0

Notesto the Reader

Writing isthe only art
that must be learned by wrote.
—anon

Main themes of this book — how to read this book — a timeline for C++
— C++ and other programming languages — references.

Introduction

C++ was designed to provide Simula’'s facilities for program organization together
with C's efficiency and flexibility for systems programming. It was intended to
deliver that to real projects within half ayear of theidea. It succeeded.

At the time, mid-1979, neither the modesty nor the preposterousness of that goal
was realized. The goal was modest in that it did not involve innovation, and prepos-
terous in both its time scale and its Draconian demands on efficiency and flexibility.
While a modest amount of innovation did emerge over the years, efficiency and flexi-
bility have been maintained without compromise. While the goals for C++ have been
refined, elaborated, and made more explicit over the years, C++ as used today directly
reflectsits original aims.

The purpose of this book is to document those aims, track their evolution, and pre-
sent C++ as it emerged from the efforts of many people to create a language that
served its users according to those aims. In doing so, | try to balance historical facts
(such as names, places, and events) against technical issues of language design,
implementation, and use. It isnot my aim to document every little event, but to focus
on the key events, ideas, and trends that actually influenced the definition of C++ or
might influence its further evolution and use.

Wherever events are presented, | try to describe them as they happened rather than
how | or others might have liked them to have happened. Where reasonable, | use

2 Notestothe Reader Chapter O

guotes from papers to illustrate the aims, principles, and features as they appeared at
thetime. | try not to project hindsight into events; rather, retrospective comments and
comments about the implications of a decision are presented separately and are
explicitly marked as retrospective. Basically, | abhor revisionist history and try to
avoid it. For example, | mention that ‘| had found Pascal’s type system worse than
useless — a straitjacket that caused more problems than it solved by forcing me to
warp my designs to suit an implementation-oriented artifact.”” That | thought that at
the time is afact, and it is a fact that had important implications for the evolution of
C++. Whether that harsh judgement on Pascal was fair and whether | would make the
same judgement today (more than a decade later) isirrelevant. | could not delete the
fact (say, to spare the feelings of Pascal fans or to spare myself embarrassment or con-
troversy) or modify it (by providing a more complete and balanced view) without
warping the history of C++.

| try to mention people who contributed to the design and evolution of C++, and |
try to be specific about their contribution and about when it occurred. Thisis some-
what hazardous. Since | don't have a perfect memory, | will overlook some contribu-
tions. | offer my apologies. | name the people who caused a decision to be made for
C++. Inevitably, these will not always be the people who first encountered a particu-
lar problem or who first thought of a solution. This can be unfortunate, but to be
vague or to refrain from mentioning names would be worse. Feel free to send me
information that might help clarify such points.

Where | describe historical events, there is a question of how objective my
descriptions are. | have tried to compensate for unavoidable bias by obtaining infor-
mation about events | wasn't part of, by talking to other people involved in events,
and by having several of the people involved in the evolution of C++ read this book.
Their names can be found at the end of the preface. In addition, the History of Pro-
gramming Languages (HOPL-2) paper [Stroustrup,1993] that contains the central his-
torical facts from this book was extensively reviewed and deemed free of unsuitable
bias.

How to Read this Book

Part | goes through the design, evolution, use, and standardization of C++ in roughly
chronological order. | chose this organization because during the early years, major
design decisions map onto the timeline as a neat, logical sequence. Chapters 1, 2, and
3 describe the origins of C++ and its evolution through C with Classes to Release 1.0.
Chapter 4 describes the rules that guided C++' s growth during that period and beyond.
Chapter 5 provides a chronology of post-1.0 developments, and Chapter 6 describes
the ANSI/ISO C++ standards effort. To provide perspective, Chapters 7 and 8 discuss
applications, tools, and libraries. Finaly, Chapter 9 presents a retrospective and some
thoughts on the future.

Part Il presents the post-Release-1.0 development of C++. The language grew
within a framework laid down around the time of Release 1.0. This framework
included a set of desired features, such as templates and exception handling, and rules
guiding their design. After Release 1.0, chronology didn’t matter much to the

How to Read thisBook 3

development of C++. The current definition of C++ would have been substantially the
same had the chronological sequence of post-1.0 extensions been different. The
actual sequence in which the problems were solved and features provided is therefore
of historical interest only. A strictly chronological presentation would interfere with
the logical flow of ideas, so Part Il is organized around major language features
instead. Part Il chapters are independent, so they can be read in any order: Chapter
10, memory management; Chapter 11, overloading; Chapter 12, multiple inheritance;
Chapter 13, class concept refinements; Chapter 14, casting; Chapter 15, templates,
Chapter 16, exception handling; Chapter 17, namespaces; Chapter 18, the C prepro-
Cessor.

