Trampolined Style

Steven E. Ganz*
Indiana University

Abstract

A trampolined program is organized as a single loop
in which computations are scheduled and their ex-
ecution allowed to proceed in discrete steps. Writ-
ing programs in trampolined style supports primi-
tives for multithreading without language support
for continuations. Various forms of trampolining
allow for different degrees of interaction between
threads. We present two architectures based on an
only mildly intrusive trampolined style. Concur-
rency can be supported at multiple levels of granu-
larity by performing the trampolining transforma-
tion multiple times.

1 Introduction

Trampolined style is a way of writing programs such
that a single “scheduler” loop, called trampoline,
manages all transfers of control." Computations
are executed in discrete steps. Whenever a compu-
tation performs a unit of work, the remaining work
is returned to the scheduler.

Trampolining has been applied to interpreters
for reflection [2] as well as for process abstrac-
tions [6]. A form of trampolining has been applied
to arbitrary programs by Tarditi, et al., for proper
C implementations of ML tail calls [23]. In the im-

*This work was supported in part by the National Sci-
ence Foundation under grant CDA-9312614. Author’s ad-
dress: Department of Computer Science, Indiana Univer-
sity, Bloomington, Indiana 47405. sganz@cs.indiana.edu.

fThis work was supported in part by the National Sci-
ence Foundation under grant CCR-9633109. Author’s ad-
dress: Department of Computer Science, Indiana Univer-
sity, Bloomington, Indiana 47405. dfried@cs.indiana.edu.

¥This work was supported in part by the National Sci-
ence Foundation under grants CCR-9629801 and CCR-
9804115. Author’s address: College of Computer Science,
Northeastern University, Boston, Massachusetts 02115.
wand@ccs.neu.edu.

LCompare this to the Kleene Normal Form Theorem [14],
which asserts that any computable function over the natu-
ral numbers can be represented with a single use of mini-
mization and otherwise only primitive-recursive operations.

Daniel P. Friedman'

Indiana University

Mitchell Wand?
Northeastern University

plementation of the Icsla language, Queinnec and
De Roure have applied a transformation related to
trampolining to arbitrary programs, allowing the
multiprocessing primitives to be defined as simple
procedures or macros [20].

We present trampolined style through two tram-
polining architectures. This categorization is by no
means to be considered exhaustive or fundamen-
tal. Rather, our choice of architectures is a sam-
pling meant to demonstrate the amount of varia-
tion possible. In general, the style involves delay-
ing tail calls so that they take place within a loop.
The first architecture allows for stepping by having
each computation yield a thread after each unit of
work is performed. We present three variants of
this architecture, for a one-, two- or multi-thread
system. Its single-thread variant is used to demon-
strate sequential composition, breakpoints and en-
gines. The second architecture allows for dynamic
thread creation and termination by having each
computation yield a list of threads to be added to
the thread queue at each step.

Trampolined style is parameterized over a type
constructor T and the definitions of three proce-
dures: bounce, return, and a scheduler. The pa-
rameter to T corresponds to the type of the result
of a computation, so a thread of type T(«) is an in-
termediate state of a computation returning a value
of type . The type T is defined such that T(a) =
a+ (unit > T(@)). The return and bounce proce-
dures then correspond to the injections ¢; and ¢,
respectively.

In this introduction we present several examples
of growing complexity that illustrate our style of
trampolining. They rely on two very familiar pro-
grams: accumulator-style factorial and determining
membership in a list of numbers. In these exam-
ple programs, all tail calls are wrapped in (bounce
(lambda () ...)) and all values in tail position
are wrapped in (return ...). Therefore the out-
put type of both programs is T(a).

(Simple Trampolined Procedures)=
> (define fact-acc
(lambda (n acc)
(if (zero? n)
(return acc)
(bounce
(lambda ()
(fact-acc
(subl n)
(* acc n)))))))
> (define mem?
(lambda (n 1ls)
(cond
[(null? 1s) (return #f)]
[(= (car 1s) n) (return #t)]
[else
(bounce
(lambda ()
(mem? n (cdr 1s))))1)))
If we define return to be identity and bounce to be
(lambda (thunk) (thunk)), the programs work as
expected.

1.1 Simple Trampolining

We first present a single-thread architecture. Our
initial definition of bounce packages the remaining
computation so that it can be resumed by a sched-
uler. The returned value is packaged to instruct
the scheduler to terminate.

We assume a simple record facility. The record
types done and doing correspond to the two vari-
ants of threads. The record type done represents a
complete computation and holds a result value of
any type. The record type doing represents an in-
complete computation and holds a thunk that per-
forms the remaining work.

(Record Definitions)=
(define-record done (value))
(define-record doing (thunk))
The procedure return creates a done thread.
(return Definition)=
(define return
(lambda (value)
(make-done value)))
and the procedure bounce creates a doing thread.
Its argument is always a delayed computation,
modeled by a procedure of no arguments.
(bounce Definition)=
(define bounce
(lambda (thunk)
(make-doing thunk)))
If a computation has completed, the scheduler,
called pogo-stick, terminates; otherwise it re-
sumes the computation. Therefore, its type is
T(a) — a.
(Scheduler for one thread)=
(define pogo-stick
(lambda (thread)
(record-case thread
[done (value) value]
[doing (thunk) (pogo-stick (thunk))])))
The first example calculates the factorial of a num-
ber in trampolined style:
(Single-computation Ezample)=
> (pogo-stick (fact-acc 5 1))
120

This computation builds five doing records and, as
we might expect, one done record. We discover
further uses of pogo-stick in Section 3.

