
The 1998 AI Planning Systems CompetitionDrew McDermottApril 17, 2000AbstractThe 1998 Planning Competition at the AI Planning Systems Confer-ence was the �rst of its kind. Its goal was to create planning domainsthat a wide variety of planning researchers could agree on, so as to makecomparison among planners more meaningful, measure overall progress inthe �eld, and set up a framework for long-term creation of a repository ofproblems in a standard notation. A rules committee for the competitionwas created in 1997, and had long discussions on how the contest shouldgo. One result of those discussions was the PDDL notation for planningdomains. This notation was used to set up a set of planning problems,and to get a modest problem repository started. As a result, �ve planningsystems were able to compete when the contest took place, in June, 1998.All of these systems solved problems in the Strips framework, with someslight extensions. The attempt to �nd domains for other forms of plan-ning foundered because of technical and organizational problems. In spiteof this, the competition achieved its goals partially, in that it con�rmedthat substantial progress had occurred in some sub�elds of planning, andit allowed qualitative comparison among di�erent planning algorithms. Itis urged that the competition continue to take place and to evolve.1 HistoryIn recent years, many sub�elds of AI have used competitions as a way of measur-ing progress and guiding research directions (e.g., [10, 11, 1]). In a competition,researchers run their programs on a common set of problems at the same timewith little tuning, and the results are compared. There are several purposes tosuch an exercise:� It allows meaningful comparison of programs.� It can provide an indication of overall progress in the �eld.� It can provide a set of benchmark problems for others to use to comparetheir systems to the state of the art.� It can focus attention on more realistic problems.1

Of course, competitions have drawbacks. Preparing a program for a compe-tition usually means polishing existing features, and suspending work on newones. \Realistic problems" may not be those of most interest in the long run.The Message Understanding Competitions focused attention on \informationextraction" from newspaper articles or more restricted media. The programsthat did well on this task were those that were carefully engineered to detectand dissect messages in the target category. Programs derived from researchprograms with more ambitious goals, such as investigating the general theory ofnatural-language understanding, did not work so well. One could argue that thisoutcome is evidence that such a general theory is, at least for now, a chimera.But many people would disagree, arguing that in the long run the discovery ofsuch a theory is the whole point of studying natural language.Until the AI Planning Systems (AIPS) conference of 1998, there had neverbeen a competition in the �eld of automated planning. The broadest de�nitionof planning is reasoning about agent behavior. A system plans to the extent itpredicts the consequences of alternative behaviors before selecting one. Becausethere are a wide range of agents, reasoning techniques, and ways of combiningplan inference with plan execution, the �eld is quite broad, encompassing every-thing from factory scheduling to robot programming. Some of the applicationareas are of immediate practical interest, while others are still rather abstract.In spite of this immediate practical interest, there haven't been many appli-cations of planners that are actually used. The practical applications tend tolie in three categories:1. Scheduling problems, in which the actions that must be taken are known,and the problem is to �nd an order in which to carry them out.2. Plan management problems, in which the plans tend to consist of stereo-typical structures of actions, usually hierarchical (longer-term actions be-ing decomposed into structures of shorter-term ones), without many choicesabout how to decompose.3. Symbolic control problems, in which the focus is on execution of plans forcontrolling a reactive system, where the plans were written by a human.Applications in these areas tend to succeed because they eliminate or sharplyconstrain the amount of search the planning system has to do. The focus of thecompetition was intended to be planning problems that require a signi�cantamount of search. In the past few years, there has been a lot of work on search-based planning algorithms, and a fair amount of progress. It would be prematureto say that practical algorithms exist, but planners are now �nding solutions toproblems that are an order of magnitude larger than those they could solve tenyears ago. It seemed as if the time was ripe to hold a competition and see howmuch progress had really been made, and possibly push the community furtherin interesting directions.Although some people (notably Manuela Veloso) had been arguing for aplanning competition for years, serious talk about a competition began in 1996,2

and was a major topic among attendees at the Dagstuhl Workshop on Controlof Search in Planning, held in October. The fourth biennial AI Planning Sys-tems (AIPS) Conference was scheduled for June of 1998, and that seemed likethe obvious time to have a competition. Veloso was program-co-chair for theconference, and asked me to chair the rules committee for the competition.By the summer of 1997, we had assembled the following Rules Committee:� Drew McDermott (chair), Yale University� Malik Ghallab, Ecole Nationale Superieure D'ingenieur des ConstructionsAeronautiques� Adele Howe, Colorado State University� Craig Knoblock, University of Southern California� Ashwin Ram, Georgia Tech� Manuela Veloso, Carnegie Mellon University� Daniel Weld, University of Washington� David Wilkins, SRIThis paper focuses on how the committee designed and ran the competi-tion, with an overall summary of results. This issue of AI Magazine containsa companion paper by those who actually competed, with Derek Long servingas overall author and editor. It focuses more on what strengths and weak-nesses each planner embodied, with detailed comparison of their performanceon various problems.There were several matters that had to be dealt with in order to have acompetition. First, exactly what sort of planning problems would we give peopleto work on? As suggested above, even after eliminating scheduling and otherareas, we are still left with several di�erent types of problem area:� Classical planning: In this kind of problem, you are given an initial situ-ation, a set of action de�nitions, and a proposition (goal) to be broughtabout. A solution is a sequence of actions which, when executed beginningin the initial situation, brings about a situation in which the goal is true.It is assumed that the planner knows everything that is true in the initialsituation, and knows the e�ect of every action.� Hierararchical planning: Here you are given, in addition to the materialof classical planning, a set of abstract actions. An abstract action cannotbe executed directly, but must be executed by executing an expansion (orreduction) of it in terms of less abstract actions, typically one found in a\plan library." A problem may specify, in addition to a goal, an abstractaction to be executed. A solution is a sequence of primitive actions that(a) achieves the goal; and (b) corresponds to an expansion of the givenabstract action. 3

� Reactive planning: This is a much vaguer classi�cation, in which the as-sumption of perfect information is relaxed. There are many di�erent typesof reactive-planning problem, depending on what is assumed about thesensors and e�ectors available.� Learning in planning: This is not a problem type so much as an approachto the other types. A learning planner, not surprisingly, does better andbetter as it gains experience with planning problems of a given type. Thestyle of learning usually studied is case-based reasoning, in which newproblems are solved by adapting solutions to similar problems previouslyencountered.The Rules Committee spent the summer of 1997 in discussion of how toproceed. It seemed clear that it would be hard to �nd one problem domain thatwould be attackable by planners in all these categories. Hence it was decidedto try to create several \tracks," in which di�erent categories of planner wouldcompete.Regardless of how many tracks we settled on in the end, it was clear that wewould need a notation to use as an input language for the competing programs.So the committee set itself the goal of designing such a language, to be calledthe Planning Domain De�nition Language, or PDDL.Meanwhile, we engaged in serious discussion of (at least) four \tracks":1. A Strips track: Classical planning with action-de�nition notation of thesame expressive power as the Strips planner [6].2. An ADL track: Classical planning with an enhanced notation allowingactions with quanti�ed preconditions and context-dependent e�ects[12].3. Hierarchical planning: A classical domain, but with explicitly given com-pound actions (canned plans) that the planner must be able to reasonabout ([5, 14]).4. Reactive planning: Planning in a complex simulated domain, such as thePhoenix �re-�ghting simulator [7].2 PDDL | The Planning Domain De�nitionLanguageThe PDDL language was designed to be a neutral speci�cation of planningproblems. \Neutral" means that it doesn't favor any particular planning system.The slogan we used to summarize this goal, was: \physics, not advice." Thatis, every piece of a representation would be a necessary part of the speci�cationof what actions were possible and what their e�ects are. All traces of \hints" toa planning system would be eliminated. For instance, an implication (P � Q)have several uses, including these: 4