Different people expect radically different things from a book on the design and
evolution of a programming language. In particular, no two people seem to agree on
what level of detail is appropriate for a discussion of this topic. Every review |
received on the various versions of the HOPL-2 paper (well over a dozen reviews)
was of the form, ‘‘ This paper is too long ... please add information on topics X, Y,
and Z.' Worse, about a third of the reviews had comments of the form, ‘‘Cut the
philosophical/religious nonsense and give us proper technical details instead.”’
Another third commented, ‘* Spare me the boring details and add information on your
design philosophy.”’

To wiggle out of thisdilemma, | have written a book within abook. If you are not
interested in details, then at first skip all subsections (numbered 8x.y.z, where x is the
chapter number and y is the section number). Later, read whatever else looks interest-
ing. You can also read this book sequentially starting at page one and carry on until
the end. Doing that, you might get bogged down in details. This is not meant to
imply that details are unimportant. On the contrary, no programming language can be
understood by considering principles and generalizations only; concrete examples are
essential. However, looking at the details without an overall picture to fit theminto is
away of getting seriously lost.

As an additional help, | have concentrated most of the discussion of new features
and features generally considered advanced in Part 1. This allows Part | to concen-
trate on basics. Almost all of the information on nontechnical aspects of C++'s evolu-
tion isfound in Part I. People with little patience for *‘ philosophy’’ can break up the
discussion in Chapters 4 through 9 by looking ahead to the technical details of lan-
guage featuresin Part I1.

| assume that some will use this book as a reference and that many will read indi-
vidual chapters without bothering with all preceding chapters. To make such use fea-
sible, | have made the individual chapters relatively self-contained for the experienced
C++ programmer and been liberal with cross references and index terms.

Please note that | don't try to define the features of C++ here, | present only as
much detail asis necessary to provide a self-contained description of how the features
came about. | don't try to teach C++ programming or design either; for atutorial, see
[2nd].

4 Notestothe Reader

C++ Timeline
This C++ timeline might help you keep track of where the story is taking you:

Chapter O

(1979 May Work on C with Classes starts O
O Oct 1st C with Classesimplementation in use O
51980 Apr 1stinternal Bell Labs paper on C with Classes [Stroustrup,1980] E
o982 Jan 1st external paper on C with Classes [Stroustrup,1982] 0
1983 Aug 1st C++implementation in use 0
O Dec C++named O
(1984 Jan 1st C++ manual 0
01985 Feb st externa G+ release (Release) .
0 Oct Cfront Release 1.0 (first commercial release) 0
O Oct The C++ Programming Language [Stroustrup,1986] O
(1986 Aug The'‘whatispaper’’ [Stroustrup,1986b] O
O Sep 1st OOPSLA conference (start of OO hype centered on Smalltalk) U
g Nov 1st commercia Cfront PC port (Cfront 1.1, Glockenspiel) g
1987 Feb Cfront Release 1.2 0
0 Nov 1st USENIX C++ conference (Santa Fe, NM) 0
O Dec 1st GNU C++release (1.13) O
(hog8 Jan 1st Oregon Software C++ release O
g June 1st Zortech C++ release E
0 Oct 1st USENIX C++ implementers workshop (Estes Park, CO) 0
(1989 June Cfront Release 2.0 0
g Dec ANSI X3J16 organizational meeting (Washington, DC) O
(1990 May 1st Borland C++ release O
g Ma 1st ANSI X3J16 technical meeting (Somerset, NJ) g
0 May The Annotated C++ Reference Manual [ARM] 0
O July Templates accepted (Seattle, WA) O
g Nov Exceptions accepted (Palo Alto, CA) O
51991 June The C++ Programming Language (second edition) [2nd] E
0 June 1st 1SO WG21 meeting (Lund, Sweden) O
0 Oct Cfront Release 3.0 (including templates) 0
1992 Feb 1st DEC C++ release (including templates and exceptions) O
O Mar 1st Microsoft C++ release O
O May 1stIBM C++ release (including templates and exceptions) O
51993 Mar Run-time type identification accepted (Portland, OR) E
0 July Namespaces accepted (Munich, Germany) 0
F994 Aug ANSI/ISO Committee Draft registered H

Focuson Useand Users
This book is written for C++ users, that is, for programmers and designers. | have
tried (believe it or not) to avoid truly obscure and esoteric topics to give auser’s view
of the C++ language, its facilities, and its evolution. Purely language-technical

Focuson Useand Users 5

discussions are presented only if they shed light on issues that directly impact users.
The discussions of name lookup in templates (§815.10) and of lifetime of temporaries
(86.3.2) are examples.

