Thinking about grammars

* Consider an expression language involving
integers 1, 2 and 3 and the + operator

* These rules make the + operator left associative
<e> ;=<int> | <e> +<int>
<int>:=11]2]3

* Note that using the “|” notation obscures the fact
that there are really five rules

<e> ;= <int> <int>:=1
<e> ;= <e> + <int> <int>:=2
<int>:=3

A graphical view
* Each rule is a little tree with a non-terminal as
its root and children which are non-terminals
or terminals
* Here’s how we we might visualize the
grammar using ovals for non-terminals and
strings as terminals

Generating a string & parse tree

* Create a parse tree P consisting of
the node

* Repeat until P has no non-terminals leaf nodes
— Select a leaf node L that is a non-terminal

— Select a grammar tree T that has the same
non-terminal as its root and make a copy of it

— Replace the leaf Lin P with the copy of T

<e> = <int> e e int int int
<e> 1= <e>+<int> <
<int> =1
<int>::= 2 int e)+ int 1 2 3
<int>:=3

1+2+3

Here’s an example showing the parse tree for 1+2+3

S
’ e e |r‘1t int |r‘1t 9/+ I%

| b

e+ int int) 1 2 3 6) ,Qt/s
- I
the grammar rules '%V :

]
the parse tree

9/14/11

1+2+3

Here’s an example showing the derivation of

1+2+43

e) e) e) e
) SV AN
e)+ int,,/Kaf int /K, int
J o+ int) \r)+ int J

| T

int t)

1

5

1

ST

+ int
int) e)

T
T)

1

TN

e J
inf

iy

5
2

9/14/11