1.2 Interleaved Trampolining

We can arrange for two computations to be in-
terleaved by using seesaw instead of pogo-stick.
They differ in that seesaw takes another compu-
tation as an additional argument. Execution of
the two computations alternates, and seesaw termi-
nates when either of the computations does. Thus,
its type is T(a) x T(a) — a.?
(Scheduler for two threads)=
(define seesaw
(lambda (down-thread up-thread)
(record-case down-thread

[done (down-value) down-value]

[doing (down-thunk)

(seesaw up-thread (down-thunk))1)))

We demonstrate the use of seesaw by calculating
the factorial of a number together with a list mem-
bership calculation:
(Double-computation Example)=
> (seesaw
(fact-acc -1 1)
(mem? 120 ’(100 110 120 130)))
#t

Although the fact-acc computation does not ter-
minate, the mem? computation does, which causes
seesaw to terminate as well. This is made pos-
sible by the replacement of the separate loops in
fact-acc and mem? by a single loop in seesaw. The
mem? computation builds two doing records and a
done record. The fact-acc computation builds
four doing records: one before the trampoline is
entered, two before the mem? computation is com-
pleted, and one more before the done record is pro-
cessed by seesaw.

A trampoline is a generalization of a seesaw that
allows any number of computations to be inter-
leaved. Our first trampoline is the natural exten-
sion of seesaw to more than two threads. By our
choice of argument order for the call to append, we
stipulate that the thread list behaves like a round-
robin queue. Its type is (list T(a)) — a.®

2We do not distinguish the types of individual compu-
tations, but assume that « includes their union. If we were
to distinguish the types of the computations running on
seesaw, its type would be (T(a) x T(3)) — (a +3). We
would then need to have seesaw toggle a boolean value with
each iteration to determine which thread to process. This
would lead us to identify the computation that returned the
result.

3As with seesaw, we can distinguish the types of
the computations, giving a type for trampoline of
Mi[T(a;)] — Xi[ai]. Then replace the toggling of a boolean
with the incrementing of an integer modulo the number of
threads.

(trampoline for Multiple Computations)=
(define trampoline
(lambda (thread-queue)
(record-case (car thread-queue)
[done (value) value]
[doing (thunk)
(trampoline
(append
(cdr thread-queue)
(1ist (thunk))))1)))

We test trampoline by running two endless facto-
rial computations together with a single list mem-
bership computation.
(Multi-computation Ezample)=
> (trampoline
(list
(fact-acc -1 1)
(fact-acc -1 1)
(mem? 120 (100 110 120 130))))
#t

As with the previous example, the mem? computa-
tion builds two doing records and a done record,
and each fact-acc computation builds four doing
records.

In the remainder of this paper, we present the
trampolining transformation in more detail. We de-
fine trampolining architectures of increasing com-
plexity and then extend the style in accordance
with particular idioms, observing how new control
behavior related to multithreading becomes possi-
ble. Throughout, we attempt to make this style of
programming as natural as possible. Section 2 more
formally introduces the trampolining transforma-
tion. The main part of the paper follows in Sections
3 and 4 where we describe two trampolining archi-
tectures and the operations that can be supported
by extending the style in each case. We then show
in Section 5 how to vary the granularity of con-
currency with multiple iterations of trampolining.
In Section 6 we show another way in which our
methodology has been used: continuation-passing
style (CPS) and the call/cc operator. We take a
closer look at the history of trampolining in Sec-
tion 7. Section 8 concludes.

2 The Trampolining Transformation

When is trampolining possible? We have seen that
we can trampoline fact-acc and mem?. What do
their definitions have in common? A subexpression
is in tail position if and only if it has no control
context within any immediately enclosing lambda
expression, or has no control context at all and is
not enclosed in a lambda expression. A program
is in tail form if and only if all non-primitive ap-
plications are in tail position. Any program in tail
form can be rewritten in trampolined style. Thus,
we can trampoline any program by first rewriting
it in CPS [9, 24]. When a CPS program with fi-
nal continuation (lambda (z)) is trampolined,
the final continuation is rewritten as (lambda (z)
(return z)). This is equivalent to passing return
as the final continuation. This is the only occur-
rence of return in such programs. But we can also
rewrite many other programs in trampolined style,

as demonstrated by our earlier examples. This is
an advantage of our approach over others who have
relied on variants of CPS [20]. Wadler’s monadic
transformation [25], based on Moggi’s [17], also pro-
duces programs in tail form. Any such programs
are amenable to our transformation.

