UMBC CMSC 331 notes (9/17/2004)

-
+

Chapter 4)

(c) parsing

e AN

2*(3+4)+5
UMBC 1 CSEE

Parsing

» A grammar describes the strings of tokens that are
syntactically legal in a PL

» A recogniser simply accepts or rejects strings.

* A generator produces sentences in the language described by
the grammar

A parser construct a derivation or parse tree for a sentence (if
possible)

e Two common types of parsers:
—bottom-up or data driven

—top-down or hypothesis driven
A recursive descent parser is a way to implement a top-down
parser that is particularly simple.

UMBC : CSEE

Top down vs. bottom up parsing

* The parsing problem is to connect the root node S S
with the tree leaves, the input
» Top-down parsers: starts constructing the parse
tree at the top (root) of the parse tree and move
down towards the leaves. Easy to implement
by hand, but work with restricted grammars.
examples: .
- Predictive parsers (e.g., LL(K)) A=1+3%415
» Bottom-up parsers: build the nodes on the bottom of the
parse tree first. Suitable for automatic parser generation,
handle a larger class of grammars. examples:
— shift-reduce parser (or LR(k) parsers)

* Both are general techniques that can be made to work for all
languages (but not all grammars!).

UMBC : CSEE

Top down vs. bottom up parsing

 Both are general techniques that can be made to work
for all languages (but not all grammars!).

* Recall that a given language can be described by
several grammars.

* Both of these grammars describe the same language

E ->E + Num E -> Num + E
E -> Num E —> Num

* The first one, with it’s left recursion, causes
problems for top down parsers.
* For a given parsing technique, we may have to
transform the grammar to work with it.
UMBC 4 CSEE

UMBC CMSC 331 notes (9/17/2004)

Parsing complexity

How hard is the parsing task?

Parsing an arbitrary Context Free Grammar is O(n?), e.g., it
can take time proportional the cube of the number of symbols
in the input. This is bad!

* If we constrain the grammar somewhat, we can always parse
in linear time. This is good!

* Linear-time parsing
—LL parsers
* Recognize LL grammar
* Use a top-down strategy
—LR parsers
* Recognize LR grammar
LM BCUse a bottom-up strategy] CSEE

e LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

e LR(n) : Left to right,
Right derivation,
look ahead at most n
symbols.

Top Down Parsing Methods

 Simplest method is a full-backup, recursive descent
parser

« Often used for parsing simple languages

» Write recursive recognizers (subroutines) for each
grammar rule

— If rules succeeds perform some action (i.e., build a
tree node, emit code, etc.)

— If rule fails, return failure. Caller may try another
choice or fail

— On failure it “backs up”

UMBC : CSEE

Top Down Parsing Methods

* Problems

— When going forward, the parser consumes tokens
from the input, so what happens if we have to back
up?

— Algorithms that use backup tend to be, in general,
inefficient

— Grammar rules which are left-recursive lead to non-
termination!

UMBC : CSEE

Recursive Decent Parsing Example
Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}*

We could use the following recursive
descent parsing subprogram (this one is

written in C)
void term(Q) {
factor(); /* parse first factor*/
while (next_token == ast_code ||
next_token == slash_code) {

lexical(); /* get next token */
factor(); /* parse next factor */
}
}

UMBC : CSEE

UMBC CMSC 331 notes (9/17/2004)

Problems

e Some grammars cause problems for top
down parsers.

» Top down parsers do not work with left-
recursive grammars.
— E.g.,,onewitharule like:E->E+T

— We can transform a left-recursive grammar into
one which is not.

A top down grammar can limit backtracking
if it only has one rule per non-terminal

— The technique of rule factoring can be used to
eliminate multiple rules for a non-terminal.

UMBC : CSEE

Left-recursive grammars

» A grammar is left recursive if it has rules like
X->XB
Or if it has indirect left recursion, as in
X->AB
A->X
* Why is this a problem?
« Consider
E ->E + Num
E -> Num
» We can manually or automatically rewrite a
grammar to remove left-recursion, making it
suitable for a top-down parser.

UMBC o CSEE

Elimination of Left Recursion

« Consider the left-recursive grammar
S>Salp

« S generates all strings starting with a 3 and
followed by a number of o

 Can rewrite using right-recursion
SH>BS
SS—>aS|e

UMBC . CSEE

More Elimination of Left-Recursion

* In general
S—>Soy|...|So,|B]-|Bm

« All strings derived from S start with one of
B1,-...B, and continue with several instances of

Oy, O

* Rewrite as
S>PB,S ... |By S
S—>ao,S|...]0,5 | ¢

UMBC . CSEE

UMBC CMSC 331 notes (9/17/2004)

General Left Recursion

» The grammar
S—>Aaual|d
A—->SpP
is also left-recursive because
S—>*SBa
where ->+ means “can be rewritten in one or
more steps”

e This indirect left-recursion can also be
automatically eliminated

UMBC . CSEE

Summary of Recursive Descent

» Simple and general parsing strategy
— Left-recursion must be eliminated first
— ... but that can be done automatically
» Unpopular because of backtracking
— Thought to be too inefficient
* In practice, backtracking is eliminated by

restricting the grammar, allowing us to
successfully predict which rule to use.