1. To prove that Q is true in a world situation, adopt proving P as a subgoal.2. To achieve Q (make it true), adopt achieving P as a subgoal.A speci�cation of which of these, if either, was actually a good idea wouldconstitute advice. On the other hand, consider these two interpretations ofP � Q:1. In every world situation, either P is false or Q is true.2. Any plan that causes P to become true without Q being false is invalidno matter what other virtues it has.The latter interpretation is a safety condition, which has a completely di�erentmeaning from the former. This distinction is one of \physics," although not inthe traditional sense. In the �rst interpretation, P � Q is automatically alwayssatis�ed. In the second, it might well be violated, but no legal plan is allowedto do so.We anticipated that most planners would require some kind of advice, be-cause planners search very large spaces and often fail without a bit of help.We didn't want to outlaw advice, just make sure it was properly labeled andaccounted for; and omitted entirely from the core language.It is harder than it sounds to create a notation that avoids advice entirely,for a variety of reasons. Historically, most planning researchers have not madethe distinction, so existing input notations are full of it. For example, there areactions that are useful only under certain disagreeable circumstances. If youneed three nuts to attach a wheel to an axle, one way to do it is to take one nutfrom each of the other wheels. This is a reasonable strategy if all other nuts arelost. However, with this action in the database, some planners might considerdeliberately throwing all the nuts away in order to make this action feasible.Although they would presumably reject this plan at some point, it might beuseful to tell the planner that the condition, \There are no unattached nuts"should be treated only as a \�lter" condition, used to select among alternativeactions but never to be achieved if false. Many planning researchers have de-veloped sophisticated notations for expressing advice like this, and have madeit so easy to include the advice in the action speci�cations that one is likely tooverlook the fact that it's not actually part of the de�nition of what the actiondoes.The �eld in which advice has reigned supreme is in hierarchical planning,which studies planners that assemble solutions from large canned plans stored insome kind of plan library. These plans typically look suspiciously like programs,and some of their steps are essentially procedures for setting up data structures,making sure the plan is appropriate, and so forth. It is hard to extract the purephysics from a representation like that, and just as hard to then represent theadvice part as a separate set of hints.Nonetheless, we felt it was important to try to de�ne a purely physicalhierarchical notation, to support the proposed hierarchical-planning track forthe competition. Given the way hierarchical planners are often used, this project5

might be viewed as of questionable sanity. The main reason to have a library ofplans in the �rst place is to focus the planner's attention on those sequences ofactions and away from others that are less likely to be useful. In other words,a plan library can be thought of as a hint library. If that's what it is, thenspecifying it is not part of the PDDL project. A team that wanted to use aplan library would have to treat it as an advice structure superimposed on anunderlying physics speci�ed without the use of hierarchy.However, there is a sense in which a canned plan can be thought of as apurely \physical" entity, and that is when it represents a standard procedurewhose functioning can't easily be expressed in more basic terms. A procedurefor starting a nuclear reactor is in principle derivable from a more detailedspeci�cation of exactly what actions are possible and what their e�ects are, butthat speci�cation may not be available to the planner. It may just know thatif it carries out the plan speci�ed in the manual, then it will achieve certainthings, and that it can interleave steps of other plans with the steps of this oneprovided certain constraints are honored.From this point of view it seemed reasonable to visualize the HierarchicalPlanning track of the competition in these terms: for one or more domains wewould specify some canned plans, and then stipulate that no problem solutioncould include any steps that were not part of an instance of one of those plans.In concrete terms, if you had to pump out radioactive waste and restart thereactor, you weren't allowed to
ick switch 203 unless one of the protocols forpumping and restarting called for that switch to be
icked at some point, andthe other did not forbid it. It turned out that making this precise was extremelydi�cult, as we will discuss below.The second most important desideratum in the design of PDDL was thatit resemble existing input notations. Most input notations were Lisp-like, forhistorical reasons, but beyond that there were many divergences. The Univer-sity of Washington UCPOP input language was the closest thing to a standard.However, it didn't have a simple notation for object types, used Lisp proceduresfor arithmetic operations, and didn't address the representation of hierarchicalplans at all. PDDL was produced by adding to the UCPOP language a sim-ple uniform typing syntax, some arithmetic facilities, and the notion of actionexpansion. Actions were classi�ed as primitive or expandable. An expandableaction could not be executed directly, but had to be instantiated by selectingone of its methods, each a structure of actions.Table 1 gives an example of a simple domain, called \Logistics," one ofthose used in the competition. There were actually two versions, Logistics-adland Logistics-strips. This one requires the use of ADL constructs like typingand quanti�cation. Types are indicated by hyphens. The type appears afterthe objects it quali�es. Variables are indicated by question marks.However, some planners cannot handle types. In fact, for almost every aspectof problem de�nition, there is some planner that cannot handle it. To cope withthis issue, we borrowed an idea from the UCPOP language, namely to specifyexplicitly the requirements a planner would have to be satisfy in order to handlethis domain. That explains the �eld (:requirements :adl) that appears in the6

domain de�nition. If a planner can't handle the :adl package of requirements,then it can issue a warning when it sees this
ag.After the :requirements speci�cation, the next �eld de�nes the :typesthat are speci�c to this domain. (Types like object and integer are inheritedby all domains.) Then there is a list of :predicates, each of which is givenwith its argument types.There are four actions in this domain. Each is de�ned by giving a precon-dition, which must be true for the action to be feasible, and an e�ect, whichspeci�es what happens when the action is executed. The e�ect is typically aconjunction. A conjunct of the form (not p) means that p becomes false. Aconjunct of the form (when c e) means that e�ect e happens only if conditionc is true before the action occurs. (This is a \context-dependent e�ect.") Aconjunct of the form (forall (|vars|) e) means that e happens for everyinstance of the variables.So the fly-airplane action is de�ned as follows: You can
y an airplanefrom airport A to airport B if the airplane is at A; you can't
y any other vehiclebetween any other types of location. The e�ect of
ying is that the airplane isat B, and no longer at A. Furthermore, everything that is in the airplane is alsoat B, and no longer at A. Note that we have to specify both that an object isat B and that it is no longer at A.For comparison, Tables 2 and 3 gives the same domain with no extra re-quirements at all. We call this baseline notation the Strips notation because itis essentially the same as the notation used by the Strips planner [6]. Here arethe changes required to transform the ADL version into the Strips version:1. Types are replaced by unary predicates. This ultimately requires splittingthe actions load and unload into two versions each, one dealing withtrucks and the other with airplanes.2. Context-dependent e�ects (\whens") must be eliminated. In this case,the semantics of actions change. In the ADL version, an object is at thedestination as soon as its vehicle moves there. In the Strips version, it isat the destination only when it is unloaded.We will return to this issue of domain notation in Section 3.Numbers are built in to all PDDL domains, but only those declaring require-ment :expression-evaluation can have arithmetic expressions such as (+ ?x1). These occur in special contexts such as (eval e v), where e is an arith-metic expression, and v must unify with its value. If e evaluates to a Boolean,then (test e) succeeds if and only if the value of e is true. (equation e1e2) tries to bind variables in such a way as to make e1 and e2 evaluate to thesame value. For instance, the goal (equation (+ ?x 1) 3) can be satis�ed bybinding ?x to 2. Currently that's about the only pattern that implementationsare required to handle.For example, in de�ning a \grid world" in which a robot can move betweenlocations with integer-valued coordinates, we can use these facilities to specify7

(define (domain logistics-adl)(:requirements :adl)(:types physobj - objectobj vehicle - physobjtruck airplane - vehiclelocation city - objectairport - location)(:predicates (at ?x - physobj ?l - location)(in ?x - obj ?t - vehicle)(in-city ?l - location ?c - city)(loaded ?x - physobj)) ; ?x is loaded on a vehicle(:action load:parameters (?obj ?veh ?loc):precondition (and (vehicle ?veh)(location ?loc)(at ?obj ?loc)(at ?veh ?loc)(not (loaded ?obj))):effect (and (in ?obj ?veh)(loaded ?obj)))(:action unload:parameters (?obj ?veh ?loc):precondition (and (vehicle ?veh)(location ?loc)(in ?obj ?veh)(at ?veh ?loc)):effect (and (not (in ?obj ?veh))(not (loaded ?obj))))(:action drive-truck:parameters (?truck - truck ?loc-from ?loc-to - location?city - city):precondition (and (at ?truck ?loc-from)(in-city ?loc-from ?city)(in-city ?loc-to ?city)):effect (and (at ?truck ?loc-to)(not (at ?truck ?loc-from))(forall (?x - obj)(when (and (in ?x ?truck))(and (not (at ?x ?loc-from))(at ?x ?loc-to))))))(:action fly-airplane:parameters (?plane - airplane ?loc-from ?loc-to - airport):precondition (and (at ?plane ?loc-from)):effect (and (at ?plane ?loc-to)(not (at ?plane ?loc-from))(forall (?x - obj)(when (and (in ?x ?plane))(and (not (at ?x ?loc-from))(at ?x ?loc-to)))))))Table 1: The Logistics Domain | ADL Version8

