
by @z Bentley

programming
pearls

LITTLE LANGUAGES

When you say “language,” most programmers think
of the big ones, like FORTRAN or COBOL or Pascal.
In fact, a language is any mechanism to express in-
tent, and the input to many programs can be viewed
profitably as statements in a language. This column
is about those “little languages.”

Programmers deal with microscopic languages ev-
ery day. Consider printing a floating-point number
in six characters, including a decimal point and two
subsequent digits. Rather than writing a subroutine
for the task, a FORTRAN programmer specifies the
format ~6.2, and a COBOL programmer defines the
picture 999.99. Each of these descriptions is a
statement in a well-defined little language. While
the languages are quite different, each is appropriate
for its problem domain: although a FORTRAN pro-
grammer might complain that 999999.99999
is too long when F 12.5 could do the job, the
COBOLer can’t even express in FORTRAN such
common financial patterns as $, $ $ $) $ $9.99.
FORTRAN is aimed at scientific computing, COBOL
is designed for business.

In the good old days, real programmers would
swagger to a key punch and, standing the whole
time, crank out nine cards like:

//SUMMARY JOB REGION=(lOOK,50K)
// EXEC PGM=SUMMAR

//SYSIN DD DSNAME=REP.8601,DISP=OLD,

// UNIT=2314,SPACE=(TRK,(1,1,1)),

// VOLUME=SER=577632

//.SYSOUT DD DSNAME=SUM.86Dl,DISP=(,KEEP),

// UNIT=2314,SPACE=(TRK,(l,l,l~~,

// VOLUME=SER=577632

//SYSABEND DD SYSOUT=A

Today’s young whippersnappers do this simple job
by typing

summarize <jan.report >jan.summary

Modern successors to the old “job control” languages
are not only more convenient to use, they are funda-
mentally more powerful than their predecessors. In

the June column, for instance, Doug McIlroy imple-
mented a program to find the K most common words
in a document in six lines of the UNIXe SHELL
language.

Languages surround programmers, yet many pro-
grammers don’t exploit linguistic insights. Examin-
ing programs under a linguistic light can give you a
better understanding of the tools you now use, and
can teach you design principles for building elegant
interfaces to your future programs. This column will
show how the user interfaces to half a dozen inter-
esting programs can be viewed as little languages.

This column is built around Brian Kernighan’s PIC
language for making line drawings. Its compiler is
implemented on the UNIX system, which is particu-
larly supportive (and exploitative) of language pro-
cessing; the sidebar on pages 714-715 shows how
little languages can be implemented in a more prim-
itive computing environment (BASIC on a personal
computer).

The next section introduces PIC and the following
section compares it to alternative systems. Subse-
quent sections discuss little languages that compile
into PIC and little languages used to build PIC.

The PIC Language
If you’re talking about compilers, you might want to
depict their behavior with a picture:

Compiler

FIGURE 1. A Simple View of a Compiler

(This diagram is genuine PIC output; we’ll see its
input description shortly.) Or you may desire a little
more detail about the internal structure:

r---------------~
t Front End BackEnd I

1 I
L---------------J
Compiler

0 1966 ACM OOOI-0782/86/0800-0711 7W

August 1986 Volume 29 Number 8

UNIX is a trademark of AT&T Bell Laboratories.

Communications of the ACM

Programming Pearls

This diagram also describes the two tasks that a pro-
gram for drawing pictures must perform: a back end
draws the picture while a front end interprets user
commands to decide what picture to draw.

And just how does a user describe a picture?
There are (broadly) three ways to do the job. An
interactive program allows the user to watch the
program as it is drawn, and a subroutine library
adds picture primitives to the constructs in a pro-
gramming language. We’ll return to these ap-
proaches in the next section.

The third approach to describing pictures is the
topic of this column: a little language. In Kernighan’s
PIC language, for instance, Figure 1 is described as

ellipse “Source” “Code”

arrow

box “Compiler”

arrow

ellipse “Object” “Code”

The first input line draws an ellipse of default size
and stacks the two strings at its center. The second
line draws an arrow in the default direction (moving
right), and the third line draws a box with the text
at its center. The implicit motion after each object
makes it easy to draw the picture and convenient to
add new objects to an existing picture.

Other PIC mechanisms are illustrated in this non-
sense picture (which is a simple version of Figure 2):

B2

It was drawn by

boxht = . 25; boxwid = .25

down # default direction

Bl : box “Bl”

arrow

B2: box

“B2 ” at B2.w rjust

line right .4 from B2.e

B3: box dashed wid .4 “B3”

line <--> from B3.n to B1.e

The boxht and boxwid variables represent the de-
fault height and width of a box in inches; those
values can also be explicitly set in the definition of a
particular box. Text following the # character is a
comment (up to the end of the line). Labels such as
B 1, B2, and B3 name objects (LongerName is fine
too); the western point of box B2 is referred to as
B2. w. A line of the form string at position places a
text string at a given position; r just right-justifies

the string. These devices were used to draw Figure
2, which gives a yet more detailed view of a com-
piler.