UMBC) CSEE

Predictive Parser

* A predictive parser uses information from the
first terminal symbol of each expression to decide
which production to use.

* A predictive parser is also known as an LL(k)
parser because it does a Left-to-right parse, a
Leftmost-derivation, and k-symbol lookahead.

« A grammar in which it is possible to decide which
production to use examining only the first token (as
in the previous example) are called LL(1)

 LL(1) grammars are widely used in practice.

— The syntax of a PL can be adjusted to enable it to be
described with an LL(1) grammar.

UMBC . CSEE

Predictive Parser

Example: consider the grammar

S — ifEthenSelse S
S — beginSL

S — printE

L — end

L—>;SL

E — num = num

An S expression starts either with
an IF, BEGIN, or PRINT token,
and an L expression start with an
END or a SEMICOLON token,
and an E expression has only one
production.

UMBC . CSEE

UMBC CMSC 331 notes (9/17/2004)

LL(k) and LR(K) parsers

» Two important classes of parsers are called LL(k) parsers and
LR(K) parsers.

» The name LL(k) means:

— L - Left-to-right scanning of the input

— L - Constructing leftmost derivation

— k — max number of input symbols needed to select a parser action
e The name LR(k) means:

— L - Left-to-right scanning of the input

— R - Constructing rightmost derivation in reverse

— k — max number of input symbols needed to select a parser action

* S0, a LL(1) parser never needs to “look ahead” more than one input
token to know what parser production to apply.

UMBC ; CSEE

Predictive Parsing and Left Factoring

» Consider the grammar
E>T+E|T
Toint |[int*T|(E)
 Hard to predict because
— For T, two productions start with int
— For E, it is not clear how to predict which rule to use
« A grammar must be left-factored before use for
predictive parsing
« Left-factoring involves rewriting the rules so that,

if a non-terminal has more than one rule, each
begins with a terminal.

UMBC . CSEE

Left-Factoring Example

 Consider the grammar
ES>T+E|T
T—int [int*T|(E)
 Factor out common prefixes of productions
E>TX
X—>+E|e¢
T (E)|intY
Y—>*T|e

UMBC . CSEE

Left Factoring

» Consider a rule of the form
A->aBl|aB2|aB3]|...aBn

* A top down parser generated from this grammar is not
efficient as it requires backtracking.

* To avoid this problem we left factor the grammar.

— collect all productions with the same left hand side and
begin with the same symbols on the right hand side

— combine the common strings into a single production and
then append a new non-terminal symbol to the end of this
new production

— create new productions using this new non-terminal for
each of the suffixes to the common production.

« After left factoring the above grammar is transformed into:
A—>aAl
Al->B1|B2|B3...Bn

UMBC . CSEE

UMBC CMSC 331 notes (9/17/2004)

Using Parsing Tables

* LL(1) means that for each non-terminal and token there is
only one production
 Can be specified via 2D tables
— One dimension for current non-terminal to expand
— One dimension for next token
— A table entry contains one production
» Method similar to recursive descent, except
— For each non-terminal S
— We look at the next token a
— And chose the production shown at [S,a]
» We use a stack to keep track of pending non-terminals
» We reject when we encounter an error state

» We accept when we encounter end-of-input

UMBC ; CSEE

LL(1) Parsing Table Example

e Left-factored grammar
E->TX X—>+E]|e
T (E)|intY Yo *T|e
e The LL(1) parsing table:

int * + () $
E TX TX
X +E € €
T intY (E)
Y *T > € €
UMBC : CSEE

LL(1) Parsing Table Example

» Consider the [E, int] entry

— “When current non-terminal is E and next input is int,
use production E— T X

— This production can generate an int in the first place
» Consider the [Y, +] entry

— “When current non-terminal is Y and current token is +,
get rid of Y”
— Y can be followed by + only in a derivation in which Y
- €
» Blank entries indicate error situations
— Consider the [E,*] entry
— “There is no way to derive a string starting with * from

-terminal E”
UMBC non-termina) CSEE

Bottom-up Parsing

* YACC uses bottom up parsing. There are two
important operations that bottom-up parsers use.
They are namely shift and reduce.

— (In abstract terms, we do a simulation of a Push Down
Automata as a finite state automata.)

* Input: given string to be parsed and the set of

productions.

» Goal: Trace a rightmost derivation in reverse by
starting with the input string and working
backwards to the start symbol.

UMBC CSEE