(define (domain logistics-strips)(:requirements :strips)(:predicates (obj ?obj)(truck ?truck)(location ?loc)(airplane ?airplane)(city ?city)(airport ?airport)(at ?obj ?loc)(in ?obj1 ?obj2)(in-city ?obj ?city))(:action load-truck:parameters (?obj ?truck ?loc):precondition (and (obj ?obj)(truck ?truck)(location ?loc)(at ?truck ?loc)(at ?obj ?loc)):effect (and (not (at ?obj ?loc))(in ?obj ?truck)))(:action load-airplane:parameters (?obj ?airplane ?loc):precondition (and (obj ?obj)(airplane ?airplane)(location ?loc)(at ?obj ?loc)(at ?airplane ?loc)):effect (and (not (at ?obj ?loc))(in ?obj ?airplane)))(:action unload-truck:parameters (?obj ?truck ?loc):precondition (and (obj ?obj)(truck ?truck)(location ?loc)(at ?truck ?loc)(in ?obj ?truck)):effect (and (not (in ?obj ?truck))(at ?obj ?loc)))(:action unload-airplane:parameters (?obj ?airplane ?loc):precondition (and (obj ?obj)(airplane ?airplane)(LOCATION ?loc)(in ?obj ?airplane)(at ?airplane ?loc)):effect (and (not (in ?obj ?airplane))(at ?obj ?loc)))... Table 2: The Logistics Domain | Strips Version, Part 19

...(:action drive-truck:parameters (?truck ?loc-from ?loc-to ?city):precondition (and (truck ?truck)(location ?loc-from)(location ?loc-to)(city ?city)(at ?truck ?loc-from)(in-city ?loc-from ?city)(in-city ?loc-to ?city)):effect (and (not (at ?truck ?loc-from))(at ?truck ?loc-to)))(:action fly-airplane:parameters (?airplane ?loc-from ?loc-to):precondition (and (airplane ?airplane)(airport ?loc-from)(airport ?loc-to)(at ?airplane ?loc-from)):effect (and (not (at ?airplane ?loc-from))(at ?airplane ?loc-to)))) Table 3: The Logistics Domain | Strips Version, Part 2

10

(define (domain jug-pouring)(:requirements :typing :fluents)(:types jug)(:functors(amount ?j - jug)(capacity ?j - jug)- (fluent number))(:action empty:parameters (?jug1 ?jug2 - jug):precondition (fluent-test(>= (- (capacity ?jug2) (amount ?jug2))(amount ?jug1))):effect (and (change (amount ?jug1)0)(change (amount ?jug2)(+ (amount ?jug2)(amount ?jug1)))))...) Table 4: The Jug-Pouring Domainwhat it means for two coordinates to be adjacent. Here is a piece of thatspeci�cation:(:axiom:vars (?i ?j ?i1 - integer):implies (adjacent ?i ?j ?i1 ?j right):context (and (equation (+ ?i 1) ?i1)(legal_coord ?i)(legal_coord ?i1)))This example also illustrates PDDL's ability to represent axioms that delimitthe meanings of symbols, such as adjacent and right. (There are three otheraxioms, for left, up, and down.)There is also a notion of a term whose value changes in di�erent situations,called
uents, following [9]. This feature is especially useful in domains wherequantities can change. The classical domain in which water can be poured fromjug to jug might be de�ned as in Table 4. The (change f e) says that thevalue of
uent f changes to the value of e before the change. The :functorsdeclaration is used to add new function-de�ning symbols. Currently it can beused only to de�ne new
uent constructors. So the type of amount is (fluentnumber), meaning that (amount x) is a number that varies from situation tosituation.Fluents are a natural generalization of traditional e�ects; instead of spec-ifying how truth values change, they allow speci�cation of how terms change.11

Without
uents, one could make the same de�nitions, but their meaning wouldbe less clear. The precondition of empty would be(and (amount-in ?jug1 ?a1)(amount-in ?jug2 ?a2)(capacity ?jug2 ?c2)(test >= (- ?c2 ?a2) ?a1))and the e�ect would be(and (not (amount-in ?jug1 ?a1))(amount-in ?jug1 0)(not (amount-in ?jug2 ?a2))(amount-in ?jug2 (+ ?a2 ?a1)))While this formulation causes little trouble in inferring the e�ects of a knownaction, it is di�cult to use to constrain the arguments and preconditions ofan empty action given a goal such as (and (amount-in jugB ?x) (> ?x 5)).The problem is that there may be many ways to make the �rst conjunct true,but the result is to leave some number of gallons in jugB. That number is eithergreater than 5 or it isn't; there's no way to cause it to become bigger. Expressingthe goal as (> (amount jugB) 5) is much more perspicuous.To support hierarchical planning, PDDL allows actions to be de�ned thatare carried out by executing a structure of more primitive actions. Our nuclear-reactor example appears in Table 5. In English: \To restart reactor ?r, makesure it is not already running and not melting down, then open the two valves,toggle the switch, and close one of the valves, in that order." The :vars clauseis used to declare local variables that are inconvenient to consider as parametersof the action. Every reactor is supposed to have one auxiliary valve, one mainvalve, and one main switch, so there is no need to name them as part of theaction.This de�nition is misleading in that it appears that there is only one way toexpand an action. In general it is possible to specify multiple methods for anaction expansion, as in the fragment shown in Table 6 from a domain involvingshipping packages from one place to another. Here there are two methodsfor carrying out (ship x l1 l2). The �rst, carrying it in a plane, works onlyif x is a piece of mail. The second, using a truck, works for any cargo item.The expressions (in-context A :precondition p)means that pmust be truebefore this occurrence of A in order for the plan to be valid.In addition to de�ning domains, PDDL allows for the de�nition of problems.Table 7 gives an example in the Logistics domain. This is one of the examplesused in the competition. A problem is de�ned as a domain, a set of :objects, aninitial situation, and a goal pattern to be made true. In domains with actionexpansions, a problem can have an :expansion �eld, like this:(define (problem trans-1)(:domain transportation)(:init) 12

(:action restart:parameters (?r - reactor):vars (?valve1 ?valve2 - valve ?switch1 - switch):precondition (and (not (running ?r))(not (melting-down ?r))(aux-valve ?r ?valve1)(main-valve ?r ?valve2)(main-switch ?r ?switch)):effect (running ?r):expansion (series (verify-valves-shut ?r)(parallel (open ?valve1)(open ?valve2))(toggle ?switch)(close ?valve1)))Table 5: The Nuclear-Reactor Action(:action ship:parameters (?pkg - cargo ?orig ?dest - location):precondition (at ?pkg ?orig):effect (at ?pkg ?dest):expansion :methods)(:method ship:parameters (?pkg - mail ?orig ?dest - location):expansion (forsome (?p - airplane)(series (in-context(load ?pkg ?p):precondition (at ?p ?orig))(fly ?p ?dest)(unload ?pkg ?p))))(:method ship:parameters (?pkg - cargo ?orig ?dest - location):expansion (forsome (?tr - truck)(series (in-context(load ?pkg ?tr):precondition (at ?tr ?orig))(drive ?tr ?dest)(unload ?pkg ?tr))))Table 6: The Shipping Action13