Analysis

4
Syntax

Analysis

i
Semantic Error
Analysis Handler

i
Code

Generation

1
Code

Ontimization

FIGURE 2. A Detailed View of a Compiler

Any particular compiler translates one source lan-
guage into one object language. How can an organi-
zation run 5 different languages on 5 different ma-
chines? A brute-force approach writes 25 compilers:

5 languages

25 compilers

5 machines u

An intermediate language circumvents much of this
complexity. For each language there is a front end
that translates into the intermediate language, and
for each machine there is a back end that translates
the intermediate language into the machine’s output
code.

5 machines &

FIGURE 3. Five Languages for Five Machines

If there are L languages on M machines, the brute-
force approach constructs L x M distinct compilers,
while the intermediate language needs just L front
ends and M back ends. (PIC compiles its output into

712 Communications of the ACM August 1986 Volume 29 Number 8

Programming Pearls

a picture-drawing subset of the TROFF typesetting
language, which in turn produces an intermediate
language suitable for interpretation on a number of
output devices, from terminal display programs to
laser printers to phototypesetters.)

Figure 3 uses two of PIG’s programming facilities,
variables and for loops:

n=5
boxht = boxwid = .2

h = .3; w = .35

I: box at w*(n+l)/2,0

for i = 1 to n do {

1
” 1

" 5

” 5

box with .s at irw, h

line from last box.s to 1.n

box with .n at iiw, -h

line from last box.n to 1.s

intermediate language " at 1.w rjust

languages " at 2nd box .w rjust

machines " at 3rd box .w rjust

The picture of the brute-force approach is described
by a single loop to draw the boxes, followed by two
nested loops to make all pairwise interconnections.

The examples in this section should give you an
idea of the structure of PIC, but they only hint at its
complete power. I have not mentioned a number of
PIG’s facilities; such as built-in functions, if state-
ments, macro processing, file inclusion, and a simple
block structure.

Perspective
In this section we’ll consider several approaches to
picture-drawing programs and compare them to
Kernighan’s PIC language. Although the particulars
are for pictures, the general lessons apply to design-
ing user interfaces for many kinds of programs.

An interactive drawing program allows the user to
enter a picture with a spatial input device (such as a
mouse or a drawing pad) and displays the picture as
it is drawn. Most interactive systems have a menu
that includes items such as boxes, ellipses, and lines
of various flavors (vertical, horizontal, dotted, etc.).
Immediate feedback makes such systems quite com-
fortable for drawing many simple pictures, but
drawing the following picture on an interactive sys-
tem would require a steady hand and the patience
of Job:

PIG’s programming constructs allow the picture to
be drawn easily:

pi = 3.14159; n = 10; r = .5

s = 2*pi/n

for i = 1 to n-l do I

for j = i+l to n do I

line from r*cos(s*i), r*sin(s*i)\

to r*cos(s*j), r*sin(s*j)

(The backslash character \ at the end of a line con-
tinues it on the next line.)

But handy as such features are, doesn’t parsimony’
dictate that variables and for loops properly belong
in a full programming language? This concern is ad-
dressed by a subroutine library that adds pictures to
the primitives supported by a given language. Given
asubroutineline(x1, yl, x2, y~),onecould
easily draw the last picture in Pascal:

pi := 3.14159; n := 10; r := 0.5;

S := Z*pi/n;

for i := 1 to n-l do

for j := i+l to n do

line (r*cos(s*i), r*sin(s*i),

r*cos(s*j), r*sin(s*j));

Unfortunately, to draw this picture

Processor

one must write, compile, and execute a program
containing subroutine calls like:

ellipse(0.3, 0, 0.6, 0.4)

text(0.3, 0, "Input")

arrow(0.75, 0, 0.3, 0)
box(l.2, 0, 0.6, 0.4)

text(l.2, 0, nProcessorn)

arrow(1.65, 0, 0.3, 0)

ellipse(2.1, 0, 0.6, 0.4)

text(2.1, 0, "Output")

(And even such simple code may be too hard for
some nonprogrammers who find PIC comfortable,
such as technical typists or software managers.) The
first two arguments to each routine give the x and y
coordinates of the center of the object; later argu-
ments give its width and height or a text string.
These routines are rather primitive; more clever

’ Arguments beyond taste suggest that PIG’s for loops may be inappropriate:
their syntax differs from similar loops elsewhere in the UNIX system, and
PIG’s for loom are a few orders of maenitude slower than those in other
languages. P&s may write loops in oyher languages to generate PIC output:
I am a delighted (if morally compromised) user of PIG’s for loops-the quilts
and stereograms in the exercises were easy to generate using that construct.