Programming language specialists, language lawyers, and implementers will find
many tidbits in this book, but the aim is to present the large picture rather than to be
precise and comprehensive about every little detail. If precise language-technical
details is what you want the definition of C++ can be found in The Annotated C++
Reference Manual (the ARM) [ARM], in The C++ Programming Language (second
edition) [2nd], and in the ANSI/ISO standards committee’ s working paper. However,
the details of a language definition are incomprehensible without an understanding of
the purpose of the language. The language, details and all, exists to help build pro-
grams. My intent with this book isto provide insights that can help in this endeavor.

Programming L anguages

Severa reviewers asked me to compare Ct++ to other languages. This | have decided
against doing. Thereby, | have reaffirmed a long-standing and strongly held view:
Language comparisons are rarely meaningful and even less often fair. A good com-
parison of major programming languages requires more effort than most people are
willing to spend, experience in a wide range of application areas, a rigid maintenance
of a detached and impartial point of view, and a sense of fairness. | do not have the
time, and as the designer of C++, my impartiality would never be fully credible.

| also worry about a phenomenon | have repeatedly observed in honest attempts at
language comparisons. The authors try hard to be impartial, but are hopelessly biased
by focusing on a single application, a single style of programming, or a single culture
among programmers. Worse, when one language is significantly better known than
others, a subtle shift in perspective occurs. Flaws in the well-known language are
deemed minor and simple workarounds are presented, whereas similar flaws in other
languages are deemed fundamental. Often, the workarounds commonly used in the
less-well-known languages are ssimply unknown to the people doing the comparison
or deemed unsatisfactory because they would be unworkable in the more familiar lan-
guage.

Similarly, information about the well-known language tends to be completely up-
to-date, whereas for the less-known language, the authors rely on several-year-old
information. For languages that are worth comparing, a comparison of language X as
defined three years ago vs. language Y as it appears in the latest experimental imple-
mentation is neither fair nor informative. Thus, | restrict my comments about lan-
guages other than C++ to generalities and to very specific comments. This is a book
about C++, its design, and the factors that shaped its evolution. It is not an attempt to
contrast C++ language features with those found in other languages.

To fit C++ into a historical context, here is a chart of the first appearances of lan-
guages that often crop up in discussions about C++:

6 Notestothe Reader Chapter O

- Fortran —— -
. S |_|sp .
60 ——— Algol 60 60
: CPL :
- PL/I -
- BCPL -
- ~— Simula67 -
70 Pascal 70
_ C _
_ ML -
- Algol 68 _
. : ~Clu -
o0 Modula-2 | CwithClasses — Smalitalk-80—| e
- Ada Beta 'g v -
_ CH Objective C -
: . ANSIC Eiffel -
] R CLOS -
— N & V —
) CHarm %
- Modula-3 -
- Ada9X Ctstd -

The chart is not intended to be anywhere near complete except for significant influ-
ences on C++. In particular, the chart understates the influence of the Simula class
concept; Ada [Ichbiah,1979] and Clu [Liskov,1979] are weakly influenced by Simula
[Birtwistle, 1979]; Ada9X [Taft,1992], Beta [Madsen,1993], Eiffel [Meyer,1988], and
Modula-3 [Nelson,1991] are strongly influenced. C++ s influence on other languages
is left unrepresented. Solid lines indicate an influence on the structure of the

Programming Languages 7

language; dotted lines indicate an influence on specific features. Adding lines to
show this for every language would make the diagram too messy to be useful. The
dates for the languages are generally those of the first usable implementation. For
example, Algol68 [Woodward,1974] can be found by the year 1977 rather than 1968.

One conclusion | drew from the wildly divergent comments on the HOPL -2 paper
—and from many other sources — is that there is no agreement on what a programming
language really is and what its main purpose is supposed to be. Isa programming lan-
guage atool for instructing machines? A means of communicating between program-
mers? A vehicle for expressing high-level designs? A notation for algorithms? A
way of expressing relationships between concepts? A tool for experimentation? A
means of controlling computerized devices? My view is that a general-purpose pro-
gramming language must be al of those to serve its diverse set of users. The only
thing alanguage cannot be — and survive —is amere collection of ‘‘neat’’ features.

The difference in opinions reflects differing views of what computer science is
and how languages ought to be designed. Ought computer science be a branch of
mathematics? Of engineering? Of architecture? Of art? Of biology? Of sociology?
Of philosophy? Alternatively, does it borrow techniques and approaches from all of
these disciplines? | think so.

This implies that language design parts ways from the *‘purer’’ and more abstract
disciplines such as mathematics and philosophy. To serve its users, a general-purpose
programming language must be eclectic and take many practical and sociological fac-
torsinto account. In particular, every language is designed to solve a particular set of
problems at a particular time according to the understanding of a particular group of
people. From this initial design, it grows to meet new demands and reflects new
understandings of problems and of tools and techniques for solving them. This view
is pragmatic, yet not unprincipled. It is my firm belief that all successful languages
are grown and not merely designed from first principles. Principles underlie the first
design and guide the further evolution of the language. However, even principles
evolve,

References

This section contains the references from every chapter of this book.