E = ¢ | z | (lambda (z) E) | (set! z §)
| (¢8S) | (if SE E) | (begin S E)
| (85)
S u= ¢ | z | (lambda (z) E) | (set! z §)
| (¢S) | (if S S S) | (begin S §)
T[] (return c)
T[z] = (return z)

T[(lambda (z) E)] = (return (lambda (z) T[E]))
T[(set! z S)] = (return (set! z ¢[S]))
T(c §)] = (return (c 1[S]))

T((if S E; Ex)] = (if t[S]| T[E:] T[E:])
T[(begin S E)] = (begin t[S] T[E])
T[(S: S2)] (bounce
(1ambda()
(¢[S:] t[S2])))
t[c] c
tlz] = =
t[(lambda (z) E)] = (lambda (z) 7[E])
t[(set! z §)] = (set! z t[SI])
ti(c 5 = (ct[S])
[(1f S1 Sz 53)] = (if t[51] t[SQ] t[Sg])

t[(begin S; S2)] (begin t[S;] £[S2])

Figure 1: Trampolining Transformation

We demonstrate how to transform a tail-form
expression into trampolined style. Throughout the
original program, all tail calls of user-defined proce-
dures are wrapped in (bounce (lambda () ...)),
and all simple values in tail position are wrapped in
(return ...). Figure 1 is a more formal presenta-
tion of the trampolining transformation. 7 takes a
tail-form expression F given by the grammar; the
auxiliary transformation ¢ is used for simple ex-
pressions S. We use (possibly subscripted) E, S,
z, and ¢ as metavariables for tail-position expres-
sions, simple expressions, variables, and constants,
respectively. The program resulting from applying
7 must be wrapped in (scheduler ...) to be prop-
erly executed.

The transformation ¢ need not handle applica-
tions because programs are presumed to be in tail
form. The call/cc operator can be treated as a
primitive. We use 7 over derived forms (such as
let, letrec, and cond), although those cases are
not specified here.

Primitives accepting higher-order arguments
(such as map) deserve special mention. Generally,
such primitives can easily be implemented in the

source language. The natural implementations are
not tail recursive. One option is to convert the nat-
ural implementations to tail form and then tram-
poline them. Calls to the primitive are then just
treated as tail calls. Another option is to only use
the primitives with “safe” higher-order arguments
that are guaranteed to terminate. In this case,
the arguments should not be trampolined, and the
primitive call should be considered as not trampo-
lined in the sense described above. Such primitive
calls must not be wrapped in return forms (and
should not be in tail position).

We need not trampoline an entire program. It
may be appropriate to trampoline only a part. If
a lambda expression is not trampolined, then any
applications in which it is the operator must not
be wrapped in a bounce form (and should not be
in tail position). Any such applications are treated
as atomic. Other, nested, lambda abstractions may
still be trampolined.

Not all of the occurrences of (bouce (lambda
() ...)) dictated by the transformation are nec-
essary. Of all tail calls involved in a possible loop,
at least one must be an argument to bounce. Oth-
erwise, we might spark an unending chain of invoca-
tions of a tail-recursive procedure, without control
ever being released. No other instances of bounce
are necessary.

As an aside, we consider what calls to bounce
might be necessary to trampoline a program in
CPS. In particular, could we get by with just an-
notating the calls to the continuations? The an-
swer is “no”. In many CPS computations (such as
(fact-cps -1 (lambda (x) x))), the first contin-
uation is not invoked until the calls to the recursive
procedure bottom out. The presence of another
bounce call in the continuation argument is of no
help in avoiding the starvation of other threads.

The transformation rules above are incomplete
because they leave bounce and return unspeci-
fied. The various definitions of bounce and return
can each be interpreted as equations that complete
the transformation rules above. Although we have
chosen to define bounce and return as procedures
in implementing the system, a macro-based imple-
mentation would be more consistent with that in-
terpretation. Such an implementation would pro-
vide simpler transformed programs and would not
require the (lambda () ...) as part of the user’s
interface. This applies not only to bounce and
return, but to the extensions to trampolined style
presented below.

3 Stepping

In this section, we apply the pogo-stick architec-
ture to several problems. Each requires an exten-
sion to the style and thus the transformation, al-
lowing for expressions that evaluate to threads in
non-tail position. We first demonstrate a tool, less
drastic than the CPS transformation, for extend-
ing the domain of the trampolining transformation.
Next we provide facilities for breakpoints and en-
gines.

3.1 Sequential Composition

The next example calculates the presence of the
factorial of a number in a list. We cannot organize
it in the obvious way, because the call to fact-acc
would not be in tail position. That call returns a
thread record that can be passed to pogo-stick to
complete the fact-acc computation, returning a
number that can be passed to mem?. The example
runs as follows:
(Double pogo-stick Ezample)=
> (pogo-stick
(mem?
(pogo-stick (fact-acc 5 1))
’(100 110 120 130)))
#t

For pogo-stick, this is fine, but we have already
seen generalizations that allow for multiple con-
current threads. This naive strategy would lead
to starvation of other computations when the first
computation in this sequence runs indefinitely. We
see in Section 5 below how this can be handled
more safely. Alternatively, we define a sequential
composition operator over a procedure written in
trampolined style and a thread. The procedure
sequence takes a procedure of one argument and
a thread. It completes the execution of the thread
and feeds its result to the procedure. Its type is
((a = T(a)) x T(@)) = T(a).
(sequence Definition)=
(define sequence
(lambda (f thread)
(record-case thread
[done (value)
(f value)]
[doing (thunk)
(bounce
(lambda ()
(sequence f (thunk))))]1)))

The second argument to sequence is a trampolined
expression that yields a thread. Until its computa-
tion terminates, each intermediate thread record is
dropped to the scheduler as part of another call to
sequence to ensure the execution of £. Upon ter-
mination, the value of the computation is passed to
f and sequence is no longer involved.

