - mail 7orig 7dest - location)
:expansion (forsome (?p - airplane)
(series (in-context
(load ?7pkg 7p)
:precondition (at ?p Torig))
(fly 7p 7dest)
(unload 7pkg ?p))))
(:method ship
:parameters (7pkg - cargo Torig 7dest - location)
:expansion (forsome (7tr - truck)
(series (in-context
(load ?7pkg 7tr)
:precondition (at ?tr 7orig))
(drive ?tr ?dest)
(unload 7pkg ?7tr))))

Table 6: The Shipping Action

13

(:goal (at truck3 detroit))
(:expansion (ship pkgl3 cincinnati)))

Here the planner must find a way to carry out the action (ship pkgl3 cincinnati)
in such a way that (at truck3 detroit) when it is done.
Some of the other features of PDDL:

e Domains can include numerical parameters, such as the maximum coor-
dinate in the grid world.

o It allows the specification of timelessly true propositions, i.e., facts that are
present in all situations (thus saving having to enter them in all problem
definitions).

¢ It allows one domain to be specified as a descendant of one or more alter-
native domains, so that it inherits types, axioms, actions, etc.

e It allows several problems to share an initial situation, which need be
written only once. One initial situation can be defined in terms of small
changes to another.

e Action expansions can include simple iterations, arbitrary acylic structures
of actions, specification of conditions to be maintained true for some period
during the plan, and more.

In addition to defining the language, we felt it was important to implement
a syntax checker and a solution checker. The syntax checker could verify that
domains submitted by others were valid PDDL, and ensure that no feature was
used unless it was declared as a requirement. It could also count the amount of
advice that was given. To make this possible, we required all planner-specific
annotations to be indicated by a special flag. The syntax checker could measure
the size of these annotations, and otherwise ignore them.

The other key piece of software was a solution checker. For the competition
we wanted to be able to generate random problems. We anticipated not even
knowing, for many of the problems, whether they had solutions or not. Some
of the problems might have several solutions, some which might be quite long
and involved. Having to check by hand if a solution was valid would be tedious
and prone to error. We decided to automate it.

Doing so turned out to be harder than anticipated, for two reasons. The
first is that, to our knowledge, no one has ever written a solution checker for a
hierarchical planner, which you may find surprising. The reason is that most
hierarchical planners do not treat prefabricated plans as part of the problem
specification, but as advice on how to solve problems. Once an action sequence
has been found, the hierarchical superstructure can be dropped, and the action
sequence can be checked as though it had been found without the use of canned
plans. Checking an action sequence is easy: Just do a little deduction to verify
that every action in the sequence is feasible at the point where it is to be
executed, and that the goal is true in the situation that results from executing
the last action.

14

(define (prob
(:domain 1

lem log-x-2)
ogistics-adl)

(:objects packageb packaged4 package3 package2 packagel - obj

(:init (in
(in
(in
(in
(in
(in
(in
(in
(in
(in
(at
(at
(at
(at
(at
(at
(at
(at
(at
(at

(:goal (an

cityl0 city9 city8 city7 city6 cityb city4 city3 city2 cityl
- city
truckl0 truck9 truck8 truck7 truck6 truckb truck4 truck3 truck2
truckl - truck
plane4 plane3 plane2 planel - airplane
cityl1l0-1 city9-1 city8-1 city7-1 city6-1 cityb5-1 city4-1
city3-1 city2-1 cityl-1 - location
cityl10-2 city9-2 city8-2 city7-2 city6-2 cityb-2 city4-2
city3-2 city2-2 cityl-2 - airport)
-city city10-2 city10) (in-city city10-1 city10)
—city city9-2 city9) (in-city city9-1 city9)
—city city8-2 city8) (in-city city8-1 city8)
-city city7-2 city7) (in-city city7-1 city7)
-city city6-2 city6) (in-city city6-1 city6)
—city cityb5-2 cityb) (in-city city5-1 cityb)
-city city4-2 city4) (in-city city4-1 city4)
—city city3-2 city3) (in-city city3-1 city3)
-city city2-2 city2) (in-city city2-1 city2)
-city cityl-2 cityl) (in-city cityl-1 cityl)
plane4 city3-2)
plane3 city7-2) (at plane2 city3-2)
planel city6-2) (at truckl0 city10-1)
truck9 city9-1) (at truck8 city8-1)
truck? city7-1) (at truck6 city6-1)
truckb cityb-1) (at truck4 city4-1)
truck3 city3-1) (at truck2 city2-1)
truckl cityl-1) (at packageb city1-2)
packaged4 city7-2) (at package3 city3-2)
package2 cityl10-1) (at packagel city2-2))
d (at packageb city4-2)
(at package4 city6-1)
(at package3 cityl-1)
(at package2 city9-2)
(at packagel city3-1))))

Table 7: The Logistics Problem LOG-X-2

15

Now suppose you add a serious requirement that the action sequence not just
be legal, but also instantiate the :expansion given as part of the problem defi-
nition. The result is to superimpose a “parsing” problem on top of the standard
deductive problem. That is, the solution checker must find a way to group the
actions into a hierarchical structure so as to instantiate the given expansion, in a
way analogous to the way a natural-language parser groups words into phrases.
However, the problem is much more difficult, for several reasons. PDDL allows
quantifiers in expansions, of the form (forsome v A) and (foreach v C A).
These occur in an action sequence if the right kind of instances of the action
expansion A occur. In the case of a forsome, there must be one instance; in
the case of a foreach, there must be a set of instances satisfying condition C.
In addition, two action expansions could, unless constrained otherwise, be in-
terleaved in an arbitrary order, and the same primitive action could occur as a
part of more than one complex action.

