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LITTLE LANGUAGES 

When you say “language,” most programmers think 
of the big ones, like FORTRAN or COBOL or Pascal. 
In fact, a language is any mechanism to express in- 
tent, and the input to many programs can be viewed 
profitably as statements in a language. This column 
is about those “little languages.” 

Programmers deal with microscopic languages ev- 
ery day. Consider printing a floating-point number 
in six characters, including a decimal point and two 
subsequent digits. Rather than writing a subroutine 
for the task, a FORTRAN programmer specifies the 
format ~6.2, and a COBOL programmer defines the 
picture 999.99. Each of these descriptions is a 
statement in a well-defined little language. While 
the languages are quite different, each is appropriate 
for its problem domain: although a FORTRAN pro- 
grammer might complain that 999999.99999 
is too long when F 12.5 could do the job, the 
COBOLer can’t even express in FORTRAN such 
common financial patterns as $ , $ $ $ ) $ $9.99. 
FORTRAN is aimed at scientific computing, COBOL 
is designed for business. 

In the good old days, real programmers would 
swagger to a key punch and, standing the whole 
time, crank out nine cards like: 

//SUMMARY JOB REGION=(lOOK,50K) 
// EXEC PGM=SUMMAR 

//SYSIN DD DSNAME=REP.8601,DISP=OLD, 

// UNIT=2314,SPACE=(TRK,(1,1,1)), 

// VOLUME=SER=577632 

//.SYSOUT DD DSNAME=SUM.86Dl,DISP=(,KEEP), 

// UNIT=2314,SPACE=(TRK,(l,l,l~~, 

// VOLUME=SER=577632 

//SYSABEND DD SYSOUT=A 

Today’s young whippersnappers do this simple job 
by typing 

summarize <jan.report >jan.summary 

Modern successors to the old “job control” languages 
are not only more convenient to use, they are funda- 
mentally more powerful than their predecessors. In 

the June column, for instance, Doug McIlroy imple- 
mented a program to find the K most common words 
in a document in six lines of the UNIXe SHELL 
language. 

Languages surround programmers, yet many pro- 
grammers don’t exploit linguistic insights. Examin- 
ing programs under a linguistic light can give you a 
better understanding of the tools you now use, and 
can teach you design principles for building elegant 
interfaces to your future programs. This column will 
show how the user interfaces to half a dozen inter- 
esting programs can be viewed as little languages. 

This column is built around Brian Kernighan’s PIC 
language for making line drawings. Its compiler is 
implemented on the UNIX system, which is particu- 
larly supportive (and exploitative) of language pro- 
cessing; the sidebar on pages 714-715 shows how 
little languages can be implemented in a more prim- 
itive computing environment (BASIC on a personal 
computer). 

The next section introduces PIC and the following 
section compares it to alternative systems. Subse- 
quent sections discuss little languages that compile 
into PIC and little languages used to build PIC. 

The PIC Language 
If you’re talking about compilers, you might want to 
depict their behavior with a picture: 

Compiler 

FIGURE 1. A Simple View of a Compiler 

(This diagram is genuine PIC output; we’ll see its 
input description shortly.) Or you may desire a little 
more detail about the internal structure: 

r---------------~ 
t Front End BackEnd I 

1 I 
L---------------J 
Compiler 
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This diagram also describes the two tasks that a pro- 
gram for drawing pictures must perform: a back end 
draws the picture while a front end interprets user 
commands to decide what picture to draw. 

And just how does a user describe a picture? 
There are (broadly) three ways to do the job. An 
interactive program allows the user to watch the 
program as it is drawn, and a subroutine library 
adds picture primitives to the constructs in a pro- 
gramming language. We’ll return to these ap- 
proaches in the next section. 

The third approach to describing pictures is the 
topic of this column: a little language. In Kernighan’s 
PIC language, for instance, Figure 1 is described as 

ellipse “Source” “Code” 

arrow 

box “Compiler” 

arrow 

ellipse “Object” “Code” 

The first input line draws an ellipse of default size 
and stacks the two strings at its center. The second 
line draws an arrow in the default direction (moving 
right), and the third line draws a box with the text 
at its center. The implicit motion after each object 
makes it easy to draw the picture and convenient to 
add new objects to an existing picture. 

Other PIC mechanisms are illustrated in this non- 
sense picture (which is a simple version of Figure 2): 

B2 

It was drawn by 

boxht = . 25; boxwid = .25 

down # default direction 

Bl : box “Bl” 

arrow 

B2: box 

“B2 ” at B2.w rjust 

line right .4 from B2.e 

B3: box dashed wid .4 “B3” 

line <--> from B3.n to B1.e 

The boxht and boxwid variables represent the de- 
fault height and width of a box in inches; those 
values can also be explicitly set in the definition of a 
particular box. Text following the # character is a 
comment (up to the end of the line). Labels such as 
B 1, B2, and B3 name objects (LongerName is fine 
too); the western point of box B2 is referred to as 
B2. w. A line of the form string at position places a 
text string at a given position; r just right-justifies 

the string. These devices were used to draw Figure 
2, which gives a yet more detailed view of a com- 
piler. 