[2nd] see [Stroustrup,1991].

[Agha,1986] Gul Agha: An Overview of Actor languages. ACM SIGPLAN
Notices. October 1986.

[Aho,1986] Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman; Compilers:

Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA. 1986. ISBN 0-201-10088-6.

[ARM] see [Ellis,1990].

[Babcisky,1984] Karel Babcisky: Smula Performance Assessment. Proc. IFIP
WG2.4 Conference on System Implementation Languages:
Experience and Assessment. Canterbury, Kent, UK. Septem-
ber 1984.

[Barton,1994] John J. Barton and Lee R. Nackman: Scientific and

8 Notestothe Reader

[Birtwistle, 1979]

[Boehm,1993]

[Booch,1990]

[Booch,1991]

[Booch,1993]

[Booch,1993b]

[Budge,1992]

[Buhr,1992]

[Call,1987]

[Cameron,1992]

[Campbell,1987]

[Cattell,1091]

[Cargill, 1991]
[Carroll,1991]
[Carroll,1993]

[Chandy,1993]

Chapter O

Engineering C++: An Introduction with Advanced Techniques
and Examples. Addison-Wedley, Reading, MA. 1994. ISBN
0-201-53393-6.

Graham Birtwistle, Ole-Johan Dahl, Bjorn Myrhaug, and Kris-
ten Nygaard: SMULA BEGIN. Studentlitteratur, Lund, Swe-
den. 1979. ISBN 91-44-06212-5.

Hans-J. Boehm: Space Efficient Conservative Garbage Collec-
tion. Proc. ACM SIGPLAN '93 Conference on Programming
Language Design and Implementation. ACM SIGPLAN
Notices. June 1993.

Grady Booch and Michael M. Vilot: The Design of the C++
Booch Components. Proc. OOPSLA’90. October 1990.

Grady Booch: Object-Oriented Design. Benjamin Cummings,
Redwood City, CA. 1991. ISBN 0-8053-0091-0.

Grady Booch: Object-oriented Analysis and Design with Appli-
cations, 2nd edition. Benjamin Cummings, Redwood City,
CA. 1993. ISBN 0-8053-5340-2.

Grady Booch and Michad M. Vilot: Smplifying the C++
Booch Components. The C++ Report. June 1993.

Ken Budge, J.S. Perry, and A.C. Robinson: High-Performance
Scientific Computation using C++. Proc. USENIX C++ Con-
ference. Portland, OR. August 1992

Peter A. Buhr and Glen Ditchfield: Adding Concurrency to a
Programming Language. Proc. USENIX C++ Conference.
Portland, OR. August 1992.

Lisa A. Cal, et a.. CLAM — An Open System for Graphical
User Interfaces. Proc. USENIX C++ Conference. Santa Fe,
NM. November 1987.

Don Cameron, et a.: A Portable Implementation of C++
Exception Handling. Proc. USENIX Ct++ Conference. Port-
land, OR. August 1992.

Roy Campbell, et a.: The Design of a Multiprocessor Operat-
ing System. Proc. USENIX Ct++ Conference. Santa Fe, NM.
November 1987.

Rich G.G. Cattell: Object Data Management: Object-Oriented
and Extended Relational Database Systems. Addison-Wesley,
Reading, MA. 1991. ISBN 0-201-53092-9.

Tom A. Cargill: The Case Against Multiple Inheritance in
C++. USENIX Computer Systems. Vol 4, no 1, 1991.

Martin Carroll: Using Multiple Inheritance to Implement
Abstract Data Types. The C++ Report. April 1991.

Martin Carroll: Design of the USL Sandard Components. The
Ct++ Report. June 1993.

K. Mani Chandy and Carl Kesselman: Compositional Ct+:

[Cristian,1989]
[Cox,1986]
[Dahl,1988]
[Dearle,1990]

[Dorward,1990]

[Eick,1991]

[Ellis, 1990]

[Faust,1990]

[Fontana,1991]

[Forslund,1990]

[Gautron,1992]

[Gehani, 1988]

[Goldberg,1983]

[Goodenough,1975]

[Gorlen,1987]

References 9

Compositional Parallel Programming. Proc. Fourth Workshop
on Parallel Computing and Compilers. Springer-Verlag. 1993.
Flaviu Cristian: Exception Handling. Dependability of
Resilient Computers, T. Andersen, editor. BSP Professional
Books, Blackwell Scientific Publications, 1989.

Brad Cox: Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, Reading, MA. 1986.

Ole-Johan Dahl: Personal communication.

Fergal Dearle: Designing Portable Applications Frameworks
for C++. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.