It soon became clear that the problem of solution checking was going to be
intractable unless the checker was given some hints. A solution to a problem
with hierarchical expansions was going to have to include a specification of
exactly which higher-level actions occurred where. Even with this change, the
algorithm took a long time to develop, and it never was completely debugged.

Fortunately, or unfortunately, the lack of a stable algorithm for checking
solutions never became a problem because no contestants appeared for this part
of the competition. We corresponded with several potential entrants, but none
of them got over the hurdles in the way of taking part. The main problem was,
we believe, that the semantics of hierarchical planning have never been clarified
to the point where everyone in this area can be said to be working on the same
problem. Our attempt to create a “lowest common denominator” notation
succeeded only in creating a new notation that matched no one’s expectations.
In addition, the hierarchical planning community is used to thinking of library
plans as advice structures, which was a drastic departure from our assumption
that the basic content of the plan library contained no advice, only “physics.”

Trying to make this assumption actually work was extremely difficult. The
problem is that no one has ever figured out how to reconcile the semantics
of hierarchical plans with the semantics of primitive actions. Ordinary action
sequences satisfy a straightforward compositionality property: If you know the
preconditions and effects of two sequences of actions S; and Ss, then you can
infer the preconditions and effects of S; followed by S,. Hierarchical plans do
not have this property, at least not obviously.

To take a simple example, consider the action restart , described in Ta-
ble 5, for restarting a nuclear reactor. The action sequence ((verify-valves-shut
r2), (open v30)) does not by itself restart the reactor, and neither does the ac-
tion sequence ((open v29), (toggle sw53), (close v28)), but the two to-
gether do, assuming that all the relevant preconditions are satisfied. In other
words, a “conditional effect” of the second sequence is to restart the reactor,
in a situation where the first sequence has (just? recently?) been executed.
Conditional effects are not unusual in classical planning [12], but they normally

take the form of an effect that becomes true if and only if a certain secondary

16

precondition was true before the action. This is the job of the when effect clause
in PDDL. With hierarchical plans, we get a new kind of implicit precondition,
that a certain standard plan be “in progress.”

Suppose that an action sequence looks like ((open v29), (toggle sw42),
(close v28)). Isit legal? Does it cause (running r2) to become true if v29 is
the auxiliary valve of r2 and sw42 is its main switch, and so forth? One might
think that the answer is “Obviously not,” because two actions are missing,
namely (verify-valves-shut r2) and (open v31), assuming v31 is the main
valve of r2. But to make this inference requires one to assume that these actions
did mot occur before the action sequence we explicitly mentioned.

As it turned out, in the end these complexities did not affect the actual
competition. We describe them in such detail to save future researchers from
rediscovering them.

3 The Contest

The competition took place in June, 1998, but the contestants spent several
months preparing for it. Each of them had to alter the front end of their system
to accept problems expressed in PDDL. Because the language was brand-new,
this was an iterative process, in which changes to the notation were suggested
and sometimes incorporated before the problems were specified.

Even more important, the form of the contest had to be worked out, and
several sample problems had to be released, in order to give the contestants a
clue about what their planners had to be capable of. A repository of problems
was begun at Yale, using as a nucleus the repository developed by the UCPOP
group at the University of Washington. Contestants were invited to submit new
problems, and several did. In addition, some new domains were invented by the
keeper of the repository, me.

3.1 Bargaining over Expressiveness

Over the six months leading up to the actual competition in June, 1998, there
was an intricate negotiation involving the committee and the community of
potential contestants. The committee wanted to encourage the research com-
munity to try new things; the community wanted the committee to focus on the
areas their planners did well in.

In the case of hierarchical planners this tension proved fatal. The researchers
with hierarchical planners lost interest rapidly as it became clear how great the
distance was between PDDL and the kind of input their planners expected.
Many of the researchers in this community think of their planners as a cross
between a programming language and a knowledge-acquisition system. They
have developed elaborate notations for capturing domain knowledge in the form
of rules that push the planner toward particular kinds of solution. Unfortu-
nately, PDDL defines all such notations as advice. To adapt these systems to
PDDL would require factoring their input into two parts: a physics part that

17

is identical for all planners, and an advice part that controls how the planner
reacts to the physics. The difficulty of doing this separation under the time
constraints proved to be insurmountable. After a few exploratory conversations
all the hierarchical-planning researchers dropped out.

In the case of classical planning the committee assumed at first that the ADL
track was where most of the interest would be. ADL had been around since
the mid-1980s, and several existing systems had been able to handle problems
expressed in that format. However, much of the progress on planning algorithms
in the 1990s has been based on what might be called “propositional planning,”
in which variables are eliminated from planning problems by generating up front
every instance of every term that might be needed. With the variables gone, all
the machinery for matching literals and recording “codesignation constraints” [4]
is not needed, and the search can focus on constraints among action terms and
atomic formulas. The search process is simpler, and can afford to explore a lot
more possibilities. The resulting algorithms offer a significant improvement over
older approaches in many cases.