Analysis 

4 
Syntax 

Analysis 

i 
Semantic Error 
Analysis Handler 

i 
Code 

Generation 

1 
Code 

Ontimization 

FIGURE 2. A Detailed View of a Compiler 

Any particular compiler translates one source lan- 
guage into one object language. How can an organi- 
zation run 5 different languages on 5 different ma- 
chines? A brute-force approach writes 25 compilers: 

5 languages 

25 compilers 

5 machines u 

An intermediate language circumvents much of this 
complexity. For each language there is a front end 
that translates into the intermediate language, and 
for each machine there is a back end that translates 
the intermediate language into the machine’s output 
code. 

5 machines & 

FIGURE 3. Five Languages for Five Machines 

If there are L languages on M machines, the brute- 
force approach constructs L x M distinct compilers, 
while the intermediate language needs just L front 
ends and M back ends. (PIC compiles its output into 
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a picture-drawing subset of the TROFF typesetting 
language, which in turn produces an intermediate 
language suitable for interpretation on a number of 
output devices, from terminal display programs to 
laser printers to phototypesetters.) 

Figure 3 uses two of PIG’s programming facilities, 
variables and for loops: 

n=5 
boxht = boxwid = .2 

h = .3; w = .35 

I: box at w*(n+l)/2,0 

for i = 1 to n do { 

1 
” 1 

" 5 

” 5 

box with .s at irw, h 

line from last box.s to 1.n 

box with .n at iiw, -h 

line from last box.n to 1.s 

intermediate language " at 1.w rjust 

languages " at 2nd box .w rjust 

machines " at 3rd box .w rjust 

The picture of the brute-force approach is described 
by a single loop to draw the boxes, followed by two 
nested loops to make all pairwise interconnections. 

The examples in this section should give you an 
idea of the structure of PIC, but they only hint at its 
complete power. I have not mentioned a number of 
PIG’s facilities; such as built-in functions, if state- 
ments, macro processing, file inclusion, and a simple 
block structure. 

Perspective 
In this section we’ll consider several approaches to 
picture-drawing programs and compare them to 
Kernighan’s PIC language. Although the particulars 
are for pictures, the general lessons apply to design- 
ing user interfaces for many kinds of programs. 

An interactive drawing program allows the user to 
enter a picture with a spatial input device (such as a 
mouse or a drawing pad) and displays the picture as 
it is drawn. Most interactive systems have a menu 
that includes items such as boxes, ellipses, and lines 
of various flavors (vertical, horizontal, dotted, etc.). 
Immediate feedback makes such systems quite com- 
fortable for drawing many simple pictures, but 
drawing the following picture on an interactive sys- 
tem would require a steady hand and the patience 
of Job: 

PIG’s programming constructs allow the picture to 
be drawn easily: 

pi = 3.14159; n = 10; r = .5 

s = 2*pi/n 

for i = 1 to n-l do I 

for j = i+l to n do I 

line from r*cos(s*i), r*sin(s*i)\ 

to r*cos(s*j), r*sin(s*j) 

(The backslash character \ at the end of a line con- 
tinues it on the next line.) 

But handy as such features are, doesn’t parsimony’ 
dictate that variables and for loops properly belong 
in a full programming language? This concern is ad- 
dressed by a subroutine library that adds pictures to 
the primitives supported by a given language. Given 
asubroutineline(x1, yl, x2, y~),onecould 
easily draw the last picture in Pascal: 

pi := 3.14159; n := 10; r := 0.5; 

S := Z*pi/n; 

for i := 1 to n-l do 

for j := i+l to n do 

line (r*cos(s*i), r*sin(s*i), 

r*cos(s*j), r*sin(s*j) ); 

Unfortunately, to draw this picture 

Processor 

one must write, compile, and execute a program 
containing subroutine calls like: 

ellipse(0.3, 0, 0.6, 0.4) 

text(0.3, 0, "Input") 

arrow(0.75, 0, 0.3, 0) 
box(l.2, 0, 0.6, 0.4) 

text(l.2, 0, nProcessorn) 

arrow(1.65, 0, 0.3, 0) 

ellipse(2.1, 0, 0.6, 0.4) 

text(2.1, 0, "Output") 

(And even such simple code may be too hard for 
some nonprogrammers who find PIC comfortable, 
such as technical typists or software managers.) The 
first two arguments to each routine give the x and y 
coordinates of the center of the object; later argu- 
ments give its width and height or a text string. 
These routines are rather primitive; more clever 

’ Arguments beyond taste suggest that PIG’s for loops may be inappropriate: 
their syntax differs from similar loops elsewhere in the UNIX system, and 
PIG’s for loom are a few orders of maenitude slower than those in other 
languages. P&s may write loops in oyher languages to generate PIC output: 
I am a delighted (if morally compromised) user of PIG’s for loops-the quilts 
and stereograms in the exercises were easy to generate using that construct. 
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A Little Language for Surveys 
Once a public opinion pollster knows the questions 
to ask in a survey, there are a number of data pro- 
cessing problems to be faced: 

input: Most organizations administer the survey to 
a respondent using a paper questionnaire: the re- 
sponses are later keyed into a database. Other or- 
ganizations administer questions by computers 
that record the responses online. 

