
1

Lisp

Versions of LISP

• Lisp is an old language with many variants
• Lisp is alive and well today
• Most modern versions are based on

Common Lisp
• LispWorks is based on Common Lisp
• Scheme is one of the major variants
• The essentials haven’t changed much

2

Recursion

• Recursion is essential in Lisp
• A recursive definition is a definition in

which
– certain things are specified as belonging to the

category being defined, and
– a rule or rules are given for building new things

in the category from other things already
known to be in the category.

Informal Syntax

• An atom is either an integer or an identifier.
• A list is a left parenthesis, followed by zero

or more S-expressions, followed by a right
parenthesis.

• An S-expression is an atom or a list.
• Example: (A (B 3) (C) (()))

3

Formal Syntax (approximate)

• <S-expression> ::= <atom> | <list>
• <atom> ::= <number> | <identifier>
• <list> ::= (<S-expressions>)
• <S-expressions > ::= <empty>

| <S-expressions > <S-expression>
• <number> ::= <digit> | <number> <digit>
• <identifier> ::= string of printable characters,

not including parentheses

T and NIL

• NIL is the name of the empty list
• As a test, NIL means “false”
• T is usually used to mean “true,” but…
• … anything that isn’t NIL is “true”
• NIL is both an atom and a list

– it’s defined this way, so just accept it

4

Function calls and data

• A function call is written as a list
– the first element is the name of the function
– remaining elements are the arguments

• Example: (F A B)
– calls function F with arguments A and B

• Data is written as atoms or lists
• Example: (F A B) is a list of three elements

– Do you see a problem here?

Quoting

• Is (F A B) a call to F, or is it just data?
• All literal data must be quoted (atoms, too)
• (QUOTE (F A B)) is the list (F A B)

– QUOTE is a “special form”
– The arguments to a special form are not evaluated

• '(F A B) is another way to quote data
– There is just one single quote at the beginning
– It quotes one S-expression

5

Basic Functions

• CAR returns the head of a list
• CDR returns the tail of a list
• CONS inserts a new head into a list
• EQ compares two atoms for equality
• ATOM tests if its argument is an atom

Other useful Functions

• (NULL S) tests if S is the empty list
• (LISTP S) tests if S is a list
• LIST makes a list of its (evaluated) arguments

– (LIST 'A '(B C) 'D) returns (A (B C) D)
– (LIST (CDR '(A B)) 'C) returns ((B) C)

• APPEND concatenates two lists
– (APPEND '(A B) '((X) Y)) returns (A B (X) Y)

6

CAR
• The CAR of a list is the first thing in the list
• CAR is only defined for nonempty lists

If L is Then (CAR L) is
(A B C) A
((X Y) Z) (X Y)
(() ()) ()
() undefined

CDR
• The CDR of a list is what's left when you

remove the CAR
• CDR is only defined for nonempty lists
• The CDR of a list is always a list

7

CDR examples

If L is Then (CDR L) is
(A B C) (B C)
((X Y) Z) (Z)

(() ()) (())
() undefined

(X) ()

CONS
• CONS takes two arguments

– The first argument can be any S-expression
– The second argument should be a list

• The result is a new list whose CAR is the
first argument and whose CDR is the second

• Just move one parenthesis to get the result:

CONS of A (B C) gives (A B C)

8

CONS examples

L (CAR L) (CDR L) (CONS (CAR L) (CDR L))
(A B C) A (B C) (A B C)
((X Y) Z) (X Y) (Z) ((X Y) Z)

(() ()) () (()) (() ())
() undefined undefined undefined

(X) X () (X)

• CONS puts together what CAR and CDR
take apart

Dotted Pairs

• The second argument to CONS should be a
list

• If it isn't, you get a dotted pair
• CONS of A and B is (A . B)
• We aren't using dotted pairs in this class
• If you get a dotted pair, it's because you

gave CONS an atom as a second argument

9

EQ
• EQ tests whether two atoms are equal

– Integers are a kind of atom

• EQ is undefined for lists
– it might work for lists, it might not
– but it won't give you an error message

• As with any predicate, EQ returns either
NIL or something that isn't NIL

ATOM
• ATOM takes any S-expression as an

argument
• ATOM returns "true" if the argument you

gave it is an atom
• As with any predicate, ATOM returns

either NIL or something that isn't NIL

10

COND
• COND implements the

if...then...elseif...then...elseif...then...
control structure

• The arguments to a function are evaluated
before the function is called
– This isn't what you want for COND

• COND is a special form, not a function

Special forms

• A special form is like a function, but it
evaluates the arguments as it needs them

• COND, QUOTE and DEFUN are special
forms

• You can define your own special forms
• We won't be defining special forms in this

course

11

Form of the COND

(COND
(condition1 result1)
(condition2 result2)
. . .
(T resultN))

Defining Functions

• (DEFUN function_name parameter_list
function_body)

• Example: Test if the argument is the empty list
• (DEFUN NULL (X)

(COND
(X NIL)
(T T)))

12

Example: MEMBER

• As an example we define MEMBER, which tests
whether an atom is in a list of atoms

• (DEFUN MEMBER (A LAT)
(COND

((NULL LAT) NIL)
((EQ A (CAR LAT)) T)
(T (MEMBER A (CDR LAT)))))

• MEMBER is typically a built-in function

Rules for Recursion

• Handle the base (“simplest”) cases first
• Recur only with a “simpler” case

– “Simpler” = more like the base case

• Don’t alter global variables (you can’t
anyway with the Lisp functions I’ve told
you about)

• Don’t look down into the recursion

13

Guidelines for Lisp Functions

• Unless the function is trivial, start with
COND.

• Handle the base case first.
• Avoid having more than one base case.
• The base case is usually testing for NULL.
• Do something with the CAR and recur with

the CDR.

Example: UNION

(DEFUN UNION (SET1 SET2)
(COND

((NULL SET1) SET2)
((MEMBER (CAR SET1) SET2)

(UNION (CDR SET1) SET2))
(T (CONS (CAR SET1)

(UNION (CDR SET1) SET2)))))

14

Still more useful Functions

• (LENGTH L) returns the length of list L
• (RANDOM N) , where N is an integer, returns

a random integer >= 0 and < N.

The End