Unfortunately, this power has been attained by sacrificing some expressivity.
The propositional-planning researchers have focused on the Strips notation for
the time being, and their planners lack the ability to handle problems involving
numbers, nonatomic terms, and quantifiers. Some of them also have trouble
with context-dependent effects, in which the effects of an action depend on the
circumstances in which it is executed. These may sound like serious limitations,
but in many cases one can work around them, at the cost of using cumbersome
notational tricks.

For example, one of the domains we came up with for the competition was
called the “Mystery” domain. We called it that to conceal its underlying struc-
ture and make it harder to give planners advice about it. The domain actually
concerned a transportation network through which vehicles could move carrying
cargoes. A vehicle could move from one node to a neighboring node if there was
fuel at the originating node. In PDDL:

(:action move
:parameters (?7v - vehicle ?nl ?n2 - node)
:precondition (and (loc ?v 7n1)
(conn ?n1 ?n2)
(fluent-test (> (fuel ?n1) 0)))
:effect (and (not (loc ?v ?nl))
(loc ?v 7n2)
(change (fuel 7n1)
(- (fuel 7n1) 1))))

In English: you can move a vehicle from node 1 to node 2 if the vehicle is at
node 1, node 1 is connected to node 2, and there is a nonzero amount of fuel at
node 1. The effect of the move is for the vehicle to be at node 2, and for there
to be one less unit of fuel at node 1.

There are two problems with this action definition: It involves numbers, and
it involves a context-dependent effect (the amount of fuel afterward depends

18

on the amount of fuel before). In PDDL, a term like (fuel n) defines a flu-
ent, a term whose value changes from node to node. The notation (change f
a) means that the value of fluent f after the action is equal to the value of
expression a before the action.

It may seem as if this domain were simply off limits to any planner that can’t
handle numbers or context-dependent effects, but in fact there are ways to work
around these limitations. Fuel amounts start off as nonnegative integers, never
change except to become smaller by 1, and never become negative, so only a
predictable set of natural numbers will occur in a given problem. Hence for
every problem we can supply a set of constants numO, numi, ..., numK, where
K is the largest number that occurs in the problem statement; and we can
include among the initial conditions

(:init (just-less num0 numl)
(just-less numl num2)

(just-less num9 numiO)

)
(in the case where K = 10). These constants are declared as “pseudo-numbers”:
(:objects numO numl . . . numl0 - pseudo-number)

That eliminates the numbers; the next step is to eliminate the context-
dependent effect. For this we use the old trick of adding arguments to the
action. With this change our action definition becomes

(:action move
:parameters (?v - vehicle ?nl1 ?n2 - node
7f1 7f2 - pseudo-number)
:precondition (and (loc 7v 7nl)
(conn ?n1 ?n2)
(fuel-at ?n1 7f1)
(just-less 7f2 7f1))
:effect (and (not (loc ?v ?nl))
(loc ?v 7n2)
(not (fuel-at 7?n1 7f1))
(fuel-at ?n1 ?7f2)))

Suppose veh29 is at node101, which has 3 units of fuel. Instead of saying, e.g.,
“The action (move veh29 nodel01 node63) changes the fuel at node101 from
3 to 2,” we say, “The action (move veh29 nodel01 node63 num3 num?2) is the
only feasible action of form (move veh29 nodel01 node63 ...).”

It is somewhat discouraging that after thirty years of research we are back
to the notational restrictions we started with. However, it did have one benefit.
We wanted to disguise the “Mystery” domain, and all of this verbosity helped do
that. We labeled nodes as “foods,” vehicles as “pleasures,” and cargo objects as
“emotions.” Instead of a single sort of pseudo-number, we introduced one, called

19

“provinces,” for fuel and another, called “planets,” for space on vehicles. (loc v
n) became (craves v n); (conn ni n9) became (eats ny; nsy). (fuel v k)
became (local v k). The just-less predicate for numbers became (attacks
k1 k2). Moving was called “feasting.” So in the Strips style our action definition
becomes:

(:action feast
:parameters (?7v 7nl 7n2 7f1 7£2)
:precondition (and (craves ?7v 7nl)
(food 7n1)
(pleasure 7v)
(eats 7n1 7n2)
(food 7n2)
(locale 7?n1 7£f2)
(attacks ?f1 ?f2))
:effect (and (not (craves ?v 7nl))
(craves ?v 7n2)
(not (locale 7n1 7£f2))
(locale ?n1 7f1)))

There was also an ADL version, albeit without numbers, in which types and
context-dependent effects were allowed. In that version, the action was defined
as

(:action feast
:parameters (7v - pleasure 7nl 7n2 - food)
:vars (7f1 7f2 - province)
:precondition (and (craves ?7v 7nl)
(eats 7n1 7n2)
(locale ?n1 7f2)
(attacks ?f1 ?f2))
:effect (and (not (craves ?v 7nl))
(craves ?v 7n2)
(not (locale 7n1 7£f2))
(locale 7?n1 7f1)))

3.2 Participants

As aresult of bargaining between the committee and the contestants, we arrived
at a Strips track and ADL track, neither of which could handle problems with
numbers. By April of 1998, we had two contestants who were planning to
enter the ADL track, and eight who were planning to enter the Strips track.
No one wanted to enter the hierarchical-planning track, and the other track
had never gotten off the ground. Nonetheless, we were happy with what we
had. The contestants were putting a tremendous amount of work into altering
their planners to take the PDDL notation. Unfortunately, for some of them the

20

work was just too much, and three dropped out in the weeks leading up to the
competition. The final participants in the Strips track were

e TPP (Jana K&hler, University of Freiburg, Germany)

e Blackbox (Henry Kautz and Bart Selman, AT&T Labs and Cornell Uni-
versity, US)

e HSP (Hector Geffner and Blai Bonet, Simon Bolivar University, Venezuela)
e STAN (Derek Long and Maria Fox, Durham University, UK)
The two participants in the ADL track were
e Kohler’s IPP and
e SGP (Corin Anderson, University of Washington, US)

All the planners were written in C/C++ except for SGP, which was written in
Lisp.

