
UMBC CMSC 331 1

Common Common
LispLisp

IIII
UMBC CMSC 331 2

Input and Output
•Print is the most primitive output function

> (print (list 'foo 'bar))
(FOO BAR)
(FOO BAR)

•The most general output function in CL is format
which takes two or more arguments:
– the first indicates where the input is to be printed,
– the second is a string template,
– the remaining arguments are objects whose printed

representations are to be inserted into the template:
> (format t “~A plus ~A equals ~A.~%” 2 3 (+ 2 3))
2 plus 3 equals 5.
NIL

UMBC CMSC 331 3

Read

•The standard function for input is read.
•When given no arguments, it reads from the
default place, which is usually standard input.
> (defun ask (string)

(format t “~A” string)
(read))

ask
> (ask “How old are you? “)
How old are you? 29
29

UMBC CMSC 331 4

Local Variables

•One of the most frequently
used operators in CL is let.

•This allows local variables to
be used in a function.

•A let expression has two parts.
– First comes a list of instructions for

creating variables, each of the form var
or (var expression).
Local variables are valid within the

body of the let.
– After the list of variables and values

comes the body of expressions, which
are evaluated in order.

> (let ((x 100) (y 200))

(print (+ x y))

(setq x 200)

(print (+ x y))

‘foo)

300

400

foo

UMBC CMSC 331 5

A let example
> (defun ask-number ()

(format t “Please enter a number. “)
(let ((val (read)))

(if (numberp val)
val
(ask-number))))

ASK-NUMBER
> (ask-number)
Please enter a number. number
Please enter a number. (this is a number)
Please enter a number. 52
52

UMBC CMSC 331 6

Global variables

•Global variables are visible throughout the program.
•Global variables can be created by giving a symbol

and a value to defparameter or defvar.
> (defparameter *foo* 1)
FOO
> *foo*
1
> (defvar *bar* (+ *foo* 1))
BAR
> *bar*
2
> (defvar *bar* 33)
BAR
> *bar*
2

Note: (defparameter v e)
creates a global variable
named v and sets its value to
be e.

(defvar v e) is just like
defparameter if no global
variable named v exists.
Otherwise it does nothing.

UMBC CMSC 331 7

Global constants

•You can define a global constant, by calling
defconstant.

> (defconstant +limit+ 100)
+LIMIT+
> (setf +limit+ 99)
*** - SETQ: the value of the constant +LIMIT+ may

not be altered
1. Break [5]>

•The plus-something-plus is a lisp convention to
identify symbols as constants. Just like star-
something-star is a lisp convention to identify
global variables.

UMBC CMSC 331 8

When in doubt

•When in doubt about whether some symbol
is a global variable or constant, use boundp.

> (boundp ‘*foo*)
T
> (boundp ‘fishcake)
NIL

UMBC CMSC 331 9

Assignment

•There are several assignment operators in Common
Lisp: set, setq and setf

•the most general assignment operator is setf.
•We can use it to assign both local and global

variables:
> (setf *blob* 89)
89
> (let ((n 10))

(setf n 2)
n)

2
UMBC CMSC 331 10

Setf
•You can create global variables implicitly just by

assigning them values.
> (setf x (list ‘a ‘b ‘c))
(A B C)

•However, it is better lisp style to use defparameter
to declare global variables.

•You can give setf any even number of arguments:
(setf a 1 b 2 c 3)

is the same as:
(setf a 1)
(setf b 2)
(setf c 3)

UMBC CMSC 331 11

•You can do more than just assign values to
variables with setf.

•The first argument to setf can be an
expression as well as a variable name.

•In such cases, the value of the second
argument is inserted in the place referred to
by the first:
> (setf (car x) ‘n)
N
>
(N B C)

UMBC CMSC 331 12

Setf
> (setq a (make-array 3))
#(NIL NIL NIL)
> (aref a 1)
NIL
> (setf (aref a 1) 3)
3
> a
#(NIL 3 NIL)
> (aref a 1)
3
> (defstruct foo bar)
FOO
>

(setq a (make-foo))
#s(FOO :BAR NIL)
> (foo-bar a)
NIL
> (setf (foo-bar a) 3)
3
> a
#s(FOO :BAR 3)
> (foo-bar a)
3

UMBC CMSC 331 13

Functional programming

•Functional programming means writing
programs that work by returning values,
instead of by modifying things.

•It is the dominant programming paradigm in
Lisp.

•Must built-in lisp functions are meant to be
called for the values they return, not for side-
effects.

UMBC CMSC 331 14

Examples of functional programming
• The function remove takes an object and a list and returns a

new list containing everything but that object:
> (setf lst ‘(b u t t e r))
(B U T T E R)
> (remove ‘e lst)
(B U T T R)

• Note: remove does not remove an item from the list! The
original list is untouched after the call to remove:
> lst
(B U T T E R)

•To actually remove an item from a list you would
have to use setf:
> (setf lst (remove ‘e lst))

•Functional programming means, essentially, avoiding
setf, and other assignment macros.