Validation: There are a number of checks for con- 
sistency and completeness, ranging from global is- 
sues (are all respondents accounted for?) to local 
ones (were “Democrat Only” questions adminis- 
tered to all and only Democrats?). 

Tabulation and Output: Once the questionnaire 
database is complete, the responses must be tabu- 
lated and a final report prepared. 

One approach to these problems is to write a new 
program from scratch for each task for each survey. 
This sidebar sketches how a single little language 
can solve all the problems. 

Program 1 illustrates a little language I once im- 
plemented in BASIC on a personal computer. Each 
line that begins with a “Q” describes a question: 
Question 1, for instance, is stored in column 5 of 
each record, and asks the respondent’s political 
party. The next three lines are the three possible 
responses to the questions; allowing the user to in- 
dent the responses under the question makes the file 
easier to read. 

The single language can serve as input to several 
programs. 

Q1,5 What is your political party? 
1 Democrat 

2 Republican 
3 Other 

Q2,6 For whom did you vote in 19841 
1 Reagan/Bush 
2 Mondale/Ferraro 
3 Named Other Candidate 
4 Didn't Vote 
5 Don't Know 

Q3,7 Where is your polling place? 
1 Named a place 
2 Did not name a place 

Q4,8 In this election, are you 
1 Very interested 
2 Somewhat interested 
3 Not interested 

PROGRAM 1. A Description of a Survey 

Input: An interactive program can administer the 
survey from this description and store the results 
in the database. If an organization uses paper 
questionnaires, the description is used by a 
“pretty-print” program to prepare the master copy 
and by a data-entry program to describe record 
formats. 

Validation: From a description like Program 1, a 
program can ensure that all questions are an- 
swered and that all responses are in a legal range. 
We’ll see shortly how another little language can 
be used to check more subtle constraints. 

Tabulafion and Output: The description in Program 
1 provides the bulk of the input to the program 
that produces the final report of a survey. The 
user also specifies in a simple language the titles 
to appear on the report, which questions should 
be cross-tabulated, and headings for the cross- 
tabulations. 

Just as a FORTRAN description of a program can be 
compiled and executed on several different kinds of 
computers, one description of a survey can be inter- 
preted to perform several different tasks. 

I have neglected a ton of details that complicate 
all survey programs. For instance, even though the 
questions were asked in one order, the user might 
want them to appear on the output in a different 
order [say, from greatest to least frequency of re- 
sponse); we’ll see several other complications 
shortly. When I first designed the program, I 
sketched half a dozen bells and whistles before I 
realized that such was the way of folly: I could 
never anticipate all the options a user might desire, 
and any program that dealt with all options would 
be a rat’s nest of code. 

I therefore looked for a general mechanism that 
could handle the problems, and finally settled on a 
construct I called pseudocolumns. The “real” data was 
stored in columns 1 through 250 of the input record. 
As each record is read, the program generates pseu- 
docolumns (defined by a little language) that start at 
column 251. Program 3 states that column 5 contains 
party information in the order Democrat, Republi- 
can, Other. To print Republicans before Democrats, 
one could define column 251 as follows: 

define 251 

I if 5 is 2 X Rep 
2 if 5 is 1 # Dem 
3 otherwise # Other 

(As in PIC, the # character introduces a comment.) 
The user can now refer to column 251 as any other 
column: 
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Q1,251 What is your political party? 
1 Republican 
2 Democrat 
3 Other 

Another common task is collapsing fields. For in- 
stance, the user might wish to collapse the three age 
brackets 21-25, 26-30, and 31-35 into the single 
bracket 21-35. If column 19 contains age in 5-year 
clumps, one can make coarser grains in pseudo- 
column 252: 

define 252 # age, bigger lumps 
1 if 19 is 1 # below 21 

2 if 19 is 2,3,4 # 21-35 

3 if 19 is 5,6,7 # 36-50 
4 otherwise # over 50 

Pseudocolumns have a more sophisticated appli- 
cation in identifying “high-propensity” voters, who 
are most likely to show up at the polls: 

define 253 # 1 if high-propensity 
1 if 6 is 1,2,3 and 7 is 1 and 8 is I,2 
2 otherwise 

This column is one if and only if the respondent 
remembered his or her 1984 Candidate (column 6), 

could name his or her polling place (column 3, and 
is interested in this election (column 8). This illus- 
trates the most complex form for a pseudocolumn; 
it is similar to the “conjunctive normal form” of 
boolean algebra. 

Pseudocolumns have handled all the problems I 
knew about during the design phase and many oth- 
ers that I never would have dreamed of. Although 
the mechanism is quite general, it was easy to im- 
plement. The descriptions are read and stored in a 
data structure by 90 lines of BASIC code. The gener- 
ation routine tests each value sequentially in 11 
lines of BASIC (simple code was more than fast 
enough for this task; optimization would have been 
wasted). 