For generality, we might want the second argu-
ment to be a single-parameter procedure, and re-
turn a single-parameter procedure. The procedure
seq-comp satisfies that goal. We can use sequence
to implement seq-comp. The type of seq-comp is
(0= T(@) x (@ — T(@))) = (@ — T(a)).
(seq-comp Definition)=

(define seq-comp

(lambda (f g)
(lambda (x)
(sequence f (g x)))))

This composition procedure is defined over pro-

cedures of one argument, so we curry fact-acc and
mem? before proceeding with our example.

(Curried Trampolined Procedures)=
> (define fact-acc-curry
(lambda (acc)
(lambda (n)
(if (zero? n)
(return acc)
(bounce
(lambda ()
((fact-acc-curry
(* acc n))

(subl n)))))))

> (define mem?-curry
(lambda (1s)
(lambda (n)
(cond
((null? 1s) (return #f))
((= (car 1s) n) (return #t))
(else
(bounce
(lambda ()
((mem?-curry (cdr 1s))

n)>>)))))

Significantly, it is not necessary that these proce-
dures be fully trampolined. Each returns a lambda
expression directly, not through return. This is
acceptable, because we can guarantee that all ap-
plications of the inner procedure occur in non-tail
position (and are not assumed to be threads). To
avoid starvation of other threads, this should not
be attempted unless one can also guarantee termi-
nation of the non-tail call. Now, the example.
(Simply Trampolined Test)=
> (pogo-stick
((seq-comp
(mem?-curry ’(100 110 120 130))
(fact-acc-curry 1))

5))
>
#t

3.2 Breakpoints

We next show how to extend our protocol to enable
the computation to be temporarily halted. We in-
troduce break as another interface procedure that
intercepts a thread (in tail position) and requests
authorization from the console via resume before
returning it to the scheduler. Alternatively, the
user can return from the computation at arbi-
trary breakpoints with a ground value. We assume
syncase, a simple pattern-matching facility. The
type of break is T(a) — T(a).
(Stepping)=
(define break
(lambda (thread)
(letrec ([loop
(lambda ()
(printf "% ")
(syncase (read)
[’ (resume)
thread]
[‘(return ,exp)
(return exp)]
[else
(bounce loop)1))1)
(Loop))))

We now run fact-acc/break, a slight variant of
fact-acc, where we wrap (break ...) around the
single occurrence of bounce.
(Stepping Ezample)=

> (pogo-stick (fact-acc/break 3 1))

% (resume)

% (resume)

% (resume)
6

A more useful breakpoint facility would allow ar-
bitrary nontrampolined expressions to be evalu-
ated while the computation is halted. This could
be supported in a language with first-class en-
vironments [3]. For this example, we assume
eval-tramp, a tail-form interpreter that has been
trampolined. There is something rather subtle in
the uses of sequence in this example. We compose
an evaluation with its continuation, although the
evaluation only yields a thread, perhaps with the
evaluation barely begun.
(Enhanced Stepper)=
(define break/env
(lambda (thread env)
(letrec
([1loop
(lambda ()
(printf "% ")
(syncase (read)
[’ (resume)
thread]
[‘(return ,ret-exp)
(sequence
return
(eval-tramp ret-exp env))]
[input
(sequence
(lambda (v)
(printf "“s*n" v)
(bounce loop))
(eval-tramp input env))]))])
(1oop))))

3.3 Engines

Our pogo-stick scheduler continues a computation
until it has completed. We can modify it to con-
tain a bound, so that a computation is only per-
formed for a fixed number of steps. Such a bounded
pogo-stick would be similar to an engine [11]. En-
gines are a mechanism for regulating the progress
of a computation by feeding it ticks, much as a car
is fed gasoline. Our make-engine is a simplifica-
tion that captures the essence of engines. It takes a
thread and returns an engine. It returns the engine
directly, and is thus assumed to be used in non-tail
position. An engine is invoked by giving it a num-
ber of ticks. If the computation completes within
that number of ticks, the result is a done thread.
If the number of ticks is exhausted, the result is a
doing thread. (These threads must be interpreted
by the caller of the engine.) Otherwise, a new en-
gine is created with the remaining computation and
passed one fewer ticks. The type of make-engine
is: T(a) — Int — T(a).

(Engines)=
(define make-engine
(lambda (thread)
(lambda (ticks)
(record-case thread
[done (value) thread]
[doing (thunk)
(if (zero? ticks)
thread
((make-engine (thunk))
(subl ticks)))1))))

We use an untrampolined interactive-dotter
program that repeatedly invokes make-engine to
obtain a scheduler. Each engine is created using
a thread of the trampolined program dot, which
prints an infinite sequence of dots. These engines
are invoked with a number of ticks requested from
the user console.
(Engines Ezample)=
> (define interactive-dotter
(lambda (thread)
(printf ""n>> ")
(let ([input (read)])
(if (not (zero? input))
(interactive-dotter
((make-engine thread)
input))))))
> (define dot
(lambda ()
(printf ".")
(bounce dot)))
> (interactive-dotter (bounce dot))

4 Dynamic Thread Creation

The next form of trampolining extends the tech-
nique above by having each tail-position expression
evaluate to a list of threads, rather than a single
thread. The list represents the computations that
must continue as a result of the current execution
(including the remainder or result of the current
computation) and is appended to the thread queue.
In that way, expressions can spawn new threads.
It also becomes more convenient to terminate your
own thread—just return an empty list. This notion
of multitasking allows for communication between
processes only through shared variables. There is
no mechanism for a child’s value to be returned di-
rectly to the parent. It is important that this pro-
tocol completely protects threads from each other;
no entries in the thread queue other than the one
currently running can be affected.