(:goal (at truck3 detroit))(:expansion (ship pkg13 cincinnati)))Here the planner must �nd a way to carry out the action (ship pkg13 cincinnati)in such a way that (at truck3 detroit) when it is done.Some of the other features of PDDL:� Domains can include numerical parameters, such as the maximum coor-dinate in the grid world.� It allows the speci�cation of timelessly true propositions, i.e., facts that arepresent in all situations (thus saving having to enter them in all problemde�nitions).� It allows one domain to be speci�ed as a descendant of one or more alter-native domains, so that it inherits types, axioms, actions, etc.� It allows several problems to share an initial situation, which need bewritten only once. One initial situation can be de�ned in terms of smallchanges to another.� Action expansions can include simple iterations, arbitrary acylic structuresof actions, speci�cation of conditions to be maintained true for some periodduring the plan, and more.In addition to de�ning the language, we felt it was important to implementa syntax checker and a solution checker. The syntax checker could verify thatdomains submitted by others were valid PDDL, and ensure that no feature wasused unless it was declared as a requirement. It could also count the amount ofadvice that was given. To make this possible, we required all planner-speci�cannotations to be indicated by a special
ag. The syntax checker could measurethe size of these annotations, and otherwise ignore them.The other key piece of software was a solution checker. For the competitionwe wanted to be able to generate random problems. We anticipated not evenknowing, for many of the problems, whether they had solutions or not. Someof the problems might have several solutions, some which might be quite longand involved. Having to check by hand if a solution was valid would be tediousand prone to error. We decided to automate it.Doing so turned out to be harder than anticipated, for two reasons. The�rst is that, to our knowledge, no one has ever written a solution checker for ahierarchical planner, which you may �nd surprising. The reason is that mosthierarchical planners do not treat prefabricated plans as part of the problemspeci�cation, but as advice on how to solve problems. Once an action sequencehas been found, the hierarchical superstructure can be dropped, and the actionsequence can be checked as though it had been found without the use of cannedplans. Checking an action sequence is easy: Just do a little deduction to verifythat every action in the sequence is feasible at the point where it is to beexecuted, and that the goal is true in the situation that results from executingthe last action. 14

(define (problem log-x-2)(:domain logistics-adl)(:objects package5 package4 package3 package2 package1 - objcity10 city9 city8 city7 city6 city5 city4 city3 city2 city1- citytruck10 truck9 truck8 truck7 truck6 truck5 truck4 truck3 truck2truck1 - truckplane4 plane3 plane2 plane1 - airplanecity10-1 city9-1 city8-1 city7-1 city6-1 city5-1 city4-1city3-1 city2-1 city1-1 - locationcity10-2 city9-2 city8-2 city7-2 city6-2 city5-2 city4-2city3-2 city2-2 city1-2 - airport)(:init (in-city city10-2 city10) (in-city city10-1 city10)(in-city city9-2 city9) (in-city city9-1 city9)(in-city city8-2 city8) (in-city city8-1 city8)(in-city city7-2 city7) (in-city city7-1 city7)(in-city city6-2 city6) (in-city city6-1 city6)(in-city city5-2 city5) (in-city city5-1 city5)(in-city city4-2 city4) (in-city city4-1 city4)(in-city city3-2 city3) (in-city city3-1 city3)(in-city city2-2 city2) (in-city city2-1 city2)(in-city city1-2 city1) (in-city city1-1 city1)(at plane4 city3-2)(at plane3 city7-2) (at plane2 city3-2)(at plane1 city6-2) (at truck10 city10-1)(at truck9 city9-1) (at truck8 city8-1)(at truck7 city7-1) (at truck6 city6-1)(at truck5 city5-1) (at truck4 city4-1)(at truck3 city3-1) (at truck2 city2-1)(at truck1 city1-1) (at package5 city1-2)(at package4 city7-2) (at package3 city3-2)(at package2 city10-1) (at package1 city2-2))(:goal (and (at package5 city4-2)(at package4 city6-1)(at package3 city1-1)(at package2 city9-2)(at package1 city3-1))))Table 7: The Logistics Problem LOG-X-2
15

Now suppose you add a serious requirement that the action sequence not justbe legal, but also instantiate the :expansion given as part of the problem de�-nition. The result is to superimpose a \parsing" problem on top of the standarddeductive problem. That is, the solution checker must �nd a way to group theactions into a hierarchical structure so as to instantiate the given expansion, in away analogous to the way a natural-language parser groups words into phrases.However, the problem is much more di�cult, for several reasons. PDDL allowsquanti�ers in expansions, of the form (forsome v A) and (foreach v C A).These occur in an action sequence if the right kind of instances of the actionexpansion A occur. In the case of a forsome, there must be one instance; inthe case of a foreach, there must be a set of instances satisfying condition C.In addition, two action expansions could, unless constrained otherwise, be in-terleaved in an arbitrary order, and the same primitive action could occur as apart of more than one complex action.It soon became clear that the problem of solution checking was going to beintractable unless the checker was given some hints. A solution to a problemwith hierarchical expansions was going to have to include a speci�cation ofexactly which higher-level actions occurred where. Even with this change, thealgorithm took a long time to develop, and it never was completely debugged.Fortunately, or unfortunately, the lack of a stable algorithm for checkingsolutions never became a problem because no contestants appeared for this partof the competition. We corresponded with several potential entrants, but noneof them got over the hurdles in the way of taking part. The main problem was,we believe, that the semantics of hierarchical planning have never been clari�edto the point where everyone in this area can be said to be working on the sameproblem. Our attempt to create a \lowest common denominator" notationsucceeded only in creating a new notation that matched no one's expectations.In addition, the hierarchical planning community is used to thinking of libraryplans as advice structures, which was a drastic departure from our assumptionthat the basic content of the plan library contained no advice, only \physics."Trying to make this assumption actually work was extremely di�cult. Theproblem is that no one has ever �gured out how to reconcile the semanticsof hierarchical plans with the semantics of primitive actions. Ordinary actionsequences satisfy a straightforward compositionality property: If you know thepreconditions and e�ects of two sequences of actions S1 and S2, then you caninfer the preconditions and e�ects of S1 followed by S2. Hierarchical plans donot have this property, at least not obviously.To take a simple example, consider the action restart , described in Ta-ble 5, for restarting a nuclear reactor. The action sequence h(verify-valves-shutr2), (open v30)i does not by itself restart the reactor, and neither does the ac-tion sequence h(open v29), (toggle sw53), (close v28)i, but the two to-gether do, assuming that all the relevant preconditions are satis�ed. In otherwords, a \conditional e�ect" of the second sequence is to restart the reactor,in a situation where the �rst sequence has (just? recently?) been executed.Conditional e�ects are not unusual in classical planning [12], but they normallytake the form of an e�ect that becomes true if and only if a certain secondary16

precondition was true before the action. This is the job of the when e�ect clausein PDDL. With hierarchical plans, we get a new kind of implicit precondition,that a certain standard plan be \in progress."Suppose that an action sequence looks like h(open v29), (toggle sw42),(close v28)i. Is it legal? Does it cause (running r2) to become true if v29 isthe auxiliary valve of r2 and sw42 is its main switch, and so forth? One mightthink that the answer is \Obviously not," because two actions are missing,namely (verify-valves-shut r2) and (open v31), assuming v31 is the mainvalve of r2. But to make this inference requires one to assume that these actionsdid not occur before the action sequence we explicitly mentioned.As it turned out, in the end these complexities did not a�ect the actualcompetition. We describe them in such detail to save future researchers fromrediscovering them.3 The ContestThe competition took place in June, 1998, but the contestants spent severalmonths preparing for it. Each of them had to alter the front end of their systemto accept problems expressed in PDDL. Because the language was brand-new,this was an iterative process, in which changes to the notation were suggestedand sometimes incorporated before the problems were speci�ed.Even more important, the form of the contest had to be worked out, andseveral sample problems had to be released, in order to give the contestants aclue about what their planners had to be capable of. A repository of problemswas begun at Yale, using as a nucleus the repository developed by the UCPOPgroup at the University of Washington. Contestants were invited to submit newproblems, and several did. In addition, some new domains were invented by thekeeper of the repository, me.3.1 Bargaining over ExpressivenessOver the six months leading up to the actual competition in June, 1998, therewas an intricate negotiation involving the committee and the community ofpotential contestants. The committee wanted to encourage the research com-munity to try new things; the community wanted the committee to focus on theareas their planners did well in.In the case of hierarchical planners this tension proved fatal. The researcherswith hierarchical planners lost interest rapidly as it became clear how great thedistance was between PDDL and the kind of input their planners expected.Many of the researchers in this community think of their planners as a crossbetween a programming language and a knowledge-acquisition system. Theyhave developed elaborate notations for capturing domain knowledge in the formof rules that push the planner toward particular kinds of solution. Unfortu-nately, PDDL de�nes all such notations as advice. To adapt these systems toPDDL would require factoring their input into two parts: a physics part that17