August 1986 Volume 29 Number 8 Communications of the ACM 713

A Little Language for Surveys
Once a public opinion pollster knows the questions
to ask in a survey, there are a number of data pro-
cessing problems to be faced:

input: Most organizations administer the survey to
a respondent using a paper questionnaire: the re-
sponses are later keyed into a database. Other or-
ganizations administer questions by computers
that record the responses online.

Validation: There are a number of checks for con-
sistency and completeness, ranging from global is-
sues (are all respondents accounted for?) to local
ones (were “Democrat Only” questions adminis-
tered to all and only Democrats?).

Tabulation and Output: Once the questionnaire
database is complete, the responses must be tabu-
lated and a final report prepared.

One approach to these problems is to write a new
program from scratch for each task for each survey.
This sidebar sketches how a single little language
can solve all the problems.

Program 1 illustrates a little language I once im-
plemented in BASIC on a personal computer. Each
line that begins with a “Q” describes a question:
Question 1, for instance, is stored in column 5 of
each record, and asks the respondent’s political
party. The next three lines are the three possible
responses to the questions; allowing the user to in-
dent the responses under the question makes the file
easier to read.

The single language can serve as input to several
programs.

Q1,5 What is your political party?
1 Democrat

2 Republican
3 Other

Q2,6 For whom did you vote in 19841
1 Reagan/Bush
2 Mondale/Ferraro
3 Named Other Candidate
4 Didn't Vote
5 Don't Know

Q3,7 Where is your polling place?
1 Named a place
2 Did not name a place

Q4,8 In this election, are you
1 Very interested
2 Somewhat interested
3 Not interested

PROGRAM 1. A Description of a Survey

Input: An interactive program can administer the
survey from this description and store the results
in the database. If an organization uses paper
questionnaires, the description is used by a
“pretty-print” program to prepare the master copy
and by a data-entry program to describe record
formats.

Validation: From a description like Program 1, a
program can ensure that all questions are an-
swered and that all responses are in a legal range.
We’ll see shortly how another little language can
be used to check more subtle constraints.

Tabulafion and Output: The description in Program
1 provides the bulk of the input to the program
that produces the final report of a survey. The
user also specifies in a simple language the titles
to appear on the report, which questions should
be cross-tabulated, and headings for the cross-
tabulations.

Just as a FORTRAN description of a program can be
compiled and executed on several different kinds of
computers, one description of a survey can be inter-
preted to perform several different tasks.

I have neglected a ton of details that complicate
all survey programs. For instance, even though the
questions were asked in one order, the user might
want them to appear on the output in a different
order [say, from greatest to least frequency of re-
sponse); we’ll see several other complications
shortly. When I first designed the program, I
sketched half a dozen bells and whistles before I
realized that such was the way of folly: I could
never anticipate all the options a user might desire,
and any program that dealt with all options would
be a rat’s nest of code.

I therefore looked for a general mechanism that
could handle the problems, and finally settled on a
construct I called pseudocolumns. The “real” data was
stored in columns 1 through 250 of the input record.
As each record is read, the program generates pseu-
docolumns (defined by a little language) that start at
column 251. Program 3 states that column 5 contains
party information in the order Democrat, Republi-
can, Other. To print Republicans before Democrats,
one could define column 251 as follows:

define 251

I if 5 is 2 X Rep
2 if 5 is 1 # Dem
3 otherwise # Other

(As in PIC, the # character introduces a comment.)
The user can now refer to column 251 as any other
column:

August 1986 Volume 29 Number 8

Programtniq Pearls

Q1,251 What is your political party?
1 Republican
2 Democrat
3 Other

Another common task is collapsing fields. For in-
stance, the user might wish to collapse the three age
brackets 21-25, 26-30, and 31-35 into the single
bracket 21-35. If column 19 contains age in 5-year
clumps, one can make coarser grains in pseudo-
column 252:

define 252 # age, bigger lumps
1 if 19 is 1 # below 21

2 if 19 is 2,3,4 # 21-35

3 if 19 is 5,6,7 # 36-50
4 otherwise # over 50

Pseudocolumns have a more sophisticated appli-
cation in identifying “high-propensity” voters, who
are most likely to show up at the polls:

define 253 # 1 if high-propensity
1 if 6 is 1,2,3 and 7 is 1 and 8 is I,2
2 otherwise

This column is one if and only if the respondent
remembered his or her 1984 Candidate (column 6),

could name his or her polling place (column 3, and
is interested in this election (column 8). This illus-
trates the most complex form for a pseudocolumn;
it is similar to the “conjunctive normal form” of
boolean algebra.

Pseudocolumns have handled all the problems I
knew about during the design phase and many oth-
ers that I never would have dreamed of. Although
the mechanism is quite general, it was easy to im-
plement. The descriptions are read and stored in a
data structure by 90 lines of BASIC code. The gener-
ation routine tests each value sequentially in 11
lines of BASIC (simple code was more than fast
enough for this task; optimization would have been
wasted).