As explained in the companion paper, all of these systems except HSP were
based to some extent on the Graphplan algorithm of [3]. HSP was based on
heuristic search guided by means-ends analysis. In addition, Blackbox used sat-
isfiability testing. All of the systems avoided repeated variable substitution by
generating all required instances of propositions and action terms at the begin-
ning. This lack of diversity in current research directions in classical planning
means either that Graphplan on variable-free terms really is the best approach
to planning, or that the summer of 1998 happened to coincide with the peak
of a particularly intense fad. What was particularly striking was the complete
absence of partial-order, or “nonlinear,” planning [13]. A few years ago many
people thought that the superiority of partial-order techniques had been proven
conclusively [2]. It seems doubtful that the arguments in its favor were all
wrong, and it would be interesting to see partial-order planners compete in
future competitions.

3.3 Scoring

In parallel with the design of domains, we were also designing the scoring mech-
anism. This proved to be a difficult challenge, one that we never really solved.
At first we thought the biggest issue was going to be how to penalize a planning
system for taking advice. Some members of the community feel that there is
nothing wrong with advice; it was even suggested that a planner be rewarded for
being able to take it. However, most people agreed that if planner A requires
a lot more advice than planner B to solve a problem, B should win if it does
almost as well as A.

Here is the scoring algorithm we proposed:

The basic idea was to give each planner j a score on problem ¢ equal to

(Ni — Rij)W;

21

where N; is the number of planners competing on problem ¢; R;; is the rank
of planner j on problem i (0 for best program, N — 1 for worst, as explained
below); and W; is the difficulty of a problem, defined as

medlanj T,j
>, median, T,

W; =

where T}, is the time taken by planner | on problem b.
Here is our method for computing R;;: Rank all planners lexicographically
as follows:

e Most important dimension: Correctness. There are two possible outcomes
for planner j on problem i, in order of decreasing winnitude: either it stops
and reports a correct answer, or it doesn’t. In other words, either it

1. Prints a correct solution or returns “NO SOLUTION” when there
isn’t one.

2. Or it prints an incorrect solution; or returns “NO SOLUTION” when
there is one; or never stops and has to be stopped by hand.

e Second dimension: Advice. Define

Aij = aij + Ap, ; /N (D;)

where a;; is the size of the advice given to planner j for problem i; Ap, is
the size of the advice given to planner j for domain D (D; is the domain
of problem 7); and N (D) is the number of problems in domain D.

We planned to measure the size of a piece of advice by counting the number
of symbols in it.

e Third dimension: Performance. If a problem has no solution, this is just
the measured CPU time of planner j on problem 4, or Tj;. If it has a
solution, and planner j finds a solution, then we will replace T;; with
Ti;(Lij)", where L;; is the length of the solution and h = 0.5. Length is
defined as number of steps, regardless of whether some could be executed
in parallel. (If L = 0, we will treat the solution as of length 1.)

Comments:

1. The idea was to take solution length into account, but to discount it so
that it broke a tie between planners only if they had comparable solution
times. If planner P; is 10 times slower than planner P, it would have to
produce a plan 100 times shorter to win. If P, produces a plan twice as
long, it must run in 70% of the time P; takes to beat it. This is to reflect
the classical presupposition that existence of a plan is more important
than its size. (Making the exponent h bigger would make length more
relevant,.)

22

2. If a planner required advice, it could never beat a planner that solves the
same problems with no advice. So it’s worth giving a certain amount of
advice only when you bet that no one will be able to solve the problem
with less.

3. For some of the more difficult machine-generated problems, we may not
really know if there is a solution. In that case, if no planner finds a solution,
we will assume that “NO SOLUTION” is the correct answer. If a planner
has to be stopped by hand, then it will be taken to have returned “NO
SOLUTION” after the amount of run time it actually spent (as close as
that can be estimated).

Unfortunately, this scoring function, in spite of its arcane complexity, failed
to match everyone’s judgement about what was to be measured, as we will
discuss below. Also, it turned out that our preoccupation with advice was
misplaced. None of the competitors ever used any advice at all. A few years ago
almost every planner would have required a lot of advice, and it is remarkable
how big a change had occurred.

3.4 Domains

In the last month before the competition, everyone involved put in a tremendous
amount of work, making sure that every planner worked on the sample problems.
Contestants were invited to contribute problem domains of their own. The idea
was to allow each of them to benefit from their areas of strength by having at
least one domain where they knew they would do well. Domains were submitted
by the IPP group, the SGP group, and the Blackbox group.

The final lineup of domains was this:

1. The Mystery domain described above. It defined three actions, corre-
sponding to loading something on a vehicle, unloading it, and moving the
vehicle.