For our new architecture, we redefine the type
constructor T as T(a) = a + (unit — (list T(a))).*

4The two definitions of T differ only in the range of the
function, in terms of T(a). We can make use of this by
fixing T as T(a) = a+ (unit — S(T(«))), where S(T(«))
represents the information produced at each step in a com-
putation to instruct the scheduler on the state of all com-
putations. Initially S was defined as S(T(«)) = T(«), but
it is now redefined as S(T(«a)) = (list T(«)).

Therefore, the return and bounce procedures now
correspond to the composition of 1ist with the in-
jections ¢; and ¢,. They are of types o — (list T(«))
and (unit — (list T(a))) — (list T(a)), respectively.

We leave the definitions of doing and done
alone, but modify return, bounce, and trampoline
to allow for dynamic creation of threads. The pro-
cedures return and bounce yield control to the next
thread on the queue by returning the current thread
as the sole element of a list.
(return Definition)+=

(define return

(lambda (value)
(1list (make-done value))))

(bounce Definition)+=
(define bounce
(lambda (thunk)
(1list (make-doing thunk))))

We modify the most recent version of trampoline.
It need not enclose the result of continuing execu-
tion in a list, as one has already been created by
return or bounce. Also, we must be wary of the
thread list becoming empty. In terms of T, the type
of trampoline is still (list T(a)) — a.
(trampoline for Dynamic Thread Creation)=
(define trampoline
(lambda (thread-queue)
(if (pair? thread-queue)
(record-case (car thread-queue)
[done (value) value]
[doing (thunk)
(trampoline
(append
(cdr thread-queue)
(thunk)))1)

"No thread returned a value")))

Since the thread queue (generated by bounce) con-
tains only one element, trampoline simply invokes
that element, yielding another singleton thread
queue.

Another response to a done record would be
to print its value and continue processing other
threads. A second alternative would be to return
the values as a stream, rather than printing them.
The order in which the values are generated, and
thus their order in the stream would be determined
by the behavior of the scheduler, not the order of
the original thread queue [10].

Returning a list of threads to trampoline gives
us the added flexibility to return lists of zero, or
of two or more threads. This potential is exercised
by die and spawn. In die below, we simply re-
turn the empty list, the identity for the operation
append. Thus, no computations are added to the
list of threads, and so the current computation ter-
minates. It is of type unit — (list T(a)).

(die Definition)=

(define die

(lambda ()
>0

Suppose that we need to run the last example
of the introduction without return. We can ac-
complish this by letting all of the computations
share a variable. Once one of them has a result,

it can signal the others to die by setting this vari-
able. We also need to add an initial cond-clause to
both fact-acc and mem? to check this variable.

Next, we extend the protocol to enable new
threads to be added to the queue. The spawn proce-
dure may be applied to the result of bounce applica-
tions, in order to fork the computation. Up to this
point, we do not increase the number of threads be-
yond those initially provided to the scheduler. This
is the case because die always reduces that number
by one, and bounce leaves it unchanged. To build
a list of two or more threads, we provide spawn.
As a result, we can dynamically create arbitrarily
long lists of threads. Each tail-position expression
now evaluates to an arbitrarily long list of threads.
The procedure spawn appends these lists. Its type
is (list T(a)) x (list T(a)) — (list T(a)).
(spawn Definition)=

(define spawn

(lambda (threadsl threads2)
(append threadsl threads2)))

We redefine sequence for the new architecture. It
works as before, except that any subcomputations
spawned by the second-argument computation must
now also feed their result to the first-argument pro-
cedure. The procedure mapcan used in its definition
is map with cons replaced by append. Its type is
((a — (list T(@))) x (list T(«))) — (list T()).
(seqence Definition)=
(define sequence
(lambda (f threads)
(mapcan
(lambda (thread)
(record-case thread
[done (value)
(f value)]
[doing (thunk)
(bounce
(lambda ()
(sequence f (thunk))))]))
threads)))

Our first example using spawn searches for the
specific symbol x in a deeply nested list of sym-
bols. For every pair, we spawn subcomputations to
search the car and cdr separately. If an empty list
is encountered, the thread simply dies. If a non-
matching symbol is encountered, then the thread
dies after printing it, preceded by a ~ and thus dis-
tinguished from returned values. Finally, if an x
is discovered, then it is returned, wiping out all
remaining computations.