When I first started to design a survey system to
be implemented on a personal computer, I sketched
an interactive program. It sounded easy at first: tell
me the question, tell me the responses, now to the
next question. As I explored further, though, I real-
ized that I was designing large portions of a text
editor (I want to change part of question 35. Which
part? A response. Which response? 3, I think, but let
me see them all. Oops, 4. Change “Smith” to
“Smythe”, and leave the rest alone. . .). I finally
made progress by abandoning the interactive ap-
proach and thinking about the problem as designing
a little language to describe surveys (and leaving the
editing to the system text editor!).

routines might, for instance, have an implicit motion
associated with objects.

So far I’ve used the term “little languages” intui-
tively; the time has come for a more precise defini-
tion. I’ll restrict the term computer language to tex-
tual inputs (and thus ignore the spatial and temporal
languages defined by cursor movements and button
clicks).

A computer language enables a textual description
of an object to be processed by a computer pro-
gram.

The object being described might vary widely, from
a picture to a program to a tax form. Defining “little”
is harder: it might imply that a first-time user can
use the system in half an hour or master the lan-
guage in a day, or perhaps that the first implementa-
tion took just a few days. In any case, a little lan-
guage is specialized to a particular problem domain
and does not include many features found in con-
ventional languages.

PIC qualifies in my book as a little language, al-
though admittedly a big little language. Its tutorial
and user manual is 26 pages long (including over 50

sample pictures): I built my first picture in well un-
der an hour. Kernighan had the first implementation
up and stumbling within a week of putting pencil to
coding form. The current version is about 4,090 lines
of C code and represents several months of effort
spread over five years. Although PIC has many fea-
tures of big languages [variables, for statements,
and labels), it is missing many other features (decla-
rations, while and case statements, and facilities
for separate compilation). I won’t attempt a more
precise definition of a little language; if the linguistic
analogy gives you insight into a particular program,
use it, and if it doesn’t, ignore it.

We’ve considered three approaches to specifying
pictures: interactive systems, subroutine libraries,
and little languages. Which one is best? Well, that
depends.

Interactive systems are probably the easiest to use
for drawing simple pictures, but a large collection
of pictures may be hard to manage (given 50 pic-
tures in a long paper, how do you make all ellipses
0.1 inches wider and 0.05 inches shorter?).

If your pictures are generated by big programs,
subroutine libraries can be easy and efficient.
Libraries are usually uncomfortable for drawing
simple pictures, though.

Little languages are a natural way to describe
many pictures; they can be integrated easily into
document production systems to include pictures
in larger documents. Pictures can be managed

August 1986 Volumr 29 Number 8 Communications of the ACM 715

Progruninfing Pearls

using familar tools such as file systems and text
editors.

I’ve used all three kinds of systems; each is prefera-
ble under some circumstances.’

PIC Preprocessors
One of the greatest advantages of little languages is
that one processor’s input is another processor’s out-
put. So far we’ve only thought of PIC as an input
language. In this section we’ll survey two languages
for describing specialized classes of pictures; their
compilers generate PIC programs as output.

We’ll start with SCATTER., a PIC preprocessor that
makes scatter plots from x, y data. The output of
SCATTER is fed as input to PIC, which in turn feeds
the TROFF document formatter.

SCATTER PIG TROFF

This structure is easy to implement as a UNIX pipe-
line of processes:

scatt"er infile I pit : troff soutfile

(The UNIX SHELL program that interprets such
commands is, of course, another little language. In
addition to the) operator for constructing pipelines,
the language includes common programming com-
mands such as if, case, for, and while.)

PIC is a big little language, SCATTER is at the
other end of the spectrum. This SCATTER input
uses all five kinds of commands in the language.

size x 1.8
size y 1.2
range x 1870 1990

range y 35 240
label x Year
label y Population
ticks x 1880 1930 1980

ticks y 50 100 150 200
file pop.d

The size commands give the width (x) and height
(y) of the frame in inches. The range commands
tell the spread of the dimensions, and labels and
ticks are similarly specified. Ranges are mandatory

*In terms of implementation difficulty. all three approaches have a front end
for specification and a back end for picture drawing. Subroutine libraries use
a language’s procedure mechanism as a front end: it may he clumsy. but it’s
free. Little languages can use standard compiler technology for their front
end: we’ll see such tools shortly. Because interactive systems usually involve
real-time graphics, they are typically the hardest to implement and the least
portable (often with two back ends: an interactive one shows the picture as it
is being drawn. and a static one writes the complete picture to a file).

for both dimensions; all other specifications are op-
tional. The description must also specify an input
file containing x, y pairs. The first three lines in the
file pop. d are

1880 50.19

1890 62.98

1900 76.21

The x-value is a year and the y-value is the United
States population in millions in the census of that
year. SCATTER turns that simple description of a
scatter plot into a 23-line PIC program that produces
Figure 4.