Sean M. Dorward, et al.: Adding New Code to a Running Pro-
gram. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.

Stephen G. Eick: SMLIB - An Object-Oriented C++ Library
for Interactive Smulation of Circuit-Switched Networks. Proc.
Simulation Technology Conference. Orlando, FL. October
1991.

Margaret A. Ellis and Bjarne Stroustrup: The Annotated C++
Reference Manual. Addison-Wesley, Reading, MA. 1990.
ISBN 0-201-51459-1.

John E. Faust and Henry M. Levy: The Performance of an
Object-Oriented Threads Package. Proc. ACM joint ECOOP
and OOPSLA Conference. Ottawa, Canada. October 1990.
Mary Fontana and Martin Neath; Checked Out and Long Over-
due: Experiences in the Design of a C++ Class Library. Proc.
USENIX C++ Conference. Washington, DC. April 1991.
David W. Forslund, et al.: Experiences in Writing Distributed
Particle Smulation Code in C++. Proc. USENIX C++ Confer-
ence. San Francisco, CA. April 1990.

Philippe Gautron: An Assertion Mechanism based on Excep-
tions. Proc. USENIX C++ Conference. Portland, OR. August
1992.

Narain H. Gehani and William D. Roome: Concurrent Ct+:
Concurrent Programming With Class(es). Software—Practice
& Experience. Vol 18, no 12, 1988.

Adele Goldberg and David Robson: Smalltalk-80, The Lan-
guage and its Implementation. Addison-Wesley, Reading, MA.
1983. ISBN 0-201-11371-6.

John Goodenough: Exception Handling: Issues and a Proposed
Notation. Communications of the ACM. December 1975.
Keith E. Gorlen: An Object-Oriented Class Library for C++
Programs. Proc. USENIX C++ Conference. Santa Fe, NM.
November 1987.

10 Notestothe Reader

[Gorlen,1990]

[Hilbel,1992]

[Ichbiah,1979]

[Ingalls, 1986]

[Interrante,1990]

[Johnson,1992]

[Johnson,1989]

[Keffer,1992]

[Keffer,1993]

[Kernighan,1976]

[Kernighan,1978]

[Kernighan,1981]

[Kernighan,1984]

[Kernighan,1988]

[Kiczales,1992]

[Koenig,1988]
[Koenig,1989]

[Koenig,1989b]

Chapter O

Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico: Data
Abstraction and Object-Oriented Programming in Ct+.
Wiley. West Sussex. England. 1990. ISBN 0-471-92346-X.
Peter Hibel and J.T. Thorsen: An Implementation of a Persis-
tent Sore for C++. Computer Science Department. Aarhus
University, Denmark. December 1992.

Jean D. Ichbiah, et al.: Rationale for the Design of the ADA
Programming Language. SIGPLAN Notices Vol 14, no 6,
June 1979 Part B.

Daniel H.H. Ingalls: A Smple Technique for Handling Multiple
Polymorphism. Proc. ACM OOPSLA Conference. Portland,
OR. November 1986.

John A. Interrante and Mark A. Linton: Runtime Access to Type
Information. Proc. USENIX C++ Conference. San Francisco
1990.

Steve C. Johnson: Personal communication.

Ralph E. Johnson: The Importance of Being Abstract. The C++
Report. March 1989.

Thomas Keffer: Why C++ Will Replace Fortran. C++ Supple-
ment to Dr. Dobbs Journal. December 1992.

Thomas Keffer: The Design and Architecture of Tools.h++.
The C++ Report. June 1993.

Brian Kernighan and P.J. Plauger: Software Tools. Addison-
Wesley, Reading, MA. 1976. ISBN 0-201-03669.

Brian Kernighan and Dennis Ritchie: The C Programming Lan-
guage. Prentice-Hall, Englewood Cliffs, NJ. 1978. ISBN O-
13-110163-3.

Brian Kernighan: Why Pascal is not my Favorite Programming
Language. AT&T Bell Labs Computer Science Technical
Report No 100. July 1981.

Brian Kernighan and Rob Pike: The UNIX Programming Envi-
ronment. Prentice-Hall, Englewood Cliffs, NJ. 1984. ISBN
0-13-937699-2.

Brian Kernighan and Dennis Ritchie: The C Programming Lan-
guage (second edition). Prentice-Hall, Englewood Cliffs, NJ.
1988. ISBN 0-13-110362-8.

Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow: The
Art of the Metaobject Protocol. The MIT Press. Cambridge,
Massachusetts. 1991. ISBN 0-262-11158-6.

Andrew Koenig: Associative arrays in C++. Proc. USENIX
Conference. San Francisco, CA. June 1988.

Andrew Koenig and Bjarne Stroustrup: C++: As close to C as
possible — but no closer. The C++ Report. July 1989.