2. “Mystery-prime:” This is the mystery domain with one extra action, the
ability to squirt a unit of fuel from any node to any other node, provided
the originating node has at least two units. The contestants knew that
a modified Mystery domain was coming, but did not actually see it until
the first day of the competition.

3. Movie: In this domain, the goal is always the same (to have lots of snacks in
order to watch a movie). There are seven actions, including rewind-movie
and get-chips, but the number of constants increases with problem num-
ber. Some planners have combinatorial problems in such cases. This do-
main was created by Corin Anderson.

4. Gripper: Here a robot must move a set of balls from one room to another,
being able to grip two balls at a time, one in each gripper. There are three

23

actions, move, pick, and drop. Most planners explore all possible com-
binations of balls in grippers, overlooking the fact that all combinations
are equivalent, and giving rise to an unnecessary combinatorial explosion.
(Contributed by Jana Kohler.)

5. Logistics: There are several cities, each containing several locations, some
of which are airports. There are also trucks, which can drive within a
single city, and airplanes, which can fly between airports. The goal is to get
some packages from various locations to various new locations. (Created
by Bart Selman and Henry Kautz, based on an earlier domain by Manuela
Veloso.) Table 1 gives the complete ADL version of the logistics domain,
developed by me from Selman and Kautz’s Strips version.! The Strips
version has six action definitions instead of four, because an action with
context-dependent effects has to be split into different versions.

6. Grid: There is a square grid of locations. A robot can move one grid square
at a time horizontally and vertically. If a square is locked, the robot can
move to it only by unlocking it, which requires having a key of the same
shape as the lock. The keys must be fetched, and may themselves be in
locked locations. Only one object can be carried at a time. The goal is
to get objects from various locations to various new locations. The ADL
version of the domain has four actions, and the Strips version has five.
(Created by Jana Kohler, based on an earlier domain of mine.)

7. Assembly: The goal is to assemble a complex object made out of subassem-
blies. There are four actions, (commit resource assembly), (release re-
source assembly), (assemble part assembly), and (remove part assem-
bly). The sequence of steps must obey a given partial order. In addition,
through poor engineering design, many subassemblies must be installed
temporarily in one assembly, then removed and given a permanent home
in another. There was no Strips version of this domain.

It would be pleasant if we could claim that these domains covered the entire
range of what planners can handle; or that these domains represent approxi-
mations of real-world problems planners will eventually solve; or that within
each domain the problems are typical. Unfortunately, we can make none of
those claims. Two of the domains, Movie and Gripper, were submitted be-
cause problems in these domains were thought to be difficult for some planners
to solve, even though the problems are easy for humans. The other domains
were chosen because it seemed, based on experience and informal experimen-
tation, that it was possible to create hard problems in them. However, as is
now well known[8], it can be tricky to generate random problems that are hard.
Randomly generated problems tend to be either extremely easy or impossible.
(Some “impossible” problems are actually quite easy, because many programs
can quickly verify that they are impossible.) The zone in between the subspace

IThis is not precisely the version of the domain used in the competition; that version had
an unimportant bug which has been removed.

24

of easy problems and the subspace of impossible problems has been compared
to a “phase transition” in a physical system. Analyzing a domain to figure out
where the phase transitions are is not easy, and we did not attempt it for any of
the domains in the competition. As a result, some of the randomly generated
problems are too easy, and some are too hard. However, it does seem that many
are about right.

4 Results

The competition took place at Carnegie Mellon University, in June of 1998, at
the same time as ATPS-98. We owe a debt of gratitude to the CMU staff, es-
pecially Bob McDivett, who got the computers running, and made sure that
they were all identical. (The computers were 233MHz Pentium-based PC-
compatibles, with 128 MBytes of primary memory, running the Linux operating
system.) The contestants and I arrived early at the conference in order to get
their systems up and running. The next few days were an intense but exhila-
rating effort. In the end we had to write quite a bit more code, and rethink our
scoring function completely.

There were to be two rounds in the competition. The first was designed
to allow contestants to get used to the environment and the problem domains.
They would be allowed to run their programs several times and make changes in
between. The programs that did best in Round 1 would be allowed to advance
to Round 2, where the rules were more stringent. Some new domains would be
introduced. Each planner could be run exactly once, with no tuning. Round
2 would take place in “real time,” as the conference proceeded, with programs’
performance announced as they finished.

Everything went reasonably smoothly through Round 1. We had a total of
170 problems, drawn from the Assembly, Gripper, Logistics, Movie, and Mystery
domains. All 170 appeared in the ADL track; in the Strips track, the Assembly
problems were omitted, leaving 140. Table 8 summarizes the data on problem
sizes. The Grid domain was reserved for Round 2. Contestants worked through
Monday, June 8, at 5 PM, when we declared Round 1 complete. On the ADL
track, IPP outperformed SGP so convincingly that it was declared the winner.
Both programs did well, but SGP was written in Lisp, and rarely matched the
raw speed of the other systems, which were written in C or C+4. We will
display the results below.

The results for the Strips track were not at all clear. For one thing, we failed
to anticipate that several of the contestants would simply not try to solve some
of the problems. If their planner failed on almost all of the easiest 10 problems
in a domain, they didn’t see the point of letting it grind forever on the next 20.
The scoring function as originally designed gave one point to a program that
tried a problem, failed, and took longer than any other program that tried and
failed. It gave zero to a program that didn’t try.