1880 1930 1980

Year

FIGURE 4. Population of the United States

SCATTER is tiny but useful. Its “compiler” is a
24line AWK3 program that I built in just under an
hour. A companion paper in this issue of Communica-
tions describes GRAP, a much larger PIC preproces-
sor for drawing graphs, and an AWK compiler for a
similar little language; see the Further Reading.

Chemists often draw chemical structure diagrams
like the representation of the antibiotic penicillin G
shown in Figure 5. One could in principle draw that
picture in PIC, but it is more natural for a chemist to
describe the structure in the CHEM language illus-
trated in Program 2.

//iN+H
0 COOH

FIGURE 5. Penicillin G

‘In many environments. SNOBOL’s string-processing facilities would make it
the language of choice for quickly implementing a little language. I am more
comfortable with the AWK language. which was sketched in this column in
June and July. 1985.

716 Communications of the ACM August 1986 Volume 29 Number 8

RI:

R2:

ring4 pointing 45 put N at 2
doublebond -135 from Rl.V3 ; 0
backbond up from Rl.Vl ; H
frontbond -45 from Rl.V4 ; N
Ii above N
bond left from N ; C
doublebond up ; 0
bond length . 1 left from C ; CH2
bond length .I left
benzene pointing left
flatring put S at 1 \

put N at 4 with .V5 at Rl.Vl
bond 20 from R2.V2 ; CH3
bond 90 from R2.V2 ; CH3
bond 90 from R2.V3 ; H
backbond 170 from R2.V3 ; COOH

PROGRAM 2. CHEM Description of Penicillin G

The history of CHEM is typical of many little lan-
guages. Late one Monday afternoon, Brian Kernighan
and I spent an hour with Lynn Jelinski, a Bell Labs
chemist, moaning about the difficulty of writing. She
described the hassles of including chemical struc-
tures in her documents: the high cost and inordinate
delays of dealing with a drafting department. We
suspected that her task might be appropriate for PIC,
so she lent us a recent monograph rich in chemical
diagrams.

That evening Kernighan and I each designed a
microscopic language that could describe many of
the structures, and implemented them with AWK
processors (about 50 lines each). Our model of the
world was way off base (the book was about poly-
mers, so our languages were biased towards linear
structures), but the output was impressive enough to
convince Jelinski to spend a couple hours educating
us about the real problem. By Wednesday we had
built a set of PIC macros with which Jelinski could
(with some pain) draw structures of genuine interest
to her; that convinced her to spend even more time
on the project. Over the next few days we built and
threw away several little languages that compiled
into those macros. A week after starting the project,
the three of us had designed and implemented the
rudiments of the current CHEM language, whose
evolution since then has been guided by real users.
The current version is about 500 lines of AWK and
uses a library of about 70 lines of PIC macros.

These two brief examples hint at the power of
preprocessors for little languages. PIC produces line
drawings; SCATTER extends it to scatter plots, and
CHEM deals with chemical structures. Each pre-
processor was easy to implement by compiling into
PIC; it would be much more difficult to extend in-

Programming Pearls

teractive drawing programs to new problem domains
such as graphs or chemistry.

Little Languages for Implementing PIC
In this section we’ll turn from using PIC to building
it. We’ll study three UNIX tools that Kernighan used
to construct PIC; each can be viewed as a little lan-
guage for describing part of the programmer’s job.
This section sketches the tools; the Further Reading
describes them in detail. The purpose of this section
is to hint at the breadth of little languages; you may
skip to the next section with impunity any time you
feel overwhelmed by details.

Figure 2 illustrates the components in a typical
compiler; Figure 6 shows that PIC has many, but not
all, of those components. We’ll first study the LEX
program (which generates PIG’s lexical analyzer),
then turn to YACC (which performs the syntax
analysis), and finally look at MAKE (which manages
the 40 source, object, and header files used by PIC).

Lexical
Analysis

ti
Syntax

Analysis
1

Code
Generation

FIGURE 6. A Detailed View of PIC

A lexical analyzer (or lexer) breaks the input text
into units called tokens. It is usually implemented as
a subroutine; at each call it returns the next token
in the input text. For instance, on the PIC input line

line down from B1.s

a lexer should return the following sequence:

LINE
DOWN
FROM
SYMBOL: Bl
SOUTH

Constructing a lexer is straightforward but tedi-
ous, and therefore ideal work for a computer. Mike

August 1986 Volume 29 Number 8 Communications of the ACM 717

Programming Pearls

Lesk’s LEX language specifies a lexer by a series of
pairs: when the routine sees the regular expression
on the left, it performs the action on the right. Here
is a fragment of the LEX description of PIC:

return(
return(
return(
return(
return(HEAD1);
return(HEAD2);
retprn(HEAD12);
return(SOUTH);
return(SOUTH);

The regular expression (a j b) denotes either a orb.
Given a description in this form, the LEX program
generates a C function that performs lexical analysis.