Andrew Koenig and Bjarne Stroustrup: Exception Handling for

[Koenig,1990]

[Koenig,1991]
[Koenig,1992]

[Krogdahl,1984]

[Lea, 1990]

[Lea,1991]
[Lea,1993]

[Lenkov,1989]

[Lenkov,1991]

[Linton,1987]

[Lippman,1988]

[Liskov,1979]
[Liskov,1987]

[Madsen,1993]

[McCluskey,1992]

[Meyer,1988]

[Miller,1988]

[Mitchell, 1979]

References 11

Ct+. Proc. '*Ct++ at Work’ Conference. November 1989.
Andrew Koenig and Bjarne Stroustrup: Exception Handling for
Ct++ (revised). Proc. USENIX C++ Conference. San Fran-
cisco, CA. April 1990. Also, Journa of Object-Oriented Pro-
gramming. July 1990.

Andrew Koenig: Applicators, Manipulators, and Function
Objects. C++ Journal, vol. 1, #1. Summer 1990.

Andrew Koenig: Space Efficient Treesin C++. Proc. USENIX
C++ Conference. Portland, OR. August 1992.

Stein Krogdahl: An Efficient Implementation of Smula Classes
with Multiple Prefixing. Research Report No 83. June 1984.
University of Odlo, Institute of Informatics.

Doug Lea and Marshall P. Clinee The Behavior of C++
Classes. Proc. ACM SOOPPA Conference. September 1990.
Doug Lea: Personal Communication.

Doug Lea The GNU Ct++ Library. The C++ Report. June
1993.

Dmitry Lenkov: C++ Sandardization Proposal. #X3J11/89-
016.

Dmitry Lenkov, Michey Mehta, and Shankar Unni: Type |den-
tification in C++. Proc. USENIX C++ Conference. Washing-
ton, DC. April 1991.

Mark A. Linton and Paul R. Calder: The Design and Implemen-
tation of InterViews. Proc. USENIX Ct++ Conference. Santa
Fe, NM. November 1987.

Stan Lippman and Bjarne Stroustrup: Pointers to Class Mem-
bers in C++. Proc. USENIX C++ Conference. Denver, CO.
October 1988.

Barbara Liskov, et al.: CLU Reference manual. MIT/LCS/TR-
225. October 1979.

Barbara Liskov: Data Abstraction and Hierarchy. Addendum
to Proceedings of OOPSLA’87. October 1987.

Ole Lehrmann Madsen, et a.: Object-Oriented Programming
in the Beta Programming Language. Addison-Wesley, Read-
ing, MA. 1993. ISBN 0-201-62430.

Glen McCluskey: An Environment for Template Instantiation.
The C++ Report. February 1992.

Bertrand Meyer: Object-Oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ. 1988. ISBN 0-13-
629049.

William M. Miller: Exception Handling without Language
Extensions. Proc. USENIX C++ Conference. Denver CO.
October 1988.

James G. Mitchell, et.a.: Mesa Language Manual. XEROX

12 Notestothe Reader

[Murray,1992]

[Nelson,1991]

[Rose,1984]

[Parrington,1990]

[Reiser,1992]

[Richards, 1980]

[Rovner,1986]

[Russo,1988]

[Russo,1990]

[Sakkinen,1992]

[Sethi, 1980]

[Sethi, 1981]

[Sethi, 1989]

[Shopiro,1985]

[Shopiro,1987]

Chapter O

PARC, Palo Alto, CA. CSL-79-3. April 1979.

Rob Murray: A Satically Typed Abstract Representation for
Ct++ Programs. Proc. USENIX C++ Conference. Portland,
OR. August 1992.

Nelson, G. (editor): Systems Programming with Modula-3.
Prentice-Hall, Englewood Cliffs, NJ. 1991. ISBN 0-13-
590464-1.

Leonie V. Rose and Bjarne Stroustrup: Complex Arithmetic in
Ct+. Internal AT&T Bell Labs Technical Memorandum. Jan-
uary 1984. Reprinted in AT& T C++ Trandator Release Notes.
November 1985.

Graham D. Parrington: Reliable Distributed Programming in
Ct+. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.

John F. Reiser: Satic Initializers. Reducing the Value-Added
Tax on Programs. Proc. USENIX C++ Conference. Portland,
OR. August 1992.

Martin Richards and Colin Whitby-Strevens: BCPL — the lan-
guage and its compiler. Cambridge University Press, Cam-
bridge, England. 1980. ISBN 0-521-21965-5.

Paul Rovner: Extending Modula-2 to Build Large, Integrated
Systems. |EEE Software Vol 3, No 6, November 1986.

Vincent F. Russo and Simon M. Kaplan: A C++ Interpreter for
Scheme. Proc. USENIX Ct++ Conference. Denver, CO. Octo-
ber 1988.