When I first started to design a survey system to 
be implemented on a personal computer, I sketched 
an interactive program. It sounded easy at first: tell 
me the question, tell me the responses, now to the 
next question. As I explored further, though, I real- 
ized that I was designing large portions of a text 
editor (I want to change part of question 35. Which 
part? A response. Which response? 3, I think, but let 
me see them all. Oops, 4. Change “Smith” to 
“Smythe”, and leave the rest alone. . .). I finally 
made progress by abandoning the interactive ap- 
proach and thinking about the problem as designing 
a little language to describe surveys (and leaving the 
editing to the system text editor!). 

routines might, for instance, have an implicit motion 
associated with objects. 

So far I’ve used the term “little languages” intui- 
tively; the time has come for a more precise defini- 
tion. I’ll restrict the term computer language to tex- 
tual inputs (and thus ignore the spatial and temporal 
languages defined by cursor movements and button 
clicks). 

A computer language enables a textual description 
of an object to be processed by a computer pro- 
gram. 

The object being described might vary widely, from 
a picture to a program to a tax form. Defining “little” 
is harder: it might imply that a first-time user can 
use the system in half an hour or master the lan- 
guage in a day, or perhaps that the first implementa- 
tion took just a few days. In any case, a little lan- 
guage is specialized to a particular problem domain 
and does not include many features found in con- 
ventional languages. 

PIC qualifies in my book as a little language, al- 
though admittedly a big little language. Its tutorial 
and user manual is 26 pages long (including over 50 

sample pictures): I built my first picture in well un- 
der an hour. Kernighan had the first implementation 
up and stumbling within a week of putting pencil to 
coding form. The current version is about 4,090 lines 
of C code and represents several months of effort 
spread over five years. Although PIC has many fea- 
tures of big languages [variables, for statements, 
and labels), it is missing many other features (decla- 
rations, while and case statements, and facilities 
for separate compilation). I won’t attempt a more 
precise definition of a little language; if the linguistic 
analogy gives you insight into a particular program, 
use it, and if it doesn’t, ignore it. 

We’ve considered three approaches to specifying 
pictures: interactive systems, subroutine libraries, 
and little languages. Which one is best? Well, that 
depends. 

Interactive systems are probably the easiest to use 
for drawing simple pictures, but a large collection 
of pictures may be hard to manage (given 50 pic- 
tures in a long paper, how do you make all ellipses 
0.1 inches wider and 0.05 inches shorter?). 

If your pictures are generated by big programs, 
subroutine libraries can be easy and efficient. 
Libraries are usually uncomfortable for drawing 
simple pictures, though. 

Little languages are a natural way to describe 
many pictures; they can be integrated easily into 
document production systems to include pictures 
in larger documents. Pictures can be managed 
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using familar tools such as file systems and text 
editors. 

I’ve used all three kinds of systems; each is prefera- 
ble under some circumstances.’ 

PIC Preprocessors 
One of the greatest advantages of little languages is 
that one processor’s input is another processor’s out- 
put. So far we’ve only thought of PIC as an input 
language. In this section we’ll survey two languages 
for describing specialized classes of pictures; their 
compilers generate PIC programs as output. 

We’ll start with SCATTER., a PIC preprocessor that 
makes scatter plots from x, y data. The output of 
SCATTER is fed as input to PIC, which in turn feeds 
the TROFF document formatter. 

SCATTER PIG TROFF 

This structure is easy to implement as a UNIX pipe- 
line of processes: 

scatt"er infile I pit : troff soutfile 

(The UNIX SHELL program that interprets such 
commands is, of course, another little language. In 
addition to the ) operator for constructing pipelines, 
the language includes common programming com- 
mands such as if, case, for, and while.) 

PIC is a big little language, SCATTER is at the 
other end of the spectrum. This SCATTER input 
uses all five kinds of commands in the language. 

size x 1.8 
size y 1.2 
range x 1870 1990 

range y 35 240 
label x Year 
label y Population 
ticks x 1880 1930 1980 

ticks y 50 100 150 200 
file pop.d 

The size commands give the width (x) and height 
(y) of the frame in inches. The range commands 
tell the spread of the dimensions, and labels and 
ticks are similarly specified. Ranges are mandatory 

*In terms of implementation difficulty. all three approaches have a front end 
for specification and a back end for picture drawing. Subroutine libraries use 
a language’s procedure mechanism as a front end: it may he clumsy. but it’s 
free. Little languages can use standard compiler technology for their front 
end: we’ll see such tools shortly. Because interactive systems usually involve 
real-time graphics, they are typically the hardest to implement and the least 
portable (often with two back ends: an interactive one shows the picture as it 
is being drawn. and a static one writes the complete picture to a file). 

for both dimensions; all other specifications are op- 
tional. The description must also specify an input 
file containing x, y pairs. The first three lines in the 
file pop. d are 

1880 50.19 

1890 62.98 

1900 76.21 

The x-value is a year and the y-value is the United 
States population in millions in the census of that 
year. SCATTER turns that simple description of a 
scatter plot into a 23-line PIC program that produces 
Figure 4. 