Those regular expressions are simple: PIG’s defini-
tion of a floating point number is more interesting:

(iD)+(“. “?){D}+t;“.” {D}+)((elE)("+"I-)?{D}+)

(In the spirit of this column, observe that regular
expressions are a microscopic language for describ-
ing patterns in text strings.) Constructing a recog-
nizer for that monster is tedious and error-prone
work for a human; LEX does it quickly and accu-
rately.

YACC is an acronym for “Yet Another Compiler-
Compiler.” Steve Johnson’s program is a parser gen-
erator; it can be viewed as a little language for de-
scribing languages. Its input has roughly the same
form as LEX: when a pattern (on the left-hand side)
is recognized, the action on the right is performed.
While LEX’s patterns are regular expressions, YACC
supports context-free languages. Here is part of PIG’s
definition of an arithmetic expression:

expr :

NUMBER
: VARNAME ($5 = getfval(51); 1
I expr '+' expr 1 55 = 51 + 53; l

I expr '-' expr I $5 = 51 - 53; l

I expr 'x' expr { $5 = 51 * $3; 1

I expr '/' expr { if ($3 == 0.0) {
error("0 divide");
$3 = 1.0;

55 = $1 / 53;)

I '(' expr ')' { 55 = 52; 1

. . .

:

When the parser finds expr + expr, it returns (in
$$) the sum of the first expression ($1) and the

second expression (which is the third object, $3).
The complete definition describes the precedence of
operators (* binds before +), comparison operators
(such as < and >), functions, and several other minor
complications.

A PIC program can be viewed as a sequence of
primitive geometric objects; a primitive is defined as

primitive:
BOX attrlist { boxgen($l); 1

! CIRCLE attrlist { elgen($l); 1
I ELLIPSE attrlist { elgen(51); 1
I ARC attrlist { arcgen(51); }
: LINE attrlist { linegen(51); 1

. . .

When the parser sees an ellipse statement, it
parses the attribute list and then calls the routine
elgen. It passes to that routine the first component
in the phrase (the token ELLIPSE); elgen uses that
token to decide whether to generate a general ellipse
or a circle (a special case with length equal to
width).

All PIC primitives use the same attribute list
(some primitives ignore some attributes). An attri-
bute list is either empty or an attribute list followed
by an attribute:

attrlist:
attrlist attr

I /* empty */

And here is a small part of the definition of an attri-
bute:

attr : ’

DIR expr { storefattr(51, !DEF, 52); 1
: DIR { storefattr(51, DEF, 0.0); 1
i FROM position { StOreOattr(51, 52); 1
i TO position { storeoattr(51, 52); }

i AT position { storeoattr(51, 52);)

. . .

As each attribute is parsed, the appropriate routine
stores its value.

These tools tackle well-studied problems: the
compiler book referenced under Further Reading
devotes 80 pages to lexers and 120 pages to parsers.
LEX and YACC package that technology: the pro-
grammer defines the lexical and syntactic structure
in straightforward little languages, and the programs
generate high-quality processors. Not only are the

718 Communications of the ACM August 1986 Volume 29 Number 8

Programming Pearls

descriptions easy to generate in the first place, they
make the language very easy to modify.

Stu Feldman’s MAKE program addresses a more
mundane problem that is nonetheless difficult and
crucial for large programs: keeping up-to-date ver-
sions of the files containing header code, source
code, object code, documentation, test cases, etc.
Program 3 is an abbreviated version of the file that
Kernighan uses to describe the files associated with
PIG.

OFILES = picy.0 pic1.o main.0 print.0 \
misc.0 symtab.0 b1ockgen.o \
. . .

CFILES = main.c print.c misc.c symtab.c \
b1ockgen.c boxgen.c circgen.c \
. . .

SRCFILES = picy.y picl.1 pic.h $(CFILES)
pit: $(OFILES)

cc $(OFILES) -1m

$(OFILES): pic.h y.tab.h
memo :

pit memo I eqn I troff -ms >memo.out
backup: $(SRCFILES) makefile pictest.a

push safemachine $? /usr/bwk/pic
touch backup

bundle:
bundle $(SRCFILES) makefile README

Principles
Little languages are an important part of the popular
Fourth- and Fifth-Generation Languages and Appli-
cation Generators, but their influence on computing
is much broader. Little languages often provide an
elegant interface for humans to control complex pro-
grams or for modules in a large system to communi-
cate with one another. Although most of the exam-
ples in the body of this column are large “systems
programs” on the UNIX system, the sidebar on
pages 714-715 shows how the ideas were used in a
fairly mundane task implemented in BASIC on a
microcomputer.