Vincent F. Russo, Peter W. Madany, and Roy H. Campbell:
C++ and Operating Systems Performance: A Case Sudy.
Proc. USENIX C++ Conference. San Francisco, CA. April
1990.

Markku Sakkinen: A Critique of the Inheritance Principles of
C++. USENIX Computer Systems, vol 5, no 1, Winter 1992,
Ravi Sethi: A case study in specifying the semantics of a pro-
gramming language. Seventh Annual ACM Symposium on
Principles of Programming Languages. January 1980.

Ravi Sethi: Uniform Syntax for Type Expressions and Declara-
tors. Software — Practice and Experience, Vol 11. 1981.

Ravi Sethi: Programming Languages — Concepts and Con-
structs. Addison-Wesley, Reading, MA. 1989. ISBN 0-201-
10365-6.

Jonathan E. Shopiro: Srings and Lists for C++. AT&T Bell
Labs Internal Technical Memorandum. July 1985.

Jonathan E. Shopiro: Extending the C++ Task System for
Real-Time Control. Proc. USENIX Ct++ Conference. Santa Fe,
NM. November 1987.

[Shopiro,1989]

[Schwarz,1989]

[Snyder,1986]

[Stal,1993]

[Stepanov,1993]

[Stroustrup,1978]
[Stroustrup,1979]

[Stroustrup,1979b]

[Stroustrup,1980]

[Stroustrup,1980b]

[Stroustrup,1981]

[Stroustrup,1981b]

[Stroustrup,1982]

[Stroustrup,1982b]

[Stroustrup,1984]

[Stroustrup,1984b]

References 13

Jonathan E. Shopiro: An Example of Multiple Inheritance in
C++: A Model of the lostream Library. ACM SIGPLAN
Notices. December 1989.

Jerry Schwarz: lostreams Examples. AT&T Ct++ Trandlator
Release Notes. June 1989.

Alan Snyder: Encapsulation and Inheritance in Object-
Oriented Programming Languages. Proc. OOPSLA'86.
September 1986.

Michael Stal and Uwe Steinmiiller: Generic Dynamic Arrays.
The C++ Report. October 1993.

Alexander Stepanov and David R. Musser: Algorithm-Oriented
Generic Software Library Development. HP Laboratories
Technical Report HPL-92-65. November 1993.

Bjarne Stroustrup: On Unifying Module Interfaces. ACM
Operating Systems Review Vol 12 No 1. January 1978.

Bjarne Stroustrup: Communication and Control in Distributed
Computer Systems. Ph.D. thesis, Cambridge University, 1979.
Bjarne Stroustrup: An Inter-Module Communication System for
a Distributed Computer System. Proc. 1st International Conf.
on Distributed Computing Systems. October 1979.

Bjarne Stroustrup: Classes: An Abstract Data Type Facility for
the C Language. Bell Laboratories Computer Science Techni-
ca Report CSTR-84. April 1980. Revised, August 1981.
Revised yet again and published as [Stroustrup,1982].

Bjarne Stroustrup: A Set of C Classes for Co-routine Style Pro-
gramming. Bell Laboratories Computer Science Technical
Report CSTR-90. November 1980.

Bjarne Stroustrup: Long Return: A Technique for Improving
The Efficiency of Inter-Module Communication. Software
Practice and Experience. January 1981.

Bjarne Stroustrup: Extensions of the C Language Type Con-
cept. Bell Labs Internal Memorandum. January 1981.

Bjarne Stroustrup: Classes: An Abstract Data Type Facility for
the C Language. ACM SIGPLAN Natices. January 1982.
Revised version of [Stroustrup,1980].

Bjarne Stroustrup: Adding Classes to C: An Exercise in Lan-
guage Evolution. Bell Laboratories Computer Science internal
document. April 1982. Software: Practice & Experience, Vol
13. 1983.

Bjarne Stroustrup: The C++ Reference Manual. AT&T Bedll
Labs Computer Science Technical Report No 108. January
1984. Revised, November 1984.

Bjarne Stroustrup: Operator Overloading in C++. Proc. IFIP
WG2.4 Conference on System Implementation Languages:

14 Notestothe Reader

[Stroustrup,1984c]
[Stroustrup,1985]
[Stroustrup,1986]

[Stroustrup,1986b]

[Stroustrup,1986c]

[Stroustrup,1987]

[Stroustrup,1987b]

[Stroustrup,1987c]
[Stroustrup,1987d]
[Stroustrup,1988]

[Stroustrup,1988b]

[Stroustrup,1989]

[Stroustrup,1989b]

[Stroustrup,1990]
[Stroustrup,1990b]

[Stroustrup,1991]

[Stroustrup,1992]

Chapter O

Experience & Assessment. September 1984.

