&
6—-=~

JAVA

Review of objects
and variables
In Java

UMBC CMSC 331 Java.

variables & objects

—what happens when you run this?
String a=“foo”;

Systemout.printin (a); T~ .
—it prints

foo
—what is “foo” ?
—astring literal that evaluatesto a String object
—what is a?
—a variable whose value is an object reference
—what is String a = “foo” ?
—adeclaration and an assignment in one

UMBC CMSC 331 Java.

method calls

—what happens when you run this?
String a=*“foo”;
String b = atoUpperCase ();

Systemout.printin (b); a
—itprints \.
foo
—what is toUpperCase? g
amethod of class Sring \.
 typeis String -> String
« declared as public String toUpperCase ()
—what is atoUpperCase ()?
amethod call on the object a
—does it change a?
no, it creates a new string

UMBC CMSC 331 Java.

null references

—what happens when you run this?
String a=null;
Systemout.printin (a);
—it prints
null
—what happens when you run this?
String a=null;
String b = atoUpperCase ();
Systemout.printin (b);
it throws a Null Pointer Exception
—why?
because a method call must have a subject

UMBC CMSC 331 Java.

sharing & equality mutable containers
—what happens when you run this? a —what happens when you run this?
String a=“foo’; Vector v = new Vector ();
Stringb =" foo"" String a="foo";
gn= 0 b v.addElement (a);
Systemout.printin (b); \. Systemout.println (v.lastBEement ());
—itprints —it prints
foo foo
—is that the same as this? ~what happens when you run this?
. R e Vector v = new Vector ();
Sn_ng a="foo"; String a=“foo”;
Sringb=g; String b = “foo”;
Systemout.printin (b); b v.addBlement (a);
_ L Systemout.printin (v.lastBement ());
yes, bmse Sring |§|r.m'uFabIe. . v addEement (b):
— Thereisno way to distinguish these cases and, in fact, Systemout.println (v.lastElement ());
Java virtual machine may produce upper or lower state —it prints
in this case. foo
foo
UMBCOMSCTL I 5 UMBC OMSC L I
et ot thich aliasing aliasing & immutables
Vector v = new Vector (); —what does this do?
-y a
\Slleqor qﬁ—“v, String a="“foo”;
ring a="“foo"; .
v.addBlement (a); Sring b=g; /b'.
Systemout.printin (g.lastBement ()); a_toUpperCase O;
—it prints i .
00 & _ Sy_stemout.pnntln (b);
—why? it prints
—because v and q are aliased: they are foo a
names for the same object why?
—what if we now do this? —why:)] £
if (v == g) Systemout println (* same object”); because strings are immutable .
if (v.equal .println (* alue’); .
_it plrii]\;sequ s (q)) Systemout.println (“ same value”); —The objects created by the
same object Aliasing occurs when several different tOUPpefcase method is eventudly
same value identifiers refer to the same object. The term GCed (garbage collected.)

isvery general and is used in many contexts.

UMBC CMSC 331 Java.

7

UMBC CMSC 331 Java.

polymorphism
« what does this do?
Vector v = new Vector ();
Vector e = new Vector ()
v.addBlement (e); ~
e.addBement (“foo”);
Systemout.printin (
((Vector) v.lastHement ()).lastBement ());
« it prints
foo
« what kind of method is addElement?
a polymorphic one
typeis Vector, Object -> void
declared as public void addElement (Object 0)

UMBC CMSC 331 Java.

On polymorphism

« First identified by Christopher Strachey (1967) and
developed by Hindley and Milner, allowing types such as a
list of anything.

« Eg. in Haskell we can define a function which operates on
alist of objects of any type a (ais atype variable).

length :: [a] -> Int

« Polymorphic typing allows strong type checking as well as
generic functions. ML in 1976 was the first language with
polymorphic typing.

» Ad-hoc polymorphism (aka overloading) is the ability to
use the same syntax for objects of different types, e.g. "+"
for addition of reals and integers.

* In OOP, the termis used to describe variables which may
refer at run-time to objects of different classes.

UMBC CMSC 331 Java.

10

reference loops

e canieven add v to itself?
Vector v = new Vector ();
v.addBement (v);
Systemout.printin (v.lastBement ())
* yes, try it!
* and this?
v.addBlement (5);
* no, 5isa primitive value, not an object

UMBC CMSC 331 Java.

a pair of methods

* some types
—what are the types of addElement, lastElement?
addElement : Vector, Object -> void
lastElement : Vector -> Object
e apuzde
—how are xand e related after this?
v.addBlement (e);
x = v.lastElement ();
— they denote the same object
— can the compiler infer that?
—no! not even that x and e have the same class

UMBC CMSC 331 Java.

12

downcasts

—what does this do?
Vector v = new Vector ();
Sring a="“foo";
v.addEement (a);
String b = v.lastBement ();
Systemout.printin (b);
—compiler rejectsit: v.lastElement doesn't return a Sring!
—what does this do?
Vector v = new Vector ();
Sring a="“foo";
v.addEement (a);
String b = (String) v.lastBement ();
Systemout.printin (b);
—itprints
foo
UMBC CMSC 231 Java 13

upcasting and downcasting

« Suppose we have object O of class C1 with
superclass C2

« In Java, upcasting is automeatic but downcasting
must be explicit.

« Upcasting: treating O as a C2

« Downcasting: treating O as a C1

UMBC CMSC 331 Java. 14

variable & object classes

—what does this do?
Vector v = new Vector ();
String a=*“foo”;
v.addBlement (a);
Object o0 = v lastElement ();
Systemout.printin (0.getClass ());
—it prints
javalang.String
—what’s going on here?
« getClassreturns an object representing a class
« 0.getClass () isthe class 0 has at runtime

« System.out.println prints a string representation, ie,
the name

UMBC CMSC 331 Java. 15

Some key concepts

« variables & objects
— variables hold object references (or primitive values like 5)
— null is a special object reference
« sharing, equality & mutability
— distinct objects can have the same value
— state is held in value of instance variables
— an object can be mutable (state may change) or immutable
— two variables can point to the same object; changing one affects the
other
« methods
— amethod has a‘ subject’ or ‘target’ object
— may be polymorphic, ie. work on several types of object
« compile-time & runtime types
— an object has atype at runtime: the class of its constructor
— avariable has a declared, compile-time type or class
umecouscrama — fUNtime class is subclass of conpile-time class 16