The principles of language design summarized
below are well known among designers of big pro-
gramming languages; they are just as relevant to the
design of little languages.

Design Goals. Before you design a language, care-
fully study the problem you are trying to solve.
Should you instead build a subroutine library or an
interactive system? An old rule of thumb states that
the first 10 percent of programming effort provides
99 percent of the functionality; can you make do
with an AWK or BASIC or SNOBOL implementation
that cheaply provides the first 99 percent, or do you
have to use more powerful tools like LEX and YACC
to get to 99.9 percent?

PROGRAM 3. PIG’s MAKE file

The file starts with the definition of three names:
OFILES are the object files, CFILES contain C
code, and the source files SRCFILES consist of the
C files and the YACC description pity . y, the LEX
description picl -1, and a header file. The next line
states that PIC must have up-to-date versions of ob-
ject files (MAKE’s internal tables tell how to make
object files from source files); the next line tells how
to combine those into a current version of PIC.
When Kernighan types make pit, MAKE checks the
currency of all object files (file . o is current if its
modification time is later than file . c), recompiles
out-of-date modules, then (if needed) loads the
pieces along with the appropriate libraries, The fol-
lowing line states that the object files depend on the
two named header files.

Simplicity. Keep your language as simple as possi-
ble. A smaller language is easier for its implementers
to design, build, document, and maintain and for its
users to learn and use.

Fundamental Abstractions. Typical computer lan-
guages are built around the world-view of a von
Neumann computer: instructions operate on small
chunks of data. The designer of a little language has
to be more creative: the primitive objects might be
geometric symbols, chemical structures, context-free
languages, the files in a program, or the questions in
a survey. Operations on objects vary just as widely,
from fusing two benzene rings to recompiling a
source file. Identifying these key players is old hat to
programmers: the primitive objects are a program’s
abstract data types, and the operations are the key
subroutines.4

The next two lines tell what happens when Ker- Linauistic Structure. Once YOU know the basic ob-
nighan types make memo: the file containing the
technical memorandum is processed by TROFF and
two preprocessors. The backup command saves on
saf emachine all modified files, and the bundle
command wraps the named files into a package suit-

‘In the mid 1970s Bill McKeeman (now at the Wang Institute of Graduate

able for mailing. Although MAKE was originally de-

Studies) consulted on an Automated Teller Machine project that was running
out of its 28 kilobytes. Several programming tricks compromised maintainabil-
ity to squeeze space. but each time additional functions consumed even more
memory. After losing this battle several times. McKeeman watched a human
teller perform the function. He found that the teller’s job was defined by

signed with compiling in mind, Feldman’s elegant
general mechanism gracefully supports all these

paper slips that describe various transactions (deposit, withdrawal, balance
inquiry. etc.) stored in three dozen slots beneath the teller’s window.

additional housekeeping functions.

McKeeman realized that the human teller could be viewed as a machine with
three dozen operation codes, each defined by a separate form. He therefore
designed an interpreted program with commands in a little language for bank-
ing. The new design provided three times the functionality in less memory.
and maintenance was much easier.

August 1986 Volume 29 Number 8 Communications of the ACM 719

Programming Pearls

jects and operations, there are still many ways of
writing down their interactions. The infix arithmetic
expression 2+3 * 4 might be written in postfix as
234*+ or functionally as pl-us (2, times (3,4));

there is often a trade-off between naturalness of
expression and ease of implementation. But what-
ever else you may or may not include in your lan-
guage, be sure to allow indentation and comments.

Yardsticks of Language Design. Rather than preach
about tasteful design, I’ve chosen as examples useful
languages that illustrate good taste. Here are some of
their desirable properties.

Orthogonality: keep unrelated features unrelated.

Generality: use an operation for many purposes.

Parsimony: delete unneeded operations.

Completeness: can the language describe all ob-
jects of interest?

Similarity: make the language as suggestive as
possible.

Extensibility: make sure the language can grow.

Openness: let the user “escape” to use related
tools.

The Design Process. Like other great software, great
little languages are grown, not built. Start with a
solid, simple design, expressed in a notation like
Backus-Naur form. Before implementing the lan-
guage, test your design by describing a wide variety
of objects in the proposed language. After the lan-
guage is up and running, iterate designs to add fea-
tures as dictated by real use.

Insights from Compiler Building. When you build
the processor for your little language, don’t forget
lessons from compilers. As much as possible, sepa-
rate the linguistic analysis in the front end from the
processing in the back end; that will make the pro-
cessor easier to build and easier to port to a new
system or new use of the language. And when you
need them, use compiler-building tools like LEX,
YACC, and MAKE.