1880 1930 1980 

Year 

FIGURE 4. Population of the United States 

SCATTER is tiny but useful. Its “compiler” is a 
24line AWK3 program that I built in just under an 
hour. A companion paper in this issue of Communica- 
tions describes GRAP, a much larger PIC preproces- 
sor for drawing graphs, and an AWK compiler for a 
similar little language; see the Further Reading. 

Chemists often draw chemical structure diagrams 
like the representation of the antibiotic penicillin G 
shown in Figure 5. One could in principle draw that 
picture in PIC, but it is more natural for a chemist to 
describe the structure in the CHEM language illus- 
trated in Program 2. 

//iN+H 
0 COOH 

FIGURE 5. Penicillin G 

‘In many environments. SNOBOL’s string-processing facilities would make it 
the language of choice for quickly implementing a little language. I am more 
comfortable with the AWK language. which was sketched in this column in 
June and July. 1985. 
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RI: 

R2: 

ring4 pointing 45 put N at 2 
doublebond -135 from Rl.V3 ; 0 
backbond up from Rl.Vl ; H 
frontbond -45 from Rl.V4 ; N 
Ii above N 
bond left from N ; C 
doublebond up ; 0 
bond length . 1 left from C ; CH2 
bond length .I left 
benzene pointing left 
flatring put S at 1 \ 

put N at 4 with .V5 at Rl.Vl 
bond 20 from R2.V2 ; CH3 
bond 90 from R2.V2 ; CH3 
bond 90 from R2.V3 ; H 
backbond 170 from R2.V3 ; COOH 

PROGRAM 2. CHEM Description of Penicillin G 

The history of CHEM is typical of many little lan- 
guages. Late one Monday afternoon, Brian Kernighan 
and I spent an hour with Lynn Jelinski, a Bell Labs 
chemist, moaning about the difficulty of writing. She 
described the hassles of including chemical struc- 
tures in her documents: the high cost and inordinate 
delays of dealing with a drafting department. We 
suspected that her task might be appropriate for PIC, 
so she lent us a recent monograph rich in chemical 
diagrams. 

That evening Kernighan and I each designed a 
microscopic language that could describe many of 
the structures, and implemented them with AWK 
processors (about 50 lines each). Our model of the 
world was way off base (the book was about poly- 
mers, so our languages were biased towards linear 
structures), but the output was impressive enough to 
convince Jelinski to spend a couple hours educating 
us about the real problem. By Wednesday we had 
built a set of PIC macros with which Jelinski could 
(with some pain) draw structures of genuine interest 
to her; that convinced her to spend even more time 
on the project. Over the next few days we built and 
threw away several little languages that compiled 
into those macros. A week after starting the project, 
the three of us had designed and implemented the 
rudiments of the current CHEM language, whose 
evolution since then has been guided by real users. 
The current version is about 500 lines of AWK and 
uses a library of about 70 lines of PIC macros. 

These two brief examples hint at the power of 
preprocessors for little languages. PIC produces line 
drawings; SCATTER extends it to scatter plots, and 
CHEM deals with chemical structures. Each pre- 
processor was easy to implement by compiling into 
PIC; it would be much more difficult to extend in- 
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teractive drawing programs to new problem domains 
such as graphs or chemistry. 

Little Languages for Implementing PIC 
In this section we’ll turn from using PIC to building 
it. We’ll study three UNIX tools that Kernighan used 
to construct PIC; each can be viewed as a little lan- 
guage for describing part of the programmer’s job. 
This section sketches the tools; the Further Reading 
describes them in detail. The purpose of this section 
is to hint at the breadth of little languages; you may 
skip to the next section with impunity any time you 
feel overwhelmed by details. 

Figure 2 illustrates the components in a typical 
compiler; Figure 6 shows that PIC has many, but not 
all, of those components. We’ll first study the LEX 
program (which generates PIG’s lexical analyzer), 
then turn to YACC (which performs the syntax 
analysis), and finally look at MAKE (which manages 
the 40 source, object, and header files used by PIC). 

Lexical 
Analysis 

ti 
Syntax 

Analysis 
1 

Code 
Generation 

FIGURE 6. A Detailed View of PIC 

A lexical analyzer (or lexer) breaks the input text 
into units called tokens. It is usually implemented as 
a subroutine; at each call it returns the next token 
in the input text. For instance, on the PIC input line 

line down from B1.s 

a lexer should return the following sequence: 

LINE 
DOWN 
FROM 
SYMBOL: Bl 
SOUTH 

Constructing a lexer is straightforward but tedi- 
ous, and therefore ideal work for a computer. Mike 

August 1986 Volume 29 Number 8 Communications of the ACM 717 



Programming Pearls 

Lesk’s LEX language specifies a lexer by a series of 
pairs: when the routine sees the regular expression 
on the left, it performs the action on the right. Here 
is a fragment of the LEX description of PIC: 

return( 
return( 
return( 
return( 
return(HEAD1); 
return(HEAD2); 
retprn(HEAD12); 
return(SOUTH); 
return(SOUTH); 

The regular expression (a j b) denotes either a orb. 
Given a description in this form, the LEX program 
generates a C function that performs lexical analysis. 