(search-z Definition)=
> (define search-x
(lambda (t)
(cond
[(pair? t)
(spawn
(bounce
(lambda ()
(search-x (car t))))
(bounce
(lambda ()
(search-x (cdr t)))))]
[(null? t) (die)]
[(eqv? t ’x) (return t)]
[(symbol? t)
(begin (printf "~~a " t) (die))1)))

(A search for x in a tree)=
> (trampoline
(sequence
(lambda (v)
(if (eqv? v ’x)
(return ’yes)
(return ’no)))
(search-x "(((a b c d) (x e)) (g h)))))
“a “g “b "h “c yes
> (trampoline
(sequence
(lambda (v)
(if (eqv? v ’x)
(return ’yes)
(return ’no)))
(search-x (((a d) (y e)) (g h)))))
“a "g "d “y "h "e "No thread returned a value"

Since yes is not printed on the second invocation of
search-x, we know that x is not in the list and that
the waiting wrapper function has not been invoked.
The Fibonacci function provides an example of
the use of state for communication between threads.
The use of spawn here creates a subcomputation
for each recursive call. At the base case, the accu-
mulator is incremented and the thread terminated.
There are as many threads as the size of the result.
(fib with spawn)=
> (define fib
(lambda (n)
(if (<= n 1)
(begin
(set! acc (addl acc))
(die))
(spawn
(bounce
(lambda ()
(fib (- n 1))))
(bounce
(lambda ()
(£ib (- n 2)))))))
> (define acc 0)
> (trampoline (fib 10))
> acc
89

5 Varying the Granularity of Parallelism
with Multiple Trampolining

Danvy and Filinski consider how multiple appli-
cations of the CPS transformation create multiple
embedding contexts, which are then susceptible to
multiple control operators [5]. The potential for
multiple levels of stepping, from an interpreter per-
spective, has been referred to by De Roure [6]. To
be trampolined a second time, a program (an invo-
cation of a scheduler) must first be reconverted to
tail form. Then, the trampolined program, includ-
ing the scheduler with its queue, becomes a single
thread to be run on a higher-level queue. Now,
operations such as return and spawn can be spec-
ified to operate at any particular level, by analogy
with Danvy and Filinski’s work cited above. One
might also wish them to take the level at which they
should operate as an additional argument. Using
such tools, and given a complex application with
dependencies at various levels, we can implement
it in such a way that multiprocessing is achieved

at each level. For example, the main project might
spawn tasks 1, 2 and 3, which run on the same
queue. Tasks 2 and 3 might have their own queues,
to which they spawn subtasks 2a, 2b, 3a, 3b, etc.
To accomplish this, code task 1 normally, and tasks
2 and 3 in trampolined style as described above.
Then, convert each task to tail form and trampo-
line them.

6 Revisionist History: CPS as a Precedent
for Our Methodology

Our methodology can perhaps be better under-
stood by comparing it to the well-known exam-
ple of the CPS transformation in the presence of
call/cc, which has inspired our approach. Our ex-
amples of the trampolining transformation in the
presence of multithreading operators may in turn
shed some light on the relationship between CPS
and call/cc. In this section, we re-enact the in-
vention of call/cc through an example involving
the 1list-index procedure.

When programs are written in CPS, it becomes
reasonable to consider control operators that would
have been difficult or impossible to implement in
direct style. The list-index procedure below re-
turns the index of the first occurrence of a number
in a list of numbers, or -1 if no occurences exist.
Upon reaching the end of the list, it escapes from
the chain of add1 calls by calling the final continu-
ation directly.

(list-index-cps)=
(define list-index
(lambda (1s a)
(let ([final-k (lambda (val) val)])
(letrec
([list-index-cps
(lambda (1s k)
(cond
[(null? 1s) (final-k -1)]
[(= (car 1s) a) (k 0)]
[else (list-index-cps (cdr 1ls)
(lambda (ind)
(k (add1l ind))))1))1)
(list-index-cps 1ls final-k)))))
If we were restricted to writing in the language that
is the range of the CPS transformation, we would
have no choice but to apply k (incorrectly) to -1
in the first cond clause. We gain expressiveness by
not imposing such a restriction and instead apply-
ing final-k. We can abstract this invocation of a
continuation other than the given one (k) by using
a language form call/cc-cps, which is easy to de-
fine as a regular procedure that can be added to a
CPS program.
(call/cc in CPS)=
(define call/cc-cps
(lambda (p k)
(p (lambda (v ignored-k) (k v)) k)))
The call/cc operator takes a procedure and ap-
plies it to the current continuation. Like all pro-
cedures in a CPS program, call/cc-cps also takes
a continuation argument. Its first argument is ap-
plied to a procedure that ignores its own contin-
uation and passes its argument to call/cc-cps’s

continuation. We can rewrite list-index-cps us-
ing this abstraction.
(list-index-cps with call/cc-cps)=
(define list-index
(lambda (1s a)
(call/cc-cps
(lambda (final-k k)
(letrec
([list-index-cps
(lambda (1s k)
(cond
[(null? 1s) (final-k -1 k)]
[(= (car 1s) a) (k 0)]
[else
(list-index-cps (cdr 1ls)
(lambda (ind)
(k (add1l ind))))IN1)
(list-index-cps 1s k)))
(lambda (v) v))))
When a A,-calculus interpreter is transformed into
CPS, the possibility arises of adding new language
forms that can take advantage of the new structure
of the interpreter [21]. These language forms can
provide advanced operations that manipulate the
control context, without forcing source programs
to conform to CPS.
(interp-cps)=
(define interp-cps
(lambda (exp env k)
(syncase exp

[“(call/cc ,exp)
(interp-cps exp env
(lambda (p)

(p (lambda (v ignored-k) (k v)) k)))]

)