Problems
1. Most systems provide a package for sorting files;

the interface is usually a little language. Evalu-
ate the language provided by your system. De-
sign a better language and implement it (perhaps
as a preprocessor that generates commands for
your system sort).

2. LEX uses a little language for regular expressions
to specify lexical analyzers. What other pro-
grams on your system employ regular expres-
sions? How do they differ, and why?

3. Study different languages for describing biblio-
graphic references. How do the languages differ
in applications such as document retrieval sys-
tems and bibliography programs in document
production systems? How are little languages
used to perform queries in each system?

4. Study examples of what might be the littlest lan-
guages of them all: assemblers, format descrip-
tions, and stack languages.

5. Design and implement picture languages special-
ized for the following domains.
a. Many people can perceive a three-dimen-

sional image by crossing their eyes and fus-
ing the two halves of stereograms:

A small survey I conducted suggests that
about half the readers of Communications
should be able to perceive these three-
dimensional scenes; the other half will get a
headache trying.

\ I Y---Y
E , / \

These pictures were drawn by a 40-line PIC
program.

b. Ravi Sethi described this quilt in a 35-line
PIC program.

The quilt is a 4 x 6 array of rotations of
these two squares:

720 Communications of the ACM August 1986 Volume 29 Number 8

Programtning Pearls

The dots shown above in the corners of.the
two squares are also displayed in this ver-
sion of the quilt:

c. Other interesting pictorial domains include
the following: data structures depicted in
pictures, such as arrays (see page 479 of the
June Communications), trees, and graphs
(drawing Finite State Machines is especially
interesting); descriptions of musical scores
(consider both rendering the score in pic-
tures and playing it on a music generator);
and pictorially scored games (such as bowl-
ing and baseball).

6. Design a little language to deal with common
forms in your organization, such as expense
reports for trips.

7. How can processors of little languages respond to
linguistic errors? (Consider the options available
to compilers for large languages.) How do partic-
ular processors respond to errors?

8. These questions deal with the survey system de-
scribed in the sidebar on pages 714-715.
a. The example assumed (falsely) that a ques-

tion or a response always fits on a single line;
extend the language to handle multiple-line
text.

b. Design a program to automate the adminis-
tration of a survey. Describe a mechanism to
ensure, for instance, that Democrat-only
questions are asked only of Democrats.

Solutions to June’s Problems
1. Most programs for computing the K most com-

mon words in a file spend a great deal of effort
on words that occur only a few times: in the text
of both May and June’s columns, for instance,
over half the distinct words occurred just once.
A two-pass program saves time and space by
reading the file twice: the first pass identifies
infrequent words, and the second pass concen-
trates on other words. The two passes share in-
formation in an array named Count, which is
initialized to zero. As the first pass reads word X,
it increments Count[Hash(X)]; no information is
stored about the words themselves. After the
first pass, frequent words must have high Counts,

Further Reading
You may never have heard of Compilers: Principles,
Techniques, and Tools by Aho, Sethi and Ullman, but
you’d probably recognize the cover of the “New
Dragon Book” (published in 1986 by Addison-
Wesley). And you can judge this book by its cover: it
is an excellent introduction to the field of compilers,
with a healthy emphasis on little languages5 Fur-
thermore, the book makes extensive use of PIC to
tell its story in pictures. (Most of the compiler pic-
tures in this column were inspired by pictures in
that book.)

Chapter 8 of The UNlX Programming Environment
by Kernighan and Pike (Prentice-Hall, 1984) is the
case history of a little language. It uses the UNIX
tools sketched in this column to design, develop, and
document a language.

The companion article by Kernighan and me on
page 782 of this issue of Communications describes a
little language in detail: the GRAP language for
graphical displays of data. The references in that
paper present details on PIG and several related
UNIX document production tools.

but some high Count values could be the result
of several rare words. The second pass deals
with word X only if Count[Hash(X)] is appropri-
ately large, using any of the techniques dis-
cussed in the June column.
Knuth assumed that most frequent words tend to
occur near the front of the document: McIlroy
pointed out that some frequent words may not
appear until relatively late. When Knuth ran his
program with reduced memory to find the 100
most common words in Section 3.5 of his Semi-
numerical Algorithms, it missed just two words
that were used frequently at the end of the sec-
tion.
For insight into this problem, see Exercise 5.24
(and the answer) in Knuth’s Sorting and Searching.

‘1 first learned the importance of little languages from Mary Shaw. who
edited T/II, Camqqe-Mellorr C~rrric-rrlum for Undergraduate Comp~rtcr Scwrm
(published hv Springer-Verlag in 1985). Course 320 in that curriculum restruc-
tures a tradiiional compiler course to place substantial emphasis on little
languages.

For Correspondence: Jon Bentley. AT&T Bell Laboratories. Room X-317.
600 Mountain Ave.. Murray Hill, Nj 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

August 1986 Volume 29 Number 8 Communications of the ACM 721

