MBC CMSC 331

Common
Lisp
| |

> (print (list 'foo 'bar))
(FOO BAR)
(FOO BAR)

—the second is astring template,

2 plus 3 equals 5.
NIL

UMBC CMSC 331

Input and Output

* Print is the most primitive output function

» The most genera output function in CL is format
which takes two or more arguments:

—thefirst indicates where the input is to be printed,

— the remaining arguments are objects whose printed
representations are to be inserted into the template:

> (format t “~A plus ~A equals ~A.~%" 23 (+ 2 3))

Read

* The standard function for input is read.
» When given no arguments, it reads from the

MBC CMSC 331

default place, whichis usualy standard input.

> (defun ask (string)
(format t “~A”" string)
(read))

ask

> (ask “How old areyou?*)

How old areyou? 29

29

Local Variables

* One of the most frequently
used operators in CL is let.

* This alowsloca variables to
be used in afunction.

* A let expression has two parts.

— First comes alist of instructions for
creating variables, each of the form var
or (var expression).

Local variables are valid within the
body of the let.

— After thelist of variables and values
comes the body of expressions, which
are evaluated in order.

UMBC CMSC 331

> (let ((x 100) (y 200))
(print (+ x y))
(setg x 200)
(print (+ x y))
‘foo)
300
400
foo

A let example

> (defun ask-number ()
format t “ Please enter anumber. “)
let ((va (read)))

(if (numberp val)

val
(ask-number))))
ASK-NUMBER

> (ask-number)

Please enter anumber. number

Please enter anumber. (this is anumber)
Please enter anumber. 52

52

MBC CMSC 331

Global variables

* Global variables are visible throughout the program.

* Global variables can be created by giving a symbol
and a value to defparameter or defvar.

> (defparameter *foo* 1)

UMBC CMSC 331

* FOO*

> *foo* Note: (defparameter v e)

1 creates aglobal variable

> (defvar *bar* (+ *foo* 1)) named v and sets its value to
* BAR* bee.

> *bar* (defvar v €) is just like

2 def parameter if no global

> (defvar *bar* 33) variable named v exists.

BAR
> *bar*
2

Otherwise it does nothing.

Global constants

* You can define agloba constant, by calling
defconstant.

> (defconstant +limit+ 100)

+LIMIT+

> (setf +limit+ 99)

*** . SETQ: the value of the constant +LIMIT+ may

not be atered
1. Bresk [5]>
* The plus-something-plus is alisp convention to

identify symbols as constants. Just like star-
something-star is alisp convention to identify
global variables.

MBC CMSC 331

W hen in doubt

» When in doubt about whether some symbol
isaglobal variable or constant, use boundp.

> (boundp ‘*foo*)
-

> (boundp ‘fishcake)
NIL

UMBC CMSC 331

Assignment

* There are severa assignment operators in Common
Lisp: set, setq and setf

» the most genera assignment operator is setf.

» We can use it to assign both loca and global
variables:

> (setf *blob* 89)
89
> (let ((n 10))
(setf n2)
n)
2

MBC CMSC 331 9

Setf

* You can create global variables implicitly just by
assigning them values.
> (satf x (list ‘a ‘b ‘)
(ABC)
» However, itis better lisp style to use def parameter
to declare global variables.
* You can give setf any even number of arguments:

(setf a 1b 2c 3

* You can do more than just assign values to
variables with setf.

* Thefirst argument to setf can be an
expression as well as avariable name.

* |n such cases, the vaue of the second
argument is inserted in the place referred to
by thefirst:

> (setf (car x) ‘n)
N
>

(NBC)

MBC CMSC 331 11

is the same as:
(setf al)
(setf b 2)
(setf ¢ 3)
Setf
> (setq a(make-array 3)) (setq a (make-foo))
#(NIL NIL NIL) #s(FOO :BAR NIL)
> (aref al) > (foo-bar @)
NIL NIL
> (setf (aref al) 3) > (setf (foo-bar @) 3)
3 3
>a >a
#(NIL 3NIL) #s(FOO BAR 3)
> (aref al) > (foo-bar @)
3 3
> (defstruct foo bar)

FOO
>

UMBC CMSC 331

Functional programming

* Functional programming means writing
programs that work by returning values,
instead of by modifying things.

* It is the dominant programming paradigm in
Lisp.

* Must built-in lisp functions are meant to be
cdled for the vaues they return, not for side-
effects.

MBC CMSC 331 13

Examples of functional programming

* Thefunction remove takes an object and alist and returns a
new list containing everything but that object:
> (seif Ist ‘(butter))
(BUTTER)
> (remove ‘elst)
(BUTTR)
 Note: remove does not remove an item from thelist! The
origind list is untouched after the call to remove:
> |st
(BUTTER)

* To actudly remove an item from alist you would
have to use setf:
> (setf Ist (remove‘elst))
* Functiona programming means, essentialy, avoiding
setf, and other assignment macros.