We first interpret the procedural argument to
call/cc. The result is applied to a procedure rep-
resentation of k, the current continuation. The
current continuation is also passed as the default
continuation. Having added call/cc to our inter-
preter, we can rewrite list-index.
(list-indez)=
(define list-index
(lambda (1s a)
(call/cc
(lambda (final-k)
(letrec
(11
(lambda (1s)
(cond
[(null? 1s) (final-k -1)]
[(= (car 1s) a) 0]
[else
(addl (1i (cdr 1s) a))IND)
(1i 1s))))))

Just as CPS makes the continuation visible dur-
ing computation, trampolining makes the thread
queue visible. Following the precedent of CPS
above, we have developed a rewriting technique for
the new style and standard ways of extending the
style to provide multiprocessing capabilities. We
have formalized them in a variety of multiprocess-
ing operators. Given any interpreter in tail form,
we can trampoline it and add our new operators to
a source language so that they can be used with-
out trampolined style. The procedures that gain

the power of multitasking by extending the tram-
polined style in controlled ways then correspond to
clauses of the interpreter which do the same.

7 History

There are slightly more involved but similar exam-
ples of programming styles providing contexts in
which useful operators can be defined. Danvy and
Filinski show that their shift and reset operators
can be defined within CPS [5]. Queinnec shows that
his splitter, abort, and call/pc can be defined
within what he calls Value Transforming Style [19],
based on Abstract CPS [8]. Queinnec cannot use
standard CPS as his operators are dynamic and rely
on the structure of the stack. An extension of Ab-
stract CPS has been used in the Icsla work cited
above. Moggi has presented a transformation to
monadic style, extended to operate over languages
including n and p [16].

Cooper has shown that arbitrary programs can
be rewritten to contain a single loop, using a scheme
involving additional boolean variables and a com-
plex loop condition [4]. Much work related to tram-
polining has already been mentioned. Bawden cre-
ates a CPS interpreter which, at each step, re-
turns a list of the continuation and the value [2].
De Roure enhances the interpreter to support mul-
tiprogramming primitives [6]. For Tarditi’s C im-
plementation of ML [23], programs are transformed
to CPS. Then, instead of making each tail call di-
rectly, the arguments are stored in an array and
the address of the procedure is returned to a main
while loop. These instances seem to have been
independent, and do not use the term “trampolin-
ing”. Baker appears to have been first to make
use of that term in this context [1]. Wand uses
a continuation-argument pair as a process repre-
sentation in a non-preemptive multi-processing sys-
tem [26]. His continuations, however, are captured
using catch, a syntactic variant of call/cc, rather
than relying on the source program being in tail
form. A more extensive system for the ML language
based on similar principles has been implemented
by Morrisett and Tolmach [18].

Haynes, Friedman, and Wand have demon-
strated that coroutines can be implemented using
call/cc [12]. The threads we have introduced differ
from coroutines in that the latter require that con-
trol be yielded to a particular coroutine, and pro-
vide for a value to be communicated to that corou-
tine. Our threads can be implemented in corou-
tines by designating one coroutine as a scheduler
and requiring other coroutines to yield only to the
scheduler, passing a dummy value. At the other ex-
treme are preemptive systems where threads are in-
terrupted by the scheduler. We can implement this
using a trampolined interpreter. Dybvig and Hieb
have shown that engines can be implemented using
call/cc [7]. Conversely, Kumar, Bruggeman, and
Dybvig have demonstrated that continuations, and
in particular partial, composable continuations, can
be implemented using threads [15]. Shivers has pre-
sented an implementation of threads using multi-

continuation CPS [22].

The benefits of the precision gained using par-
tial, composable continuations to capture control
context, particularly when multiple threads are
running, have been described by Hieb, Dybvig, and
Anderson [13]. We agree but have chosen to focus
on other aspects at this time. The issue is closely
related to the multiple iterations of trampolining.

The Icsla language [20] is perhaps closest to our
own, in that it implements multiprocessing prim-
itives through a conversion of programs to a par-
ticular style. That style, however, is a variant of
Abstract CPS. Our trampolined style is less intru-
sive on the structure of programs.

8 Conclusion

We have presented trampolined style through two
architectures. A transformation to this style pro-
vides significant multithreading capabilities with-
out language support for continuations. Programs
then have a single loop in which computations are
processed in discrete steps. Trampolined expres-
sions evaluate to information (including the remain-
der of their computation) that is used by the sched-
uler. Each architecture requires the definition of
three procedures, including the scheduler, which
must be invoked as the operator in an application
of the result of the transformation. For each archi-
tecture, we have extended the style in a constrained
way, generally through the use of an operator that
intercepts the evaluation results of trampolined ex-
pressions. Finally, we have demonstrated how each
operator could be implemented in a trampolined
interpreter, and how programs with the operators
could then be rewritten to avoid the use of the
trampolined style. In the future, we wish to inves-
tigate both the potential for monadic implemen-
tations of each of these styles and their semantic
properties. We also expect to survey what other
domains might benefit from this perspective.

Acknowledgments

We gratefully acknowledge the assistance of
Jonathan Sobel and Jonathan G. Rossie for their
detailed reading and criticisms of assorted drafts of
this paper, which have led us to make considerable
clarifications and improvements in the presentation
of this final version.