An even worse problem was that one planner (STAN) spent an hour each
on the more difficult Gripper problems before giving up on them. This was

25

Domain Number Av. Obs Aw. Inits Smallest Largest

Assembly 30 48 118 67 270
Gripper (ADL) 20 25 26 13 89
Gripper (Strips) 27 53 23 137
Logistics (ADL) 30 171 155 58 960
Logistics (Strips) 171 342 96 1470
Movie (ADL) 30 98 3 28 173
Movie (Strips) 98 99 51 341
Mystery (ADL) 30 44 82 46 233
Mystery (Strips) 44 126 64 317

For each domain, the number of problems, the average number of objects per
problem, and the average number of “inits” (propositions true in the initial situ-
ation) are shown. The columns labeled Smallest, and Largest give the combined
size (objects + inits) for the smallest problem in the domain and the largest.
The Mystery-prime domains had exactly the same problems as the Mystery
domain, and so are not listed separately here.

Table &: Problem Sizes Round 1

much longer than any other planner spent on any problem. Only two planners,
STAN and HSP, tried the difficult Gripper problems, so the median time to solve
them was quite large, and these Gripper problems ended up carrying a large
fraction of the weight. HSP spent less time than STAN, and actually solved the
problems (although not optimally), so it got a higher overall score on Round
1 than anyone else. The HSP team deserves credit for solving these problems,
but it seems clear that the scoring function’s judgement of their importance
disagrees with intuition.

At the end of Round 1, therefore, all four contestants in the Strips track
could argue that their systems had done well. A total of 88 problems had been
solved by at least one planner. HSP solved more problems than any other
system, and found the shortest solution more often. Blackbox had the shortest
average time on problems it attempted, but IPP had the shortest solution time
on more problems. STAN was in second place for shortest solution time, and
second place for overall score.

The committee was unhappy with the holes that had been revealed in the
scoring function. We tried to achieve a consensus on what to replace it with,
and finally gave up. We decided to let all the programs advance to Round 2,
measure their performance as well as possible, and let history judge who, if
anyone, did the best. Once this decision was made, Round 2 was a lot of fun.
We continued to observe the same pattern as in Round 1, that different planners
succeeded in different ways.

For Round 2, we used the Grid, Logistics, and Mystery-prime domains, all in
their Strips versions. There were a total of 15 problems, of which 12 were solved

26

Domain Number Av. Obs Aw. Inits Smallest Largest

Logistics (Strips) 5 33 67 63 159
Mprime (Strips) 5 40 106 82 237
Grid (Strips) b) 66 328 209 613

Table 9: Problem Sizes Round 2

by at least one program. Table 9 shows the sizes of these problems. We tried
to generate problems that the planning systems could be expected to handle in
the time allotted.

Tables 10 and 11 summarize how hard the problems were that some planner
could solve. For each domain we show the largest problem that any planner
could solve, and the problem whose shortest known solution is longer than that
of any other problem. These figures should not be taken too seriously. For one
thing, the fact that a problem was not solved by any planner may mean that
it has no solution; more on this below. In addition, the fact that no planner
finds a short solution to a problem does not mean that there isn’t one. To
give a concrete idea of the performance of the planners, Table 7 contains the
definition of problem STRIPS-LOG-X-2, which occurred during Round 1 of the
competition. It mentions 49 objects and 68 inits, for a total size of 147. Both
STAN and Blackbox found 32-step plans to solve this problem; HSP found a
44-step plan. Blackbox’s plan is shown in Table 12.

Tables 13-15 give the results for both rounds. The planners are sorted in
alphabetical order in each table. These results are not exactly the same as those
were presented at the conference, because of some minor glitches that muddied
the presentation. Three of IPP’s solutions were checked and found to be wrong.
It turned out that the reason for this was a trivial bug in the output printer,
which caused all occurrences of one particular action to be garbled. In these
tables we have counted these as successes.

There are two important caveats about these data:

1. We measure the length of the plan found by counting the total number
of steps in it. However, for many of the planners this may not be the
appropriate measure. Planners like Blackbox, IPP, and STAN find the
plan with the shortest “parallel length,” in which several steps are counted
as taking one time unit if they occur as a substring at some point in the
plan and the substring could have occurred in any order. The plan with
the shortest parallel length may not be the plan with the least number of
steps. Which of these numbers is a better measure of plan quality is not
always obvious.

2. If no planner found a solution to a problem, it simply doesn’t enter into
our statistics. But in some cases some of the planners were able to prove
there was no solution. We discuss this further below.

For further analysis of results, see the companion paper.

27

Largest
Domain Solved
Gripper (ADL) 29
Gripper (Strips) 137
Logistics (ADL) 109
Logistics (Strips) 180
Movie (ADL) 173
Movie (Strips) 341
Mystery (ADL) 159
Mystery(Strips) 304
Mprime (ADL) 131
Mprime (Strips) 214

Plan
Length
47
165
26
112
7

7

4

16
10

4

Solution

Time
225730
33210
17400
788914
50

40
17810
1789
24240
7141

Longest
Solution
47

165

26

112

13
16
12
11

Solution
Time
225730
33210
17400
788914

9280

789
1960
5214

For each domain, data are shown for the hardest problems solved. In the left
side of the table, data are displayed for the largest problem solved. Call it B.

