Versions of LISP

Lisp is an old language with many variants
Lisp is alive and well today

Most modern versions are based on
Common Lisp

LispWorksis based on Common Lisp
Scheme is one of the major variants
The essentials haven’t changed much

Recursion

-
* Recursionisessential in Lisp

e A recursive definition is adefinition in
which

— certain things are specified as belonging to the
category being defined, and

—arule or rules are given for building new things
in the category from other things already
known to bein the category.

|nformal Syntax

-
An atomis either an integer or an identifier.

A list isaleft parenthesis, followed by zero
or more S-expressions, followed by aright
parenthesis.

An Sexpressionisan atomor alist.
Example: (A (B3) (C) (()))

Formal Syntax (approximate)

-
<S-expression> ;= <atom> | <list>
<atom> ::= <number> | <identifier>
<list> ::= (<S-expressions>)
<S-expressions > ;= <empty>

| <S-expressions > <S-expression>
<number> ;= <digit> | <number> <digit>

<identifier> ::= string of printable characters,
not including parentheses

T and NIL

e NIL isthe name of the empty list
o Asatest, NIL means “false’
e T isusually used to mean “true,” but...
 ...anything that isn't NIL is“true”
e NIL isboth anatomand alist
— it’ s defined this way, so just accept it

Function calls and data
-

A function call iswritten asalist
— the first element is the name of the function
— remaining elements are the arguments
Example: (F A B)
— calls function F with arguments A and B
Dataiswritten as atoms or lists

Example: (F A B) isalist of three elements
— Do you see a problem here?

Quoting
-
* Is(F AB)acdltoF, orisit just data?
 All literal data must be quoted (atoms, too)
e (QUOTE (F AB))isthelist (F A B)
— QUOTE isa“specia form”
— The arguments to a special form are not evaluated
e '(F A B) isanother way to quote data

— Thereisjust one single quote at the beginning
— It quotes one S-expression

Basic Functions
-
e CAR returnsthe head of alist
e CDR returnsthetail of alist
e CONS insertsanew head into alist
e EQ compares two atoms for equality
e ATOM testsif itsargument is an atom

Other useful Functions
-
e (NULL S) testsif S isthe empty list
e (LISTP S) testsif Sisalist
e LIST makesalist of its (evaluated) arguments
— (LIST "A "(B C) 'D) returns (A (B C) D)
— (LIST (CDR "(A B)) "C) returns ((B) C)
e APPEND concatenatestwo lists
— (APPEND "(A B) "((X) Y)) returns (A B (X) Y)

(OFANR

* The CAR of alist isthefirst thing inthelist
e CAR isonly defined for nonempty lists

IfLis Then (CAR L) is
(A B C) A
((XY) 2 (X'Y)

(0)0)) ()
@) undefined

CDR

-
 The CDR of alist iswhat's left when you
remove the CAR

e CDR isonly defined for nonempty lists
 TheCDR of alist isalways alist

CDR examples

IfLis Then (CDR L) is
(A B Q) (X9)
((X'Y) 2) (2)

(X) ()

(0)0)) (())
@) undefined

CONS

e CONS takestwo arguments
— The first argument can be any S-expression
— The second argument should be a list

 Theresult isanew list whose CAR isthe
first argument and whose CDR isthe second

 Just move one parenthesis to get the resullt:

CONSof A (B C) gves (ABZC)

CONS examples
-
e CONS putstogether what CAR and CDR
take apart
L CAR L (CDR L) (CONS (CAR L) (CDR L))
(A B C) A (B C) (A B C)
(XY)zZ) XY (2) (XY) 2

(X) X () (X)
(0)O)) () () (0)O))
@) undefined undefined undefined

Dotted Pairs

The second argument to CONS should be a
list

If it isn't, you get a dotted pair

CONS of AandBis(A . B)

We aren't using dotted pairsin this class

If you get a dotted pair, it's because you
gave CONS an atom as a second argument

EQ
-
e EQ tests whether two atoms are equal
— Integers are akind of atom
e EQ isundefined for lists
— it might work for lists, it might not
— but it won't give you an error message

« Aswith any predicate, EQ returns either
NIL or something that isn't NIL

ATOM

e ATOM takes any S-expression as an
argument

e ATOM returns "true" if the argument you
gaveit isan atom

« Aswith any predicate, ATOM returns
either NIL or something that isn't NIL

COND

e COND implements the
If...then...elseif...then...elseif...then...
control structure

» The arguments to afunction are evaluated
before the function is called
— Thisisn't what you want for COND

e COND isagpecial form, not afunction

Soecial forms

» A special formislike afunction, but it
evaluates the arguments as it needs them

e COND, QUOTE and DEFUN are specid
forms

 You can define your own special forms

* We won't be defining special formsin this
course

10

Form of the COND

(COND
(conditionl resultl)
(condition2 result2)

(T resultN))

Defining Functions

-

e (DEFUN function_name parameter_list
function_body)

« Example: Test if the argument isthe empty list

- (DEFUN

(COND
(X NIL)

(T 1))

11

Example: MEMBER

* Asan example we define MEMBER, which tests
whether an atomisin alist of atoms

e (DEFUN MEMBER (A LAT)
(COND
((NULL LAT) NIL)
(EQA(CARLAT)) T
(T (MEMBER A (CDR LAT)))))
e MEMBER istypically a built-in function

Rules for Recursion

-
» Handle the base (“simplest”) casesfirst
* Recur only with a“simpler” case
—“Smpler” = more like the base case

« Don't alter global variables (you can’t
anyway with the Lisp functions I’ ve told
you about)

e Don't look down into the recursion

12

Guidelines for Lisp Functions

Unless the function istrivial, start with
COND.

Handle the base case first.
Avoid having more than one base case.
The base case is usually testing for NULL.

Do something with the CAR and recur with
the CDR.

Example: UNION

(DEFUN UNION (SET1 SET2)
(COND
((NULL SET1) SET2)
((MEMBER (CAR SET1) SET2)
(UNION (CDR SET1) SET2))
(T (CONS (CAR SET1)
(UNION (CDR SETL) SET2)))))

13

Sill more useful Functions

-
e (LENGTH L) returnsthe length of list L

e (RANDOM N) , where N isan integer, returns
arandom integer >= 0 and < N.

14