Those regular expressions are simple: PIG’s defini- 
tion of a floating point number is more interesting: 

(iD)+(“. “?){D}+t;“.” {D}+)((elE)("+"I-)?{D}+) 

(In the spirit of this column, observe that regular 
expressions are a microscopic language for describ- 
ing patterns in text strings.) Constructing a recog- 
nizer for that monster is tedious and error-prone 
work for a human; LEX does it quickly and accu- 
rately. 

YACC is an acronym for “Yet Another Compiler- 
Compiler.” Steve Johnson’s program is a parser gen- 
erator; it can be viewed as a little language for de- 
scribing languages. Its input has roughly the same 
form as LEX: when a pattern (on the left-hand side) 
is recognized, the action on the right is performed. 
While LEX’s patterns are regular expressions, YACC 
supports context-free languages. Here is part of PIG’s 
definition of an arithmetic expression: 

expr : 

NUMBER 
: VARNAME ( $5 = getfval(51); 1 
I expr '+' expr 1 55 = 51 + 53; l 

I expr '-' expr I $5 = 51 - 53; l 

I expr 'x' expr { $5 = 51 * $3; 1 

I expr '/' expr { if ($3 == 0.0) { 
error( "0 divide" ); 
$3 = 1.0; 

55 = $1 / 53; ) 

I '(' expr ')' { 55 = 52; 1 

. . . 

: 

When the parser finds expr + expr, it returns (in 
$$) the sum of the first expression ($1) and the 

second expression (which is the third object, $3). 
The complete definition describes the precedence of 
operators (* binds before +), comparison operators 
(such as < and >), functions, and several other minor 
complications. 

A PIC program can be viewed as a sequence of 
primitive geometric objects; a primitive is defined as 

primitive: 
BOX attrlist { boxgen($l); 1 

! CIRCLE attrlist { elgen($l); 1 
I ELLIPSE attrlist { elgen(51); 1 
I ARC attrlist { arcgen(51); } 
: LINE attrlist { linegen(51); 1 

. . . 

When the parser sees an ellipse statement, it 
parses the attribute list and then calls the routine 
elgen. It passes to that routine the first component 
in the phrase (the token ELLIPSE); elgen uses that 
token to decide whether to generate a general ellipse 
or a circle (a special case with length equal to 
width). 

All PIC primitives use the same attribute list 
(some primitives ignore some attributes). An attri- 
bute list is either empty or an attribute list followed 
by an attribute: 

attrlist: 
attrlist attr 

I /* empty */ 

And here is a small part of the definition of an attri- 
bute: 

attr : ’ 

DIR expr { storefattr(51, !DEF, 52); 1 
: DIR { storefattr(51, DEF, 0.0); 1 
i FROM position { StOreOattr(51, 52); 1 
i TO position { storeoattr(51, 52); } 

i AT position { storeoattr(51, 52); ) 

. . . 

As each attribute is parsed, the appropriate routine 
stores its value. 

These tools tackle well-studied problems: the 
compiler book referenced under Further Reading 
devotes 80 pages to lexers and 120 pages to parsers. 
LEX and YACC package that technology: the pro- 
grammer defines the lexical and syntactic structure 
in straightforward little languages, and the programs 
generate high-quality processors. Not only are the 
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descriptions easy to generate in the first place, they 
make the language very easy to modify. 

Stu Feldman’s MAKE program addresses a more 
mundane problem that is nonetheless difficult and 
crucial for large programs: keeping up-to-date ver- 
sions of the files containing header code, source 
code, object code, documentation, test cases, etc. 
Program 3 is an abbreviated version of the file that 
Kernighan uses to describe the files associated with 
PIG. 

OFILES = picy.0 pic1.o main.0 print.0 \ 
misc.0 symtab.0 b1ockgen.o \ 
. . . 

CFILES = main.c print.c misc.c symtab.c \ 
b1ockgen.c boxgen.c circgen.c \ 
. . . 

SRCFILES = picy.y picl.1 pic.h $(CFILES) 
pit: $(OFILES) 

cc $(OFILES) -1m 

$(OFILES): pic.h y.tab.h 
memo : 

pit memo I eqn I troff -ms >memo.out 
backup: $(SRCFILES) makefile pictest.a 

push safemachine $? /usr/bwk/pic 
touch backup 

bundle: 
bundle $(SRCFILES) makefile README 

Principles 
Little languages are an important part of the popular 
Fourth- and Fifth-Generation Languages and Appli- 
cation Generators, but their influence on computing 
is much broader. Little languages often provide an 
elegant interface for humans to control complex pro- 
grams or for modules in a large system to communi- 
cate with one another. Although most of the exam- 
ples in the body of this column are large “systems 
programs” on the UNIX system, the sidebar on 
pages 714-715 shows how the ideas were used in a 
fairly mundane task implemented in BASIC on a 
microcomputer. 