“Largest solved” is the size of B, defined as the sum objects + inits.

“Plan

Length” is the length of the shortest solution of B found, and “Solution Time”
the time the fastest planner took to find that solution. In the right side of the
table, data are displayed for the problem whose shortest solution was longest.
Call it L. “Longest Solution gives the length of the shortest solution of L found,
and “Solution Time” is the time the fastest planner took to find that solution.

Times are in milliseconds.

Table 10: Hardest Problems — Round 1

Largest
Domain Solved
Logistics (Strips) 159
Mprime (Strips) 237
Grid (Strips) 209

This table is in the same format as table 10. Times are in milliseconds.

Plan
Length
31

6

14

Solution
Time
66170
4991
2505

Table 11: Hardest Problems

28

Longest
Solution
29

7

14

Round 2

Solution
Time
170394
2537
2505

((load-airplane package4 plane3 city7-2)
(load-truck package2 trucklO cityl10-1)
(load-airplane package3 plane2 city3-2)
(drive-truck truckl cityl-1 cityl-2 cityl)
(fly-airplane plane4 city3-2 city2-2)
(fly-airplane planel city6-2 cityl10-2)
(drive-truck truck6 city6-1 city6-2 city6)
(drive-truck truck3 city3-1 city3-2 city3)
(load-airplane packagel plane4 city2-2)
(drive-truck truck10 city10-1 city10-2 city10)
(fly-airplane plane3 city7-2 city6-2)
(fly-airplane plane2 city3-2 cityl-2)
(unload-airplane package4 plane3 city6-2)
(unload-truck package2 truck10 city10-2)
(fly-airplane plane4 city2-2 city3-2)
(unload-airplane package3 plane2 cityl-2)
(load-airplane packageb plane2 cityl-2)
(fly-airplane plane2 cityl-2 city4-2)
(load-airplane package2 planel city10-2)
(unload-airplane packagel plane4 city3-2)
(load-truck package3 truckl cityl-2)
(load-truck package4 truck6 city6-2)
(drive-truck truck6 city6-2 city6-1 city6)
(unload-airplane packageb plane2 city4-2)
(fly-airplane planel city10-2 city9-2)
(drive-truck truckl cityl-2 cityl-1 cityl)
(load-truck packagel truck3 city3-2)
(unload-airplane package2 planel city9-2)
(drive-truck truck3 city3-2 city3-1 city3)
(unload-truck package3 truckl cityil-1)
(unload-truck package4 truck6 city6-1)
(unload-truck packagel truck3 city3-1))

Table 12: Blackbox’s Solution to the Problem of Table 7

Planner Av. Time Problems Solved Fastest Shortest

IPP 21396 69 68 68

SGP 14343 38 5 35
A total of 69 problems were solved by one or both of the planners; there was a
tie for fastest planner 4 times. Times are in milliseconds.

Table 13: Results for Round 1 ADL Track

29

Planner Av. Time Problems Solved Fastest Shortest

BLACKBOX 1498 63 16 a5
HSP 35483 82 19 61
IPP 7408 63 29 49
STAN 95413 64 24 47

A total of 88 problems were solved by at least one planner. Times are in mil-
liseconds.

Table 14: Results for Round 1 Strips Track

Planner Av. Time Problems Solved Fastest Shortest
BLACKBOX 2464 8 3 6
HSP 25875 9 1 5
IPP 17375 11 3 8
STAN 1334 7 5 4

A total of 12 problems were solved by at least one planner. Times are in mil-
liseconds.

Table 15: Results for Round 2 — Strips Track

5 Conclusions

The planning competition was a valuable exercise. For the first time researchers
had to compete against each other on exactly the same problems. The PDDL
notation made this possible, and hopefully it will continue to serve this role.
The PDDL syntax checker and solution checker, as well as all the problems and
results from the competition, can be found at

http://www.cs.yale.edu/ dvm

We encourage researchers to compare their planning systems against the pro-
grams that competed. However, the existence of this repository is only a first
step toward a comprehensive set of benchmark problems for automated planners.
We encourage others to submit candidate benchmarks to drew.mcdermott@yale.edu,
or to the competition committee for the 2000 Planning Competition, chaired by
Fahiem Bacchus (fbacchus@cs.toronto.edu).

The competition documented a dramatic increase in the speed of planning
algorithms. Some of the problems in the competition had solutions of 30 steps
or more, extracted from problems with dozens of propositions to deal with. Ten
years ago planners required significant amounts of domain-specific advice in
order to achieve performance like this; the current generation requires no advice
at all.

To an extent this gain has been won by restricting the types of problems
that can be worked on. Most of the planners could handle Strips-style problems
and not much else. Some of these restrictions are only temporary, and we would
urge the planning community to explore ways of removing them. However, the

30

focus on classical planning, where perfect information is assumed, seems to be
an intrinsic constraint on most planners currently being developed. There’s
nothing wrong with this focus, but if the current research is really leading to
powerful algorithms, it will soon be time to show them working on realistic
classical-planning problems. For instance, combining features of the Logistics
and Mystery domains would get us close to real-world transportation planning
with capacity constraints. Perhaps this is a reasonable target for the community
to aim for.