is identical for all planners, and an advice part that controls how the plannerreacts to the physics. The di�culty of doing this separation under the timeconstraints proved to be insurmountable. After a few exploratory conversationsall the hierarchical-planning researchers dropped out.In the case of classical planning the committee assumed at �rst that the ADLtrack was where most of the interest would be. ADL had been around sincethe mid-1980s, and several existing systems had been able to handle problemsexpressed in that format. However, much of the progress on planning algorithmsin the 1990s has been based on what might be called \propositional planning,"in which variables are eliminated from planning problems by generating up frontevery instance of every term that might be needed. With the variables gone, allthe machinery for matching literals and recording \codesignation constraints" [4]is not needed, and the search can focus on constraints among action terms andatomic formulas. The search process is simpler, and can a�ord to explore a lotmore possibilities. The resulting algorithms o�er a signi�cant improvement overolder approaches in many cases.Unfortunately, this power has been attained by sacri�cing some expressivity.The propositional-planning researchers have focused on the Strips notation forthe time being, and their planners lack the ability to handle problems involvingnumbers, nonatomic terms, and quanti�ers. Some of them also have troublewith context-dependent e�ects, in which the e�ects of an action depend on thecircumstances in which it is executed. These may sound like serious limitations,but in many cases one can work around them, at the cost of using cumbersomenotational tricks.For example, one of the domains we came up with for the competition wascalled the \Mystery" domain. We called it that to conceal its underlying struc-ture and make it harder to give planners advice about it. The domain actuallyconcerned a transportation network through which vehicles could move carryingcargoes. A vehicle could move from one node to a neighboring node if there wasfuel at the originating node. In PDDL:(:action move:parameters (?v - vehicle ?n1 ?n2 - node):precondition (and (loc ?v ?n1)(conn ?n1 ?n2)(fluent-test (> (fuel ?n1) 0))):effect (and (not (loc ?v ?n1))(loc ?v ?n2)(change (fuel ?n1)(- (fuel ?n1) 1))))In English: you can move a vehicle from node 1 to node 2 if the vehicle is atnode 1, node 1 is connected to node 2, and there is a nonzero amount of fuel atnode 1. The e�ect of the move is for the vehicle to be at node 2, and for thereto be one less unit of fuel at node 1.There are two problems with this action de�nition: It involves numbers, andit involves a context-dependent e�ect (the amount of fuel afterward depends18

on the amount of fuel before). In PDDL, a term like (fuel n) de�nes a
u-ent, a term whose value changes from node to node. The notation (change fa) means that the value of
uent f after the action is equal to the value ofexpression a before the action.It may seem as if this domain were simply o� limits to any planner that can'thandle numbers or context-dependent e�ects, but in fact there are ways to workaround these limitations. Fuel amounts start o� as nonnegative integers, neverchange except to become smaller by 1, and never become negative, so only apredictable set of natural numbers will occur in a given problem. Hence forevery problem we can supply a set of constants num0, num1, . . . , numK, whereK is the largest number that occurs in the problem statement; and we caninclude among the initial conditions(:init (just-less num0 num1)(just-less num1 num2). . .(just-less num9 num10)...)(in the case whereK = 10). These constants are declared as \pseudo-numbers":(:objects num0 num1 . . . num10 - pseudo-number)That eliminates the numbers; the next step is to eliminate the context-dependent e�ect. For this we use the old trick of adding arguments to theaction. With this change our action de�nition becomes(:action move:parameters (?v - vehicle ?n1 ?n2 - node?f1 ?f2 - pseudo-number):precondition (and (loc ?v ?n1)(conn ?n1 ?n2)(fuel-at ?n1 ?f1)(just-less ?f2 ?f1)):effect (and (not (loc ?v ?n1))(loc ?v ?n2)(not (fuel-at ?n1 ?f1))(fuel-at ?n1 ?f2)))Suppose veh29 is at node101, which has 3 units of fuel. Instead of saying, e.g.,\The action (move veh29 node101 node63) changes the fuel at node101 from3 to 2," we say, \The action (move veh29 node101 node63 num3 num2) is theonly feasible action of form (move veh29 node101 node63 ...)."It is somewhat discouraging that after thirty years of research we are backto the notational restrictions we started with. However, it did have one bene�t.We wanted to disguise the \Mystery" domain, and all of this verbosity helped dothat. We labeled nodes as \foods," vehicles as \pleasures," and cargo objects as\emotions." Instead of a single sort of pseudo-number, we introduced one, called19

\provinces," for fuel and another, called \planets," for space on vehicles. (loc vn) became (craves v n); (conn n1 n2) became (eats n1 n2). (fuel v k)became (local v k). The just-less predicate for numbers became (attacksk1 k2). Moving was called \feasting." So in the Strips style our action de�nitionbecomes:(:action feast:parameters (?v ?n1 ?n2 ?f1 ?f2):precondition (and (craves ?v ?n1)(food ?n1)(pleasure ?v)(eats ?n1 ?n2)(food ?n2)(locale ?n1 ?f2)(attacks ?f1 ?f2)):effect (and (not (craves ?v ?n1))(craves ?v ?n2)(not (locale ?n1 ?f2))(locale ?n1 ?f1)))There was also an ADL version, albeit without numbers, in which types andcontext-dependent e�ects were allowed. In that version, the action was de�nedas (:action feast:parameters (?v - pleasure ?n1 ?n2 - food):vars (?f1 ?f2 - province):precondition (and (craves ?v ?n1)(eats ?n1 ?n2)(locale ?n1 ?f2)(attacks ?f1 ?f2)):effect (and (not (craves ?v ?n1))(craves ?v ?n2)(not (locale ?n1 ?f2))(locale ?n1 ?f1)))3.2 ParticipantsAs a result of bargaining between the committee and the contestants, we arrivedat a Strips track and ADL track, neither of which could handle problems withnumbers. By April of 1998, we had two contestants who were planning toenter the ADL track, and eight who were planning to enter the Strips track.No one wanted to enter the hierarchical-planning track, and the other trackhad never gotten o� the ground. Nonetheless, we were happy with what wehad. The contestants were putting a tremendous amount of work into alteringtheir planners to take the PDDL notation. Unfortunately, for some of them the20

work was just too much, and three dropped out in the weeks leading up to thecompetition. The �nal participants in the Strips track were� IPP (Jana K�ohler, University of Freiburg, Germany)� Blackbox (Henry Kautz and Bart Selman, AT&T Labs and Cornell Uni-versity, US)� HSP (Hector Ge�ner and Blai Bonet, Simon Bolivar University, Venezuela)� STAN (Derek Long and Maria Fox, Durham University, UK)The two participants in the ADL track were� K�ohler's IPP and� SGP (Corin Anderson, University of Washington, US)All the planners were written in C/C++ except for SGP, which was written inLisp.As explained in the companion paper, all of these systems except HSP werebased to some extent on the Graphplan algorithm of [3]. HSP was based onheuristic search guided by means-ends analysis. In addition, Blackbox used sat-is�ability testing. All of the systems avoided repeated variable substitution bygenerating all required instances of propositions and action terms at the begin-ning. This lack of diversity in current research directions in classical planningmeans either that Graphplan on variable-free terms really is the best approachto planning, or that the summer of 1998 happened to coincide with the peakof a particularly intense fad. What was particularly striking was the completeabsence of partial-order, or \nonlinear," planning [13]. A few years ago manypeople thought that the superiority of partial-order techniques had been provenconclusively [2]. It seems doubtful that the arguments in its favor were allwrong, and it would be interesting to see partial-order planners compete infuture competitions.3.3 ScoringIn parallel with the design of domains, we were also designing the scoring mech-anism. This proved to be a di�cult challenge, one that we never really solved.At �rst we thought the biggest issue was going to be how to penalize a planningsystem for taking advice. Some members of the community feel that there isnothing wrong with advice; it was even suggested that a planner be rewarded forbeing able to take it. However, most people agreed that if planner A requiresa lot more advice than planner B to solve a problem, B should win if it doesalmost as well as A.Here is the scoring algorithm we proposed:The basic idea was to give each planner j a score on problem i equal to(Ni �Rij)Wi21