The principles of language design summarized 
below are well known among designers of big pro- 
gramming languages; they are just as relevant to the 
design of little languages. 

Design Goals. Before you design a language, care- 
fully study the problem you are trying to solve. 
Should you instead build a subroutine library or an 
interactive system? An old rule of thumb states that 
the first 10 percent of programming effort provides 
99 percent of the functionality; can you make do 
with an AWK or BASIC or SNOBOL implementation 
that cheaply provides the first 99 percent, or do you 
have to use more powerful tools like LEX and YACC 
to get to 99.9 percent? 

PROGRAM 3. PIG’s MAKE file 

The file starts with the definition of three names: 
OFILES are the object files, CFILES contain C 
code, and the source files SRCFILES consist of the 
C files and the YACC description pity . y, the LEX 
description picl -1, and a header file. The next line 
states that PIC must have up-to-date versions of ob- 
ject files (MAKE’s internal tables tell how to make 
object files from source files); the next line tells how 
to combine those into a current version of PIC. 
When Kernighan types make pit, MAKE checks the 
currency of all object files (file . o is current if its 
modification time is later than file . c), recompiles 
out-of-date modules, then (if needed) loads the 
pieces along with the appropriate libraries, The fol- 
lowing line states that the object files depend on the 
two named header files. 

Simplicity. Keep your language as simple as possi- 
ble. A smaller language is easier for its implementers 
to design, build, document, and maintain and for its 
users to learn and use. 

Fundamental Abstractions. Typical computer lan- 
guages are built around the world-view of a von 
Neumann computer: instructions operate on small 
chunks of data. The designer of a little language has 
to be more creative: the primitive objects might be 
geometric symbols, chemical structures, context-free 
languages, the files in a program, or the questions in 
a survey. Operations on objects vary just as widely, 
from fusing two benzene rings to recompiling a 
source file. Identifying these key players is old hat to 
programmers: the primitive objects are a program’s 
abstract data types, and the operations are the key 
subroutines.4 

The next two lines tell what happens when Ker- Linauistic Structure. Once YOU know the basic ob- 
nighan types make memo: the file containing the 
technical memorandum is processed by TROFF and 
two preprocessors. The backup command saves on 
saf emachine all modified files, and the bundle 
command wraps the named files into a package suit- 

‘In the mid 1970s Bill McKeeman (now at the Wang Institute of Graduate 

able for mailing. Although MAKE was originally de- 

Studies) consulted on an Automated Teller Machine project that was running 
out of its 28 kilobytes. Several programming tricks compromised maintainabil- 
ity to squeeze space. but each time additional functions consumed even more 
memory. After losing this battle several times. McKeeman watched a human 
teller perform the function. He found that the teller’s job was defined by 

signed with compiling in mind, Feldman’s elegant 
general mechanism gracefully supports all these 

paper slips that describe various transactions (deposit, withdrawal, balance 
inquiry. etc.) stored in three dozen slots beneath the teller’s window. 

additional housekeeping functions. 

McKeeman realized that the human teller could be viewed as a machine with 
three dozen operation codes, each defined by a separate form. He therefore 
designed an interpreted program with commands in a little language for bank- 
ing. The new design provided three times the functionality in less memory. 
and maintenance was much easier. 
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jects and operations, there are still many ways of 
writing down their interactions. The infix arithmetic 
expression 2+3 * 4 might be written in postfix as 
234*+ or functionally as pl-us (2, times ( 3,4) ); 

there is often a trade-off between naturalness of 
expression and ease of implementation. But what- 
ever else you may or may not include in your lan- 
guage, be sure to allow indentation and comments. 

Yardsticks of Language Design. Rather than preach 
about tasteful design, I’ve chosen as examples useful 
languages that illustrate good taste. Here are some of 
their desirable properties. 

Orthogonality: keep unrelated features unrelated. 

Generality: use an operation for many purposes. 

Parsimony: delete unneeded operations. 

Completeness: can the language describe all ob- 
jects of interest? 

Similarity: make the language as suggestive as 
possible. 

Extensibility: make sure the language can grow. 

Openness: let the user “escape” to use related 
tools. 

The Design Process. Like other great software, great 
little languages are grown, not built. Start with a 
solid, simple design, expressed in a notation like 
Backus-Naur form. Before implementing the lan- 
guage, test your design by describing a wide variety 
of objects in the proposed language. After the lan- 
guage is up and running, iterate designs to add fea- 
tures as dictated by real use. 

Insights from Compiler Building. When you build 
the processor for your little language, don’t forget 
lessons from compilers. As much as possible, sepa- 
rate the linguistic analysis in the front end from the 
processing in the back end; that will make the pro- 
cessor easier to build and easier to port to a new 
system or new use of the language. And when you 
need them, use compiler-building tools like LEX, 
YACC, and MAKE. 