UMBC CMSC 331 15

How remove could be defined

Here’s how remove could be defined:

(defun remove (x list)
(cond ((null list) nil)

((equal x (car list))
(remove x (cdr list)))

(t (cons (car list) (remove x (cdr list))))))

Note that it “copies” the top-level of the list.

UMBC CMSC 331 16

Iteration
•When we want to do something repeatedly,
it is sometimes more natural to use iteration
than recursion.

•This function uses do to print out the squares
of the integers from start to end:

(defun show-squares (start end)
(do ((i start (+ i 1)))

((> i end) ‘done)
(format t “~A ~A~%” i (* i i))))

UMBC CMSC 331 17

do

• The do macro is CL’s fundamental iteration operator.
• Like let, do can create variables, and the first argument is a list

of variable specifications. Each element is of the form: (var
initial update) where variable is a symbol, and initial and
update are expressions.

•The second argument to do should be a list containing
one or more expressions.
– The first expression is used to test whether iteration should stop. In the

case above, the test expression is (> i end).
– The remaining expression in this list will be evaluated in order when

iteration stops, and the value of the last will be returned as the value of
the do, done in this example.

•The remaining arguments to do comprise the body of
the loop.

UMBC CMSC 331 18

Dolist
•CL has a simpler iteration operator for handling lists,

dolist.
(defun len (lst)
“I calculate the length of lst”
(let ((l 0))

(dolist (obj lst) (setf l (+ l 1)))
l))

•Here dolist takes an argument of the form (variable
expression), followed by a body of expressions.

•The body will be evaluated with variable bound to
successive elements of the list returned by
expression.

UMBC CMSC 331 19

eval

•You can call Lisp’s evaluation process with the
eval function.
> (setf s1 '(cadr '(one two three)))
(CADR '(ONE TWO THREE))
> (eval s1)
TWO
> (eval (list 'cdr (car '((quote (a . b)) c))))
B

UMBC CMSC 331 20

Functions as objects
•In lisp, functions are regular objects, like symbols,

or strings, or lists.
•If we give the name of a function to function, it

will return the associated object.
•Like quote, function is a special operator, so we

don’t have to quote the argument:
> (defun add1 (n) (+ n 1))
ADD1
> (function +)
#<SYSTEM-FUNCTION +>
> (function add1)
#<CLOSURE ADD1 (N) (DECLARE (SYSTEM::IN-DEFUN

ADD1)) (BLOCK ADD1 (+ N 1))>

UMBC CMSC 331 21

•Just as we can use ‘ as an abbreviation for
quote, we can use #’ as an abbreviation for
function:
> #’+
#<SYSTEM-FUNCTION +>

•This abbreviation is known as sharp-quote.
•Like any other kind of object, we can pass
functions as arguments.

•One function that takes a function as an
argument is apply.

UMBC CMSC 331 22

Apply
• Apply takes a function and a list of arguments for it, and

returns the result of applying the function to the arguments:
> (apply #’+ ‘(1 2 3))
6

• It can be given any number of arguments, so long as the last
is a list:

> (apply #’+ 1 2 ‘(3 4 5))
15

•A simple version of apply could be written as
follows

(defun apply (f list) (eval (cons f list)))

UMBC CMSC 331 23

Funcall

•The function funcall is like apply but does
not need the arguments to be packaged in a
list:

> (funcall #’+ 1 2 3)
6

•It could be written as:
(defun funcall (f &rest args)
(eval (cons f args)))

UMBC CMSC 331 24

Lambda

•The defun macro creates a function and
gives it a name.

•However, functions don’t have to have
names, and we don’t need defun to define
them.

•We can refer to functions literally by using a
lambda expression.

UMBC CMSC 331 25

Lambda expression

•A lambda expression is a list containing the
symbol lambda, followed by a list of
parameters, followed by a body of zero or
more expressions:
> (setf f (lambda (x) (+ x 1)))
#<CLOSURE :LAMBDA (X) (+ X 1)>
> (funcall f 100)
101

UMBC CMSC 331 26

•A lambda expression can be considered as the
name of a function.

•Like an ordinary function name, a lambda
expression can be the first element of a function
call:
> ((lambda (x) (+ x 100)) 1)
101

•and by affixing a sharp-quote to a lambda
expression, we get the corresponding function:
> (funcall #’(lambda (x) (+ x 100))

1)
101

UMBC CMSC 331 27

Types
•In CL values have types, not variables.
•You don’t have to declare the types of variables,

because any variable can hold objects of any type.
•Though type declaration is never required, you may

want to make them for reasons of efficiency.
•The built-in CL types form a hierarchy of subtypes

and supertypes.
•The type t is the supertype of all types, so

everything is of type t.

UMBC CMSC 331 28

27

fixnum

integer

rational

real

number

atom

t > (typep 27 ‘t)
T
> (typep 27 ‘atom)
T
> (typep 27 ‘number)
T
> (typep 27 ‘real)
T
> (typep 27 ‘rational)
T
> (typep 27 ‘integer)
T
> (typep 27 ‘fixnum)
T
> (typep 27 ‘vector)
NIL