where Ni is the number of planners competing on problem i; Rij is the rankof planner j on problem i (0 for best program, N � 1 for worst, as explainedbelow); and Wi is the di�culty of a problem, de�ned asWi = medianjTijPmmediannTmnwhere Tbl is the time taken by planner l on problem b.Here is our method for computing Rij : Rank all planners lexicographicallyas follows:� Most important dimension: Correctness. There are two possible outcomesfor planner j on problem i, in order of decreasing winnitude: either it stopsand reports a correct answer, or it doesn't. In other words, either it1. Prints a correct solution or returns \NO SOLUTION" when thereisn't one.2. Or it prints an incorrect solution; or returns \NO SOLUTION" whenthere is one; or never stops and has to be stopped by hand.� Second dimension: Advice. De�neAij = aij +ADi;j=N(Di)where aij is the size of the advice given to planner j for problem i; ADj isthe size of the advice given to planner j for domain D (Di is the domainof problem i); and N(D) is the number of problems in domain D.We planned to measure the size of a piece of advice by counting the numberof symbols in it.� Third dimension: Performance. If a problem has no solution, this is justthe measured CPU time of planner j on problem i, or Tij . If it has asolution, and planner j �nds a solution, then we will replace Tij withTij(Lij)h, where Lij is the length of the solution and h = 0:5. Length isde�ned as number of steps, regardless of whether some could be executedin parallel. (If L = 0, we will treat the solution as of length 1.)Comments:1. The idea was to take solution length into account, but to discount it sothat it broke a tie between planners only if they had comparable solutiontimes. If planner P1 is 10 times slower than planner P2, it would have toproduce a plan 100 times shorter to win. If P2 produces a plan twice aslong, it must run in 70% of the time P1 takes to beat it. This is to re
ectthe classical presupposition that existence of a plan is more importantthan its size. (Making the exponent h bigger would make length morerelevant.) 22

2. If a planner required advice, it could never beat a planner that solves thesame problems with no advice. So it's worth giving a certain amount ofadvice only when you bet that no one will be able to solve the problemwith less.3. For some of the more di�cult machine-generated problems, we may notreally know if there is a solution. In that case, if no planner �nds a solution,we will assume that \NO SOLUTION" is the correct answer. If a plannerhas to be stopped by hand, then it will be taken to have returned \NOSOLUTION" after the amount of run time it actually spent (as close asthat can be estimated).Unfortunately, this scoring function, in spite of its arcane complexity, failedto match everyone's judgement about what was to be measured, as we willdiscuss below. Also, it turned out that our preoccupation with advice wasmisplaced. None of the competitors ever used any advice at all. A few years agoalmost every planner would have required a lot of advice, and it is remarkablehow big a change had occurred.3.4 DomainsIn the last month before the competition, everyone involved put in a tremendousamount of work, making sure that every planner worked on the sample problems.Contestants were invited to contribute problem domains of their own. The ideawas to allow each of them to bene�t from their areas of strength by having atleast one domain where they knew they would do well. Domains were submittedby the IPP group, the SGP group, and the Blackbox group.The �nal lineup of domains was this:1. The Mystery domain described above. It de�ned three actions, corre-sponding to loading something on a vehicle, unloading it, and moving thevehicle.2. \Mystery-prime:" This is the mystery domain with one extra action, theability to squirt a unit of fuel from any node to any other node, providedthe originating node has at least two units. The contestants knew thata modi�ed Mystery domain was coming, but did not actually see it untilthe �rst day of the competition.3. Movie: In this domain, the goal is always the same (to have lots of snacks inorder to watch a movie). There are seven actions, including rewind-movieand get-chips, but the number of constants increases with problem num-ber. Some planners have combinatorial problems in such cases. This do-main was created by Corin Anderson.4. Gripper: Here a robot must move a set of balls from one room to another,being able to grip two balls at a time, one in each gripper. There are three23

actions, move, pick, and drop. Most planners explore all possible com-binations of balls in grippers, overlooking the fact that all combinationsare equivalent, and giving rise to an unnecessary combinatorial explosion.(Contributed by Jana K�ohler.)5. Logistics: There are several cities, each containing several locations, someof which are airports. There are also trucks, which can drive within asingle city, and airplanes, which can
y between airports. The goal is to getsome packages from various locations to various new locations. (Createdby Bart Selman and Henry Kautz, based on an earlier domain by ManuelaVeloso.) Table 1 gives the complete ADL version of the logistics domain,developed by me from Selman and Kautz's Strips version.1 The Stripsversion has six action de�nitions instead of four, because an action withcontext-dependent e�ects has to be split into di�erent versions.6. Grid: There is a square grid of locations. A robot can move one grid squareat a time horizontally and vertically. If a square is locked, the robot canmove to it only by unlocking it, which requires having a key of the sameshape as the lock. The keys must be fetched, and may themselves be inlocked locations. Only one object can be carried at a time. The goal isto get objects from various locations to various new locations. The ADLversion of the domain has four actions, and the Strips version has �ve.(Created by Jana K�ohler, based on an earlier domain of mine.)7. Assembly: The goal is to assemble a complex object made out of subassem-blies. There are four actions, (commit resource assembly), (release re-source assembly), (assemble part assembly), and (remove part assem-bly). The sequence of steps must obey a given partial order. In addition,through poor engineering design, many subassemblies must be installedtemporarily in one assembly, then removed and given a permanent homein another. There was no Strips version of this domain.It would be pleasant if we could claim that these domains covered the entirerange of what planners can handle; or that these domains represent approxi-mations of real-world problems planners will eventually solve; or that withineach domain the problems are typical. Unfortunately, we can make none ofthose claims. Two of the domains, Movie and Gripper, were submitted be-cause problems in these domains were thought to be di�cult for some plannersto solve, even though the problems are easy for humans. The other domainswere chosen because it seemed, based on experience and informal experimen-tation, that it was possible to create hard problems in them. However, as isnow well known[8], it can be tricky to generate random problems that are hard.Randomly generated problems tend to be either extremely easy or impossible.(Some \impossible" problems are actually quite easy, because many programscan quickly verify that they are impossible.) The zone in between the subspace1This is not precisely the version of the domain used in the competition; that version hadan unimportant bug which has been removed.24

of easy problems and the subspace of impossible problems has been comparedto a \phase transition" in a physical system. Analyzing a domain to �gure outwhere the phase transitions are is not easy, and we did not attempt it for any ofthe domains in the competition. As a result, some of the randomly generatedproblems are too easy, and some are too hard. However, it does seem that manyare about right.4 ResultsThe competition took place at Carnegie Mellon University, in June of 1998, atthe same time as AIPS-98. We owe a debt of gratitude to the CMU sta�, es-pecially Bob McDivett, who got the computers running, and made sure thatthey were all identical. (The computers were 233MHz Pentium-based PC-compatibles, with 128 MBytes of primary memory, running the Linux operatingsystem.) The contestants and I arrived early at the conference in order to gettheir systems up and running. The next few days were an intense but exhila-rating e�ort. In the end we had to write quite a bit more code, and rethink ourscoring function completely.There were to be two rounds in the competition. The �rst was designedto allow contestants to get used to the environment and the problem domains.They would be allowed to run their programs several times and make changes inbetween. The programs that did best in Round 1 would be allowed to advanceto Round 2, where the rules were more stringent. Some new domains would beintroduced. Each planner could be run exactly once, with no tuning. Round2 would take place in \real time," as the conference proceeded, with programs'performance announced as they �nished.Everything went reasonably smoothly through Round 1. We had a total of170 problems, drawn from the Assembly, Gripper, Logistics, Movie, and Mysterydomains. All 170 appeared in the ADL track; in the Strips track, the Assemblyproblems were omitted, leaving 140. Table 8 summarizes the data on problemsizes. The Grid domain was reserved for Round 2. Contestants worked throughMonday, June 8, at 5 PM, when we declared Round 1 complete. On the ADLtrack, IPP outperformed SGP so convincingly that it was declared the winner.Both programs did well, but SGP was written in Lisp, and rarely matched theraw speed of the other systems, which were written in C or C++. We willdisplay the results below.The results for the Strips track were not at all clear. For one thing, we failedto anticipate that several of the contestants would simply not try to solve someof the problems. If their planner failed on almost all of the easiest 10 problemsin a domain, they didn't see the point of letting it grind forever on the next 20.The scoring function as originally designed gave one point to a program thattried a problem, failed, and took longer than any other program that tried andfailed. It gave zero to a program that didn't try.An even worse problem was that one planner (STAN) spent an hour eachon the more di�cult Gripper problems before giving up on them. This was25