Problems 
1. Most systems provide a package for sorting files; 

the interface is usually a little language. Evalu- 
ate the language provided by your system. De- 
sign a better language and implement it (perhaps 
as a preprocessor that generates commands for 
your system sort). 

2. LEX uses a little language for regular expressions 
to specify lexical analyzers. What other pro- 
grams on your system employ regular expres- 
sions? How do they differ, and why? 

3. Study different languages for describing biblio- 
graphic references. How do the languages differ 
in applications such as document retrieval sys- 
tems and bibliography programs in document 
production systems? How are little languages 
used to perform queries in each system? 

4. Study examples of what might be the littlest lan- 
guages of them all: assemblers, format descrip- 
tions, and stack languages. 

5. Design and implement picture languages special- 
ized for the following domains. 
a. Many people can perceive a three-dimen- 

sional image by crossing their eyes and fus- 
ing the two halves of stereograms: 

A small survey I conducted suggests that 
about half the readers of Communications 
should be able to perceive these three- 
dimensional scenes; the other half will get a 
headache trying. 

\ I Y---Y 
E , / \ 

These pictures were drawn by a 40-line PIC 
program. 

b. Ravi Sethi described this quilt in a 35-line 
PIC program. 

The quilt is a 4 x 6 array of rotations of 
these two squares: 
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The dots shown above in the corners of.the 
two squares are also displayed in this ver- 
sion of the quilt: 

c. Other interesting pictorial domains include 
the following: data structures depicted in 
pictures, such as arrays (see page 479 of the 
June Communications), trees, and graphs 
(drawing Finite State Machines is especially 
interesting); descriptions of musical scores 
(consider both rendering the score in pic- 
tures and playing it on a music generator); 
and pictorially scored games (such as bowl- 
ing and baseball). 

6. Design a little language to deal with common 
forms in your organization, such as expense 
reports for trips. 

7. How can processors of little languages respond to 
linguistic errors? (Consider the options available 
to compilers for large languages.) How do partic- 
ular processors respond to errors? 

8. These questions deal with the survey system de- 
scribed in the sidebar on pages 714-715. 
a. The example assumed (falsely) that a ques- 

tion or a response always fits on a single line; 
extend the language to handle multiple-line 
text. 

b. Design a program to automate the adminis- 
tration of a survey. Describe a mechanism to 
ensure, for instance, that Democrat-only 
questions are asked only of Democrats. 

Solutions to June’s Problems 
1. Most programs for computing the K most com- 

mon words in a file spend a great deal of effort 
on words that occur only a few times: in the text 
of both May and June’s columns, for instance, 
over half the distinct words occurred just once. 
A two-pass program saves time and space by 
reading the file twice: the first pass identifies 
infrequent words, and the second pass concen- 
trates on other words. The two passes share in- 
formation in an array named Count, which is 
initialized to zero. As the first pass reads word X, 
it increments Count[Hash(X)]; no information is 
stored about the words themselves. After the 
first pass, frequent words must have high Counts, 

Further Reading 
You may never have heard of Compilers: Principles, 
Techniques, and Tools by Aho, Sethi and Ullman, but 
you’d probably recognize the cover of the “New 
Dragon Book” (published in 1986 by Addison- 
Wesley). And you can judge this book by its cover: it 
is an excellent introduction to the field of compilers, 
with a healthy emphasis on little languages5 Fur- 
thermore, the book makes extensive use of PIC to 
tell its story in pictures. (Most of the compiler pic- 
tures in this column were inspired by pictures in 
that book.) 

Chapter 8 of The UNlX Programming Environment 
by Kernighan and Pike (Prentice-Hall, 1984) is the 
case history of a little language. It uses the UNIX 
tools sketched in this column to design, develop, and 
document a language. 

The companion article by Kernighan and me on 
page 782 of this issue of Communications describes a 
little language in detail: the GRAP language for 
graphical displays of data. The references in that 
paper present details on PIG and several related 
UNIX document production tools. 

but some high Count values could be the result 
of several rare words. The second pass deals 
with word X only if Count[Hash(X)] is appropri- 
ately large, using any of the techniques dis- 
cussed in the June column. 
Knuth assumed that most frequent words tend to 
occur near the front of the document: McIlroy 
pointed out that some frequent words may not 
appear until relatively late. When Knuth ran his 
program with reduced memory to find the 100 
most common words in Section 3.5 of his Semi- 
numerical Algorithms, it missed just two words 
that were used frequently at the end of the sec- 
tion. 
For insight into this problem, see Exercise 5.24 
(and the answer) in Knuth’s Sorting and Searching. 

‘1 first learned the importance of little languages from Mary Shaw. who 
edited T/II, Camqqe-Mellorr C~rrric-rrlum for Undergraduate Comp~rtcr Scwrm 
(published hv Springer-Verlag in 1985). Course 320 in that curriculum restruc- 
tures a tradiiional compiler course to place substantial emphasis on little 
languages. 
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