
UMBC CMSC 331 Java

Review of objects Review of objects
and variables and variables

in Javain Java

2UMBC CMSC 331 Java

variables & objects
–what happens when you run this?

String a = “foo”;
System.out.println (a);

– it prints
foo

–what is “foo”?
–a string literal that evaluates to a String object
–what is a?
–a variable whose value is an object reference
–what is String a = “foo”?
–a declaration and an assignment in one

“foo”
(String)

a

3UMBC CMSC 331 Java

method calls
– what happens when you run this?

String a = “foo”;
String b = a.toUpperCase ();
System.out.println (b);

– it prints
foo

– what is toUpperCase?
a method of class String
• type is String -> String
• declared as public String toUpperCase ()

– what is a.toUpperCase ()?
a method call on the object a

– does it change a?
no, it creates a new string

“foo”
(String)

a

“foo”
(String)

b

4UMBC CMSC 331 Java

null references
–what happens when you run this?

String a = null;
System.out.println (a);

– it prints
null

–what happens when you run this?
String a = null;
String b = a.toUpperCase ();

System.out.println (b);

it throws a NullPointerException
–why?

because a method call must have a subject

5UMBC CMSC 331 Java

sharing & equality
– what happens when you run this?

String a = “foo”;
String b = “foo”;
System.out.println (b);

– it prints
foo

– is that the same as this?
String a = “foo”;
String b = a;
System.out.println (b);

– yes, because String is immutable.
– There is no way to distinguish these cases and, in fact,

Java virtual machine may produce upper or lower state
in this case.

“foo”
(String)

a

“foo”
(String)

b

“foo”
(String)

a

b

6UMBC CMSC 331 Java

mutable containers
–what happens when you run this?

Vector v = new Vector ();
String a = “foo”;
v.addElement (a);
System.out.println (v.lastElement ());

–it prints
foo

–what happens when you run this?
Vector v = new Vector ();
String a = “foo”;
String b = “foo”;
v.addElement (a);
System.out.println (v.lastElement ());
v.addElement (b);
System.out.println (v.lastElement ());

–it prints
foo
foo

(Vector)

v

“foo”
(String)

a

“foo”
(String)

b

7UMBC CMSC 331 Java

aliasing
–what about this?

Vector v = new Vector ();
Vector q = v;
String a = “foo”;
v.addElement (a);
System.out.println (q.lastElement ());

–it prints
foo

–why?
–because v and q are aliased: they are
names for the same object

–what if we now do this?
if (v == q) System.out.println (“same object”);
if (v.equals (q)) System.out.println (“same value”);

–it prints
same object
same value

(Vector)

v

“foo”
(String)

a

q

Aliasing occurs when several different
identifiers refer to the same object. The term
is very general and is used in many contexts.

8UMBC CMSC 331 Java

aliasing & immutables
–what does this do?

String a = “foo”;
String b = a;
a.toUpperCase ();
System.out.println (b);

it prints
foo

–why?
because strings are immutable

–The objects created by the
toUpperCase method is eventually
GCed (garbage collected.)

“foo”
(String)

a

b

“foo”
(String)

a

“FOO”
(String)

b

9UMBC CMSC 331 Java

polymorphism
• what does this do?

Vector v = new Vector ();
Vector e = new Vector ()
v.addElement (e);
e.addElement (“foo”);
System.out.println (

((Vector) v.lastElement ()).lastElement ());
• it prints

foo
• what kind of method is addElement?

a polymorphic one
type is Vector, Object -> void
declared as public void addElement (Object o)

(Vector)

v

(Vector)

e

(String)
“foo”

10UMBC CMSC 331 Java

On polymorphism
• First identified by Christopher Strachey (1967) and

developed by Hindley and Milner, allowing types such as a
list of anything.

• E.g. in Haskell we can define a function which operates on
a list of objects of any type a (a is a type variable).
length :: [a] -> Int

• Polymorphic typing allows strong type checking as well as
generic functions. ML in 1976 was the first language with
polymorphic typing.

• Ad-hoc polymorphism (aka overloading) is the ability to
use the same syntax for objects of different types, e.g. "+"
for addition of reals and integers.

• In OOP, the term is used to describe variables which may
refer at run-time to objects of different classes.

11UMBC CMSC 331 Java

reference loops

•can i even add v to itself?
Vector v = new Vector ();
v.addElement (v);
System.out.println (v.lastElement ())

•yes, try it!
•and this?

v.addElement (5);
•no, 5 is a primitive value, not an object

(Vector)

v

“foo”

12UMBC CMSC 331 Java

a pair of methods

•some types
– what are the types of addElement, lastElement?

addElement : Vector, Object -> void
lastElement : Vector -> Object

•a puzzle
– how are x and e related after this?

v.addElement (e);
x = v.lastElement ();

– they denote the same object
– can the compiler infer that?
– no! not even that x and e have the same class

13UMBC CMSC 331 Java

downcasts
– what does this do?

Vector v = new Vector ();
String a = “foo”;
v.addElement (a);
String b = v.lastElement ();
System.out.println (b);

– compiler rejects it: v.lastElement doesn’t return a String!
– what does this do?

Vector v = new Vector ();
String a = “foo”;
v.addElement (a);
String b = (String) v.lastElement ();
System.out.println (b);

– it prints
foo

14UMBC CMSC 331 Java

upcasting and downcasting

•Suppose we have object O of class C1 with
superclass C2

•In Java, upcasting is automatic but downcasting
must be ex plicit.

•Upcasting: treating O as a C2
•Downcasting: treating O as a C1

15UMBC CMSC 331 Java

variable & object classes
–what does this do?

Vector v = new Vector ();
String a = “foo”;
v.addElement (a);
Object o = v.lastElement ();
System.out.println (o.getClass ());

– it prints
java.lang.String

–what’s going on here?
• getClass returns an object representing a class
• o.getClass () is the class o has at runtime
• System.out.println prints a string representation, ie,

the name
16UMBC CMSC 331 Java

Some key concepts
• variables & objects

– variables hold object references (or primitive values like 5)
– null is a special object reference

• sharing, equality & mutability
– distinct objects can have the same value
– state is held in value of instance variables
– an object can be mutable (state may change) or immutable
– two variables can point to the same object; changing one affects the

other
• methods

– a method has a ‘subject’ or ‘target’ object
– may be polymorphic, ie. work on several types of object

• compile-time & runtime types
– an object has a type at runtime: the class of its constructor
– a variable has a declared, compile-time type or class
– runtime class is subclass of compile-time class