UMBC CMSC 331

How remove could be defined
Here's how remove could be defined:

(defun remove (x list)
(cond ((null list) nil)
((equd x (car list))
(remove x (cdr list)))
(t (cons (car list) (removex (cdr list))))))

Note that it “ copies” the top-level of the list.

MBC CMSC 331 15

l[teration

» When we want to do something repeatedly,
it is sometimes more natural to use iteration
than recursion.

» This function uses do to print out the squares
of theintegers from start to end:

(defun show-squares (start end)
(do ((i start (+ i 1))
((> i end) ‘done)
(formatt “~A ~A~%" i (*i1))))

UMBC CMSC 331

do

e Thedo macrois CL's fundamental iteration operator.

« Likelet, do can create variables, and the first argument is alist
of variable specifications. Each element is of theform: (var
initial update) wherevariableis asymbol, and initial and
update are expressions.

* The second argument to do should be alist containing
one or more expressions.

— Thefirst expression is used to test whether iteration should stop. Inthe
case above, the test expression is (> i end).

— The remaining expression in this list will be evaluated in order when
iteration stops, and the value of the last will be returned as the value of
the do, done in this example.

* The remaining arguments to do comprise the body of
the loop.

MBC CMSC 331 17

Dolist
* CL has asimpler iteration operator for handling lists,
dolist.
(defun len (Ist)

“| caculate thelength of Ist”
(let ((10)
(dolist (obj Ist) (setf I (+11)))
))]
* Here dolist takes an argument of the form (variable
expression), followed by abody of expressions.
* The body will be evaluated with variable bound to
successive elements of the list returned by
expression.

UMBC CMSC 331 1

eval

* You can call Lisp’'s evduation process with the

eval function.

> (setf s1'(cadr '(onetwo threeg)))

(CADR '(ONE TWO THREE))

> (evd sl)

TWO

> (evd (list 'cdr (car '((quote (a. b)) ¢))))

B

MBC CMSC 331 19

Functions as obj ects

* In lisp, functions are regular objects, like symboals,
or strings, or lists.

* If we give the name of afunction to function, it
will return the associated object.

» Like quote, function is aspecial operator, sowe
don’t have to quote the argument:
> (defun addl (n) (+ n 1))
ADD1
> (function +)
#<SYSTEM-FUNCTION +>
> (function add1)

#<CLOSURE ADD1 (N) (DECLARE (SYSTEM:IN-DEFUN
ADD1)) (BLOCK ADD1 (+ N 1))>

UMBC CMSC 331 2

» Just aswecan use’ as an abbreviation for
guote, we can use# as an abbreviation for
function:

>H#H+
#<SYSTEM-FUNCTION +>

* This abbreviation is known as sharp-quote.

» Like any other kind of object, we can pass
functions as arguments.

» Onefunction that takes afunction as an
argument is apply.

MBC CMSC 331 21

Apply

« Apply takes afunction and alist of arguments for it, and
returns the result of applying the function to the arguments:

> (apply #+ (1 2 3))
6
« It can be given any number of arguments, so long as the last
is alist:
>(apply #+ 12 (345))
15

* A simple version of apply could be written as
follows

(defun apply (f list) (eval (consf list)))

UMBC CMSC 331

Funcall

» Thefunction funcall is like apply but does
Ir;g{_need the arguments to be packaged in a
> (funcall #+ 1 2 3)
6
* It could be written as:
(defun funcall (f &rest args)
(eval (consf args)))

MBC CMSC 331 23

Lambda

» The defun macro creates afunction and
gives it aname.

* However, functions don’'t haveto have
names, and we don’t need defun to define
them.

» We can refer to functions literally by using a
lambda expression.

UMBC CMSC 331

L ambda expression

* A lambda expression is alist containing the
symbol lambda, followed by alist of
parameters, followed by abody of zero or
MOre expressions:

> (seif f (lambda (x) (+ x 1)))
#<CLOSURE :LAMBDA (X) (+ X 1)>
> (funcall f 100)

101

MBC CMSC 331

25

* A lambda expression can be considered as the
name of afunction.

* Like an ordinary function name, alambda
expression can be the first eement of afunction
call:

> ((lambda (x) (+ x 100)) 1)
101

» and by affixing a sharp-quote to alambda
expression, we get the corresponding function:

> (funcal # (lambda(x) (+ x 100))

Types

* In CL values have types, not variables.

* You don’t have to declare the types of variables,
because any varigble can hold objects of any type.

* Though type declaration is never required, you may
want to make them for reasons of efficiency.

* The built-in CL types form a hierarchy of subtypes
and supertypes.

* The typet is the supertype of al types, so
everything is of typet.

MBC CMSC 331

27

1
101
t > (typep 27°t)
t T
at?m > (typep 27 ‘atom)
T
nUTbH > (typep 27 ‘number)
T
er > (typep 27 ‘red)
) T
rational > (typep 27 *rational)
T
integer > (typep 27 ‘integer)
T
fixr;um > (typep 27 ‘fixnum)
T
27 > (typep 27 ‘vector)

NIL

UMBC CMSC 331