There is a remarkable divergence of opinion on whether and how planners
should take “advice”, that is, domain- or problem-specific guidelines that are
not strictly necessary in defining the domain, but constrain the search for plans.
Some researchers feel that any need for advice is a weakness, while others think
that there is unlikely to be a general-purpose planning algorithm that solves
all realistic problems, so the issue is not whether domain-specific heuristics are
necessary, but how easy or natural it is to tell a planner about them. In this
competition the first camp decided the issue, probably because I am in that
camp. But none of the competitors could resist the temptation to ask for a
“little bit” of “trivial” advice. For instance, some of the propositional planners
must set a bound on the length of a plan before doing a search. If the bound is
unknown, they must search for it by starting with a short bound and extending
it after each failure. A serious argument was made that this number should be
given to the planner in advance. The anti-advice people succeeded in arguing
that this one number constituted an enormous hint. (Among other things, it
tells the planner that a solution exists.) In other cases, the disagreement became
an impasse. For example, many hierarchical planners (especially SIPE [14]) give
deductive rules a “procedural interpretation,” so that they are used in only one
direction. P D @ is interpreted to mean that @ is caused by P, which then
gets generalized to “Execute () whenever P becomes true.” This can be a very
directed way of getting a planner to do something, and once you get used to
thinking in these terms it’s hard to recast problems as pure physics plus some
extra advice.

We hope the competition will become a regular part of the AIPS conference,
thereby continuing to exert pressure on the planning community. In particular,
we hope the next competition deals with the following issues:

e There should be competitions involving hierarchical planning, but also
run-time (reactive) planning, and decision-theoretic planning.

e The issue of plan quality should be addressed more carefully. Different
problem domains have different definitions of optimality, and these should
be made explicit in the domain or problem definitions. Plan length (se-
quential or parallel) is only a crude measure of plan cost; more realistic
measures are needed. In many domains the problem of finding an optimal
plan is much more difficult than the problem of finding a feasible one, and
in those cases it may be desirable to give planners a big bonus for coming
close to the optimum.

31

e Some planners can prove that a problem has no solution; others just work
for a while and then declare that they can’t solve it. The former should be
rewarded. The problem is to verify that a planner’s output is correct. In
the case where it outputs a proposed solution as a sequence of steps, that
sequence can be simulated to see if it is feasible and actually brings about
the desired situation. The issue is what it should output in the case where
it proves that there is no solution. One possibility is that it can produce a
formal proof in first-order logic, in which case the solution checker would
just be a proof checker. But most systems that prove there is no solution
do not, currently produce such a proof, and it would probably be a major
pain to give them the ability to produce one.

e Many of the problems in the competition were produced by random prob-
lem generators. It is difficult to ensure that randomly generated problems
are “interesting,” i.e., not easy or impossible to solve. One way to get
around this difficulty is to make problem design a more important part
of the competition, and encourage participants (and others) to produce
tricky problems.

e A more strenuous effort should be made to accommodate planners that
require domain-specific advice. Ideally, a reward mechanism should be
found that gives points for ease of advising, and more creative ways should
be sought of combining PDDL with planner-specific advice.

Acknowledgements: Thanks to the members of the committee and the con-
testants for making this event possible. Thanks to the CMU staff for technical
support. Thanks to Blai Bonet, Henry Kautz, Manuela Veloso, David Wilkins,
and the referees for comments on this paper. Funding for the competition was
provided by DARPA.

References

[1] Ronald C. Arkin. The 1997 Aaai mobile robot competition and exhibition.
Al Magazine , 19(3):13-17, 1998.

[2] Anthony Barrett and Daniel S. Weld. Partial-order planning: evaluating
possible efficiency gains. Artificial Intelligence , 67(1):71-112, 1994.

[3] Avrim L. Blum and Merrick L. Furst. Fast planning through planning
graph analysis. In Proc. Ijcai, 1995.

[4] David Chapman. Planning for conjunctive goals. Artificial Intelligence
32(3):333-377, 1987.

[5] Kutluhan Erol, Dana Nau, and James Hendler. Htn planning: complexity
and expressivity. In Proc. AAAI-9/, 1994. Seattle.

32

[6]

Richard Fikes and Nils J. Nilsson. Strips: A new approach to the applica-
tion of theorem proving to problem solving. Artificial Intelligence 2, pages
189 208, 1971.

David M. Hart and Paul R. Cohen. Predicting and explaining success and
task duration in the Phoenix planner. In Proc. First Int’l. Conf. on Al
Planning Systems, pages 106 115, 1992.

Scott Kirkpatrick and Bart Selman. Critical behavior in the satisfiability
of random boolean expressions. Science 1994, 264(May):1297-1301, 1994.

John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Bernard Meltzer and Donald Michie,
editors, Machine Intelligence 4, pages 463—502. Edinburgh University Press,
1969.

MUC. Proc. Third Message Understanding Conference. Morgan Kauffman,
1991.

MUC. Proc. Fourth Message Understanding Conference. Morgan Kauft-
man, 1992.

Edwin Peter Dawson Pednault. Adl: Exploring the middle ground between
Strips and the situation calculus. In Proc. Conf. on Knowledge Represen-
tation and Reasoning 1, pages 324-332, 1989.

Daniel Weld. An introduction to least-commitment planning. AT Magazine,
1994.

David Wilkins. Practical Planning: Eztending the Classical AI Planning
Paradigm. Morgan Kaufmann Publishers, Inc, 1988.

33