References

[1] Henry Baker. Cons should not cons its argu-
ments, Part II: Cheney on the M.T.A. SIG-
PLAN Notices, 30(9):17-20, September 1995.

[2] Alan Bawden. Reification without evaluation.
In Proceedings of the 1988 ACM Conference
on LISP and Functional Programming, pages
342-351, 1988.

[3] Daniel G. Bobrow and Ben Wegbreit. A
model and stack implementation of multiple

[4]

[5]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

environments. Communications of the ACM,
16(10):591-603, October 1973.

David Cooper. Béhm and Jacopini’s reduction
of flow charts. Communications of the ACM,
10(8):463,473, August 1967. Letter to the Ed-
itor.

Olivier Danvy and Andrzej Filinski. Abstract-
ing control. In Proceedings of the 1990 ACM
Conference on LISP and Functional Program-
ming, pages 151-160, Nice (France), June
1990. ACM, ACM Press.

David De Roure. QPL3—continuations, con-
currency and communication. Technical Re-
port CSTR, 90-20, Department of Electron-
ics and Computer Science, University of
Southampton, 1990.

R. Kent Dybvig and Robert Hieb. Engines
from continuations. Computer Languages,
14(2):109-123, 1989.

Matthias Felleisen, Mitchell Wand, Daniel P.
Friedman, and Bruce F. Duba. Abstract con-
tinuations: A mathematical semantics for han-
dling full functional jumps. In Proceedings of
the 1988 ACM Conference on LISP and Func-
tional Programming, pages 52-62, Snowbird
(Utah USA), July 1988.

Michael J. Fischer. Lambda-calculus sche-
mata. Lisp and Symbolic Computation,
6(3/4):259-288, 1993. Revised from the pro-
ceedings of the 1972 ACM Conference on Prov-
ing Assertions about Programs.

Daniel P. Friedman and David S. Wise. An
indeterminate constructor for applicative pro-
gramming. In Conference Record of the Sev-
enth Annual ACM Symposium on Principles of
Programming Languages, pages 245-250, Las
Vegas (Nevada USA), January 1980.

Christopher T. Haynes and Daniel P. Fried-
man. Abstracting timed preemption with en-
gines. Computer Languages, 12(2):109-121,
1987.

Christopher T. Haynes, Daniel P. Friedman,
and Mitchell Wand. Continuations and corou-
tines. Computer Languages, 11(3/4):143-153,
1986.

Robert Hieb, R. Kent Dybvig, and Claude W.
Anderson. Subcontinuations. Lisp and Sym-
bolic Computation, 6:453-478, 1993.

Stephen Cole Kleene. Introduction to Meta-
mathematics. North-Holland, 1952.

Sanjeev Kumar, Carl Bruggeman, and R. Kent
Dybvig. Threads yield continuations. Lisp and
Symbolic Computation, 10(3):223-236, May
1998.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Eugenio Moggi. Computational lambda calcu-
lus and monads. In Proceedings of the 4" An-
nual IEEE Symposium on Logic in Computer
Science, LICS ’89, pages 14-23, Pacific Grove
(California USA), June 1989. ACM, IEEE.

Eugenio Moggi. Notions of computation
and monads. Information and Computation,
93(1):55-92, July 1991.

J. Gregory Morrisett and Andrew Tolmach. A
portable multiprocessor interface for Standard
ML of New Jersey. Technical Report CMU-
(CS-92-155, Carnegie Mellon University, June
1992. Also appears as Princeton University
TR-376-92.

Christian Queinnec. Value transforming style.
In M. Billaud, P. Castéran, M. M. Corsini,
K. Musumbu, and A. Rauzy, editors, WSA
92— Workshop on Static Analysis, number
81-82 in Bigre Journal, pages 20-28, Bordeaux
(France), September 1992.

Christian Queinnec and David De Roure. De-
sign of a concurrent and distributed language.
In Robert H. Halstead, Jr. and Takayasu Ito,
editors, Parallel Symbolic Computing: Lan-
guages, Systems, and Applications, (US/Japan
Workshop Proceedings), volume LNCS 748,
pages 234-259, Boston (Massachussetts USA),
October 1993.

John C. Reynolds. Definitional interpreters
for higher order programming languages. In
Proceedings of the ACM 25th National Confer-
ence, pages 717-740, Boston (Massachussetts
USA), August 1972. ACM, ACM Press.

Olin Shivers. Continuations and threads: Ex-
pressing machine concurrency directly in ad-
vanced languages. In Proceedings of the Sec-
ond ACM SIGPLAN Workshop on Continu-
ations, pages 2-1—2-15, Paris (France), Jan-
uary 1997. ACM Press.

David Tarditi, Peter Lee, and Anurag
Acharya. No assembly required: A standard
ML to C compiler. ACM Letters on Program-
ming Languages and Systems, 1(2):161-177,
June 1992.

A. van Wijngaarden. Recursive definition
of syntax and semantics. In T. B. Steel,
Jr., editor, Formal Language Description Lan-
guages for Computer Programming, pages 13—
24. North-Holland, 1966.

Philip Wadler. Comprehending monads. In
Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, pages 61—
78, Nice (France), June 1990.

Mitchell Wand. Continuation-based multipro-
cessing. Higher-Order and Symbolic Computa-
tion, 12(3), 1999. Reprinted from the proceed-
ings of the 1980 Lisp Conference, pages 19-28.