Domain Number Av. Obs Av. Inits Smallest LargestAssembly 30 48 118 67 270Gripper (ADL) 20 25 26 13 89Gripper (Strips) 27 53 23 137Logistics (ADL) 30 171 155 58 960Logistics (Strips) 171 342 96 1470Movie (ADL) 30 98 3 28 173Movie (Strips) 98 99 51 341Mystery (ADL) 30 44 82 46 233Mystery(Strips) 44 126 64 317For each domain, the number of problems, the average number of objects perproblem, and the average number of \inits" (propositions true in the initial situ-ation) are shown. The columns labeled Smallest, and Largest give the combinedsize (objects + inits) for the smallest problem in the domain and the largest.The Mystery-prime domains had exactly the same problems as the Mysterydomain, and so are not listed separately here.Table 8: Problem Sizes | Round 1much longer than any other planner spent on any problem. Only two planners,STAN and HSP, tried the di�cult Gripper problems, so the median time to solvethem was quite large, and these Gripper problems ended up carrying a largefraction of the weight. HSP spent less time than STAN, and actually solved theproblems (although not optimally), so it got a higher overall score on Round1 than anyone else. The HSP team deserves credit for solving these problems,but it seems clear that the scoring function's judgement of their importancedisagrees with intuition.At the end of Round 1, therefore, all four contestants in the Strips trackcould argue that their systems had done well. A total of 88 problems had beensolved by at least one planner. HSP solved more problems than any othersystem, and found the shortest solution more often. Blackbox had the shortestaverage time on problems it attempted, but IPP had the shortest solution timeon more problems. STAN was in second place for shortest solution time, andsecond place for overall score.The committee was unhappy with the holes that had been revealed in thescoring function. We tried to achieve a consensus on what to replace it with,and �nally gave up. We decided to let all the programs advance to Round 2,measure their performance as well as possible, and let history judge who, ifanyone, did the best. Once this decision was made, Round 2 was a lot of fun.We continued to observe the same pattern as in Round 1, that di�erent plannerssucceeded in di�erent ways.For Round 2, we used the Grid, Logistics, and Mystery-prime domains, all intheir Strips versions. There were a total of 15 problems, of which 12 were solved26

Domain Number Av. Obs Av. Inits Smallest LargestLogistics (Strips) 5 33 67 63 159Mprime (Strips) 5 40 106 82 237Grid (Strips) 5 66 328 209 613Table 9: Problem Sizes | Round 2by at least one program. Table 9 shows the sizes of these problems. We triedto generate problems that the planning systems could be expected to handle inthe time allotted.Tables 10 and 11 summarize how hard the problems were that some plannercould solve. For each domain we show the largest problem that any plannercould solve, and the problem whose shortest known solution is longer than thatof any other problem. These �gures should not be taken too seriously. For onething, the fact that a problem was not solved by any planner may mean thatit has no solution; more on this below. In addition, the fact that no planner�nds a short solution to a problem does not mean that there isn't one. Togive a concrete idea of the performance of the planners, Table 7 contains thede�nition of problem STRIPS-LOG-X-2, which occurred during Round 1 of thecompetition. It mentions 49 objects and 68 inits, for a total size of 147. BothSTAN and Blackbox found 32-step plans to solve this problem; HSP found a44-step plan. Blackbox's plan is shown in Table 12.Tables 13{15 give the results for both rounds. The planners are sorted inalphabetical order in each table. These results are not exactly the same as thosewere presented at the conference, because of some minor glitches that muddiedthe presentation. Three of IPP's solutions were checked and found to be wrong.It turned out that the reason for this was a trivial bug in the output printer,which caused all occurrences of one particular action to be garbled. In thesetables we have counted these as successes.There are two important caveats about these data:1. We measure the length of the plan found by counting the total numberof steps in it. However, for many of the planners this may not be theappropriate measure. Planners like Blackbox, IPP, and STAN �nd theplan with the shortest \parallel length," in which several steps are countedas taking one time unit if they occur as a substring at some point in theplan and the substring could have occurred in any order. The plan withthe shortest parallel length may not be the plan with the least number ofsteps. Which of these numbers is a better measure of plan quality is notalways obvious.2. If no planner found a solution to a problem, it simply doesn't enter intoour statistics. But in some cases some of the planners were able to provethere was no solution. We discuss this further below.For further analysis of results, see the companion paper.27

Largest Plan Solution Longest SolutionDomain Solved Length Time Solution TimeGripper (ADL) 29 47 225730 47 225730Gripper (Strips) 137 165 33210 165 33210Logistics (ADL) 109 26 17400 26 17400Logistics (Strips) 180 112 788914 112 788914Movie (ADL) 173 7 50 | |Movie (Strips) 341 7 40 | |Mystery (ADL) 159 4 17810 13 9280Mystery(Strips) 304 16 1789 16 789Mprime (ADL) 131 10 24240 12 1960Mprime (Strips) 214 4 7141 11 5214For each domain, data are shown for the hardest problems solved. In the leftside of the table, data are displayed for the largest problem solved. Call it B.\Largest solved" is the size of B, de�ned as the sum objects + inits. \PlanLength" is the length of the shortest solution of B found, and \Solution Time"the time the fastest planner took to �nd that solution. In the right side of thetable, data are displayed for the problem whose shortest solution was longest.Call it L. \Longest Solution gives the length of the shortest solution of L found,and \Solution Time" is the time the fastest planner took to �nd that solution.Times are in milliseconds.Table 10: Hardest Problems | Round 1
Largest Plan Solution Longest SolutionDomain Solved Length Time Solution TimeLogistics (Strips) 159 31 66170 59 170394Mprime (Strips) 237 6 4991 7 2537Grid (Strips) 209 14 2505 14 2505This table is in the same format as table 10. Times are in milliseconds.Table 11: Hardest Problems | Round 2

28

((load-airplane package4 plane3 city7-2)(load-truck package2 truck10 city10-1)(load-airplane package3 plane2 city3-2)(drive-truck truck1 city1-1 city1-2 city1)(fly-airplane plane4 city3-2 city2-2)(fly-airplane plane1 city6-2 city10-2)(drive-truck truck6 city6-1 city6-2 city6)(drive-truck truck3 city3-1 city3-2 city3)(load-airplane package1 plane4 city2-2)(drive-truck truck10 city10-1 city10-2 city10)(fly-airplane plane3 city7-2 city6-2)(fly-airplane plane2 city3-2 city1-2)(unload-airplane package4 plane3 city6-2)(unload-truck package2 truck10 city10-2)(fly-airplane plane4 city2-2 city3-2)(unload-airplane package3 plane2 city1-2)(load-airplane package5 plane2 city1-2)(fly-airplane plane2 city1-2 city4-2)(load-airplane package2 plane1 city10-2)(unload-airplane package1 plane4 city3-2)(load-truck package3 truck1 city1-2)(load-truck package4 truck6 city6-2)(drive-truck truck6 city6-2 city6-1 city6)(unload-airplane package5 plane2 city4-2)(fly-airplane plane1 city10-2 city9-2)(drive-truck truck1 city1-2 city1-1 city1)(load-truck package1 truck3 city3-2)(unload-airplane package2 plane1 city9-2)(drive-truck truck3 city3-2 city3-1 city3)(unload-truck package3 truck1 city1-1)(unload-truck package4 truck6 city6-1)(unload-truck package1 truck3 city3-1))Table 12: Blackbox's Solution to the Problem of Table 7Planner Av. Time Problems Solved Fastest ShortestIPP 21396 69 68 68SGP 14343 38 5 35A total of 69 problems were solved by one or both of the planners; there was atie for fastest planner 4 times. Times are in milliseconds.Table 13: Results for Round 1 | ADL Track29