Bjarne Stroustrup: Data Abstraction in C. Bell Labs Technical
Journal. Vol 63, No 8. October 1984.

Bjarne Stroustrup: An Extensible I/0O Facility for C++. Proc.
Summer 1985 USENIX Conference. June 1985.

Bjarne Stroustrup: The C++ Programming Language.
Addison-Wedley, Reading, MA. 1986. 1SBN 0-201-12078-X.
Bjarne Stroustrup: What is Object-Oriented Programming?
Proc. 14th ASU Conference. August 1986. Revised versionin
Proc. ECOOP 87, May 1987, Springer Verlag Lecture Notesin
Computer Science Vol 276. Revised version in |EEE Software
Magazine. May 1988.

Bjarne Stroustrup: An Overview of C++. ACM SIGPLAN
Notices. October 1986.

Bjarne Stroustrup: Multiple Inheritance for C++. Proc. EUUG
Spring Conference, May 1987. Also, USENIX Computer Sys-
tems, Vol 2 No 4. Fall 1989.

Bjarne Stroustrup and Jonathan Shopiro: A Set of C classes for
Co-Routine Syle Programming. Proc. USENIX C++ Confer-
ence. SantaFe, NM. November 1987.

Bjarne Stroustrup: The Evolution of C++: 1985-1987. Proc.
USENIX Ct++ Conference. SantaFe, NM. November 1987.
Bjarne Stroustrup: Possible Directions for Ct++. Proc.
USENIX Ct++ Conference. SantaFe, NM. November 1987.
Bjarne Stroustrup: Type-safe Linkage for C++. USENIX Com-
puter Systems, Vol 1 No 4. Fall 1988.

Bjarne Stroustrup: Parameterized Types for Ct+. Proc.
USENIX C++ Conference, Denver, CO. October 1988. Also,
USENIX Computer Systems, Vol 2 No 1. Winter 1989.

Bjarne Stroustrup: Sandardizing C++. The C++ Report. Vol
1No 1. January 1989.

Bjarne Stroustrup: The Evolution of C++: 1985-1989.
USENIX Computer Systems, Vol 2 No 3. Summer 1989.
Revised version of [Stroustrup,1987c].

Bjarne Stroustrup: On Language Wars. Hotline on Object-
Oriented Technology. Vol 1, No 3. January 1990.

Bjarne Stroustrup: Sixteen Ways to Sack a Cat. The C++
Report. October 1990.

Bjarne Stroustrup: The C++ Programming Language (2nd edi-
tion). Addison-Wesley, Reading, MA. 1991. ISBN 0-201-
53992-6.

Bjarne Stroustrup and Dmitri Lenkov: Run-Time Type Identifi-
cation for C++. The C++ Report. March 1992. Revised ver-
sion: Proc. USENIX Ct++ Conference. Portland, OR. August

[Stroustrup,1992b]

[Stroustrup,1993]

[Taft,1992]

[Tiemann,1987]

[Tiemann,1990]

[Weinand,1988]

[Wikstrom,1987]

[Waldo,1991]

[Waldo,1993]

[Wilkes,1979]

[Woodward,1974]

References 15

1992.

Bjarne Stroustrup: How to Write a C++ Language Extension
Proposal. The C++ Report. May 1992.

Bjarne Stroustrup: The History of C++: 1979-1991. Proc.
ACM History of Programming Languages Conference
(HOPL-2). April 1993. ACM SIGPLAN Notices. March
1993.

S. Tucker Taft: Ada 9X: A Technical Summary. CACM.
November 1992

Michael Tiemann: ‘*“Wrappers:”’ Solving the RPC problem in
GNU Ct++. Proc. USENIX C++ Conference. Denver, CO.
October 1988.

Michael Tiemann: An Exception Handling Implementation for
Ct+. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.

Andre Weinand, et al.: ET++ — An Object-Oriented Applica-
tion Framework in Ct+. Proc. OOPSLA’88. September 1988.
Ake Wikstrom: Functional Programming in Sandard ML.
Prentice-Hall, Englewood Cliffs, NJ. 1987. ISBN 0-13-
331968-7.

Jim Waldo: Controversy: The Case for Multiple Inheritance in
C++. USENIX Computer Systems, val 4, no 2, Spring 1991.
Jim Waldo (editor): The Evolution of C++. A USENIX Asso-
ciation book. The MIT Press, Cambridge, MA. 1993. ISBN
0-262-73107-X.

M.V. Wilkes and R.M. Needham: The Cambridge CAP Com-
puter and its Operating System. North-Holland, New Y ork.
1979. ISBN 0-444-00357-6.

P.M. Woodward and S.G. Bond: Algol 68-R Users Guide. Her
Majesty’'s Stationery Office, London. 1974. ISBN O0-11-
771600-6.