Planner Av. Time Problems Solved Fastest ShortestBLACKBOX 1498 63 16 55HSP 35483 82 19 61IPP 7408 63 29 49STAN 55413 64 24 47A total of 88 problems were solved by at least one planner. Times are in mil-liseconds. Table 14: Results for Round 1 | Strips TrackPlanner Av. Time Problems Solved Fastest ShortestBLACKBOX 2464 8 3 6HSP 25875 9 1 5IPP 17375 11 3 8STAN 1334 7 5 4A total of 12 problems were solved by at least one planner. Times are in mil-liseconds. Table 15: Results for Round 2 | Strips Track5 ConclusionsThe planning competition was a valuable exercise. For the �rst time researchershad to compete against each other on exactly the same problems. The PDDLnotation made this possible, and hopefully it will continue to serve this role.The PDDL syntax checker and solution checker, as well as all the problems andresults from the competition, can be found athttp://www.cs.yale.edu/ dvmWe encourage researchers to compare their planning systems against the pro-grams that competed. However, the existence of this repository is only a �rststep toward a comprehensive set of benchmark problems for automated planners.We encourage others to submit candidate benchmarks to drew.mcdermott@yale.edu,or to the competition committee for the 2000 Planning Competition, chaired byFahiem Bacchus (fbacchus@cs.toronto.edu).The competition documented a dramatic increase in the speed of planningalgorithms. Some of the problems in the competition had solutions of 30 stepsor more, extracted from problems with dozens of propositions to deal with. Tenyears ago planners required signi�cant amounts of domain-speci�c advice inorder to achieve performance like this; the current generation requires no adviceat all.To an extent this gain has been won by restricting the types of problemsthat can be worked on. Most of the planners could handle Strips-style problemsand not much else. Some of these restrictions are only temporary, and we wouldurge the planning community to explore ways of removing them. However, the30

focus on classical planning, where perfect information is assumed, seems to bean intrinsic constraint on most planners currently being developed. There'snothing wrong with this focus, but if the current research is really leading topowerful algorithms, it will soon be time to show them working on realisticclassical-planning problems. For instance, combining features of the Logisticsand Mystery domains would get us close to real-world transportation planningwith capacity constraints. Perhaps this is a reasonable target for the communityto aim for.There is a remarkable divergence of opinion on whether and how plannersshould take \advice", that is, domain- or problem-speci�c guidelines that arenot strictly necessary in de�ning the domain, but constrain the search for plans.Some researchers feel that any need for advice is a weakness, while others thinkthat there is unlikely to be a general-purpose planning algorithm that solvesall realistic problems, so the issue is not whether domain-speci�c heuristics arenecessary, but how easy or natural it is to tell a planner about them. In thiscompetition the �rst camp decided the issue, probably because I am in thatcamp. But none of the competitors could resist the temptation to ask for a\little bit" of \trivial" advice. For instance, some of the propositional plannersmust set a bound on the length of a plan before doing a search. If the bound isunknown, they must search for it by starting with a short bound and extendingit after each failure. A serious argument was made that this number should begiven to the planner in advance. The anti-advice people succeeded in arguingthat this one number constituted an enormous hint. (Among other things, ittells the planner that a solution exists.) In other cases, the disagreement becamean impasse. For example, many hierarchical planners (especially SIPE [14]) givedeductive rules a \procedural interpretation," so that they are used in only onedirection. P � Q is interpreted to mean that Q is caused by P , which thengets generalized to \Execute Q whenever P becomes true." This can be a verydirected way of getting a planner to do something, and once you get used tothinking in these terms it's hard to recast problems as pure physics plus someextra advice.We hope the competition will become a regular part of the AIPS conference,thereby continuing to exert pressure on the planning community. In particular,we hope the next competition deals with the following issues:� There should be competitions involving hierarchical planning, but alsorun-time (reactive) planning, and decision-theoretic planning.� The issue of plan quality should be addressed more carefully. Di�erentproblem domains have di�erent de�nitions of optimality, and these shouldbe made explicit in the domain or problem de�nitions. Plan length (se-quential or parallel) is only a crude measure of plan cost; more realisticmeasures are needed. In many domains the problem of �nding an optimalplan is much more di�cult than the problem of �nding a feasible one, andin those cases it may be desirable to give planners a big bonus for comingclose to the optimum. 31

� Some planners can prove that a problem has no solution; others just workfor a while and then declare that they can't solve it. The former should berewarded. The problem is to verify that a planner's output is correct. Inthe case where it outputs a proposed solution as a sequence of steps, thatsequence can be simulated to see if it is feasible and actually brings aboutthe desired situation. The issue is what it should output in the case whereit proves that there is no solution. One possibility is that it can produce aformal proof in �rst-order logic, in which case the solution checker wouldjust be a proof checker. But most systems that prove there is no solutiondo not currently produce such a proof, and it would probably be a majorpain to give them the ability to produce one.� Many of the problems in the competition were produced by random prob-lem generators. It is di�cult to ensure that randomly generated problemsare \interesting," i.e., not easy or impossible to solve. One way to getaround this di�culty is to make problem design a more important partof the competition, and encourage participants (and others) to producetricky problems.� A more strenuous e�ort should be made to accommodate planners thatrequire domain-speci�c advice. Ideally, a reward mechanism should befound that gives points for ease of advising, and more creative ways shouldbe sought of combining PDDL with planner-speci�c advice.Acknowledgements: Thanks to the members of the committee and the con-testants for making this event possible. Thanks to the CMU sta� for technicalsupport. Thanks to Blai Bonet, Henry Kautz, Manuela Veloso, David Wilkins,and the referees for comments on this paper. Funding for the competition wasprovided by DARPA.References[1] Ronald C. Arkin. The 1997 Aaai mobile robot competition and exhibition.AI Magazine , 19(3):13{17, 1998.[2] Anthony Barrett and Daniel S. Weld. Partial-order planning: evaluatingpossible e�ciency gains. Arti�cial Intelligence , 67(1):71{112, 1994.[3] Avrim L. Blum and Merrick L. Furst. Fast planning through planninggraph analysis. In Proc. Ijcai, 1995.[4] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence ,32(3):333{377, 1987.[5] Kutluhan Erol, Dana Nau, and James Hendler. Htn planning: complexityand expressivity. In Proc. AAAI-94, 1994. Seattle.32

[6] Richard Fikes and Nils J. Nilsson. Strips: A new approach to the applica-tion of theorem proving to problem solving. Arti�cial Intelligence 2, pages189{208, 1971.[7] David M. Hart and Paul R. Cohen. Predicting and explaining success andtask duration in the Phoenix planner. In Proc. First Int'l. Conf. on AIPlanning Systems, pages 106{115, 1992.[8] Scott Kirkpatrick and Bart Selman. Critical behavior in the satis�abilityof random boolean expressions. Science 1994, 264(May):1297{1301, 1994.[9] John McCarthy and Patrick Hayes. Some philosophical problems from thestandpoint of arti�cial intelligence. In Bernard Meltzer and Donald Michie,editors,Machine Intelligence 4, pages 463{502. Edinburgh University Press,1969.[10] MUC. Proc. Third Message Understanding Conference. Morgan Kau�man,1991.[11] MUC. Proc. Fourth Message Understanding Conference. Morgan Kau�-man, 1992.[12] Edwin Peter Dawson Pednault. Adl: Exploring the middle ground betweenStrips and the situation calculus. In Proc. Conf. on Knowledge Represen-tation and Reasoning 1, pages 324{332, 1989.[13] Daniel Weld. An introduction to least-commitment planning. AI Magazine,1994.[14] David Wilkins. Practical Planning: Extending the Classical AI PlanningParadigm. Morgan Kaufmann Publishers, Inc, 1988.

33

