
Methods for Policy Conflict Detection and Resolution in
Pervasive Computing Environments

Evi Syukur
SCSSE, Monash University, Australia

evis@csse.monash.edu.au

Seng Wai Loke
SCSSE, Monash University, Australia
swloke@csse.monash.edu.au

Peter Stanski
Telstra Lab, Australia

peter.stanski@stanski.com

ABSTRACT

Recently, there has been increasing work in using policy in
pervasive systems. Policy is a relatively new field and much work
is still required to explore designs, concepts, and architecture for
using policy in pervasive computing environments. In this paper,
we briefly introduce the concepts and design of a policy based
pervasive system, using Mobile Hanging Services as an example.
The main aim of this paper is to investigate several techniques
that can be used to statically or dynamically detect and resolve
conflicts in pervasive systems. We discuss the conflict detection
and resolution techniques in the system as a case study.

Categories and Subject Descriptors
D.2.11[Software Engineering]:Software Architectures;
H.3.4[Information Storage and Retrieval]:Systems and
Software; K.6.3[Management of Computing and Information
Systems]:Software Management.

General Terms
Design, Performance and Management.

Keywords
Policy, Conflict Detection, Conflict Resolution, Web Services,
Context, Mobile device, and Pervasive System.

1. Introduction and Motivation
Pervasive computing has a broad view of utilizing computing

devices everywhere in the environment and at any time [1]. The
idea is that a mobile or non-mobile user can communicate with
embedded or non-embedded computing devices, which are
invisibly integrated into the environment as soon as s/he steps into
that particular space. To date, we have seen a number of pervasive
computing systems that have been developed and many of them
share similar concepts, although the details of each concept may
be different one from another, depending on the target domain of
the pervasive system. These basic concepts of the pervasive
system are the notions of entities, spaces, services, mobile
devices, workstations and contexts.

Recently, there has been increasing work in designing policy
based pervasive systems. In our case, policy is used to express a
set of rules to govern and control the behaviours of entities in
accessing services in specific contexts. Having the additional
policy mechanisms in pervasive systems would certainly benefit
the user. For example, it allows the users to constrain and control
the behaviors of foreign entities operating in his/her environment,
and it is used for humans to tell a system what task to do
automatically within a certain situation [11]. However, there are
some challenges in developing such a system. One of the main
challenges we focus on in this paper is detecting and resolving
conflicts in an efficient and appropriate manner as they arise in
the context of using policies to control mobile services. Conflicts

often arise as a result of the differences in policy specifications:
e.g., one allows the user to start the service but another prohibits
the user from doing so. From our study, we experienced that in
pervasive systems, the possibility of conflict occurrence is higher
than in other systems (i.e., a distributed system). This is mainly
due to a number of contexts and services used, and the mobility of
entities, in which, the entity can move freely from one
geographical space to another and the entity carries its own rules
on how the service should be executed in the designated place.

Due to a number of possible conflicts that may occur in a
pervasive environment and each of these conflicts may need
different detection and resolution strategies (due to its source of
occurrence), we may require a number of techniques to detect and
resolve the conflict efficiently. The research presented in this
paper attempts to tackle the above issues in our framework for
Mobile Hanging Services (MHS). MHS supports policy
mechanisms by having and publishing policy software
components as Web services. We also propose several techniques
for conflict detection and resolution in our pervasive system. We
then compare these techniques by considering several aspects of
the system such as:
a. System performance - how long it takes to detect or resolve

the conflict. The shorter time it takes to detect or resolve the
conflict, the faster it is to respond to the user’s request
(hence, minimizing the user wait time).

b. Implementation - how easy it is to implement such
techniques.

c. Accuracy - how often we need to update the conflict
detection or resolution result.

d. Does it accommodate all conflicts that may happen in the
future?

The rest of this paper is organised as follows. In section 2, we
give an overview of the policies in our pervasive system
including several possible sources and types of conflicts. In
section 3, we describe several general techniques used for conflict
detection. In section 4, we discuss general strategies used to
resolve the conflict. In section 5, we present a case study: a
campus based mobile services system using policy (a MHS
application). In section 6, we discuss in detail each of the
proposed conflict detection and resolution techniques and
compare them. In section 7, we present related work. In section 8,
we draw overall conclusions and present future work.

2. Background
This section discusses a definition of policy, followed by an
overview of various possible sources of conflicts in pervasive
computing environments.

2.1 Definition of Policy
The purpose of the policy is to constrain the behaviours of entities
in particular contexts and to ensure that their behaviours (actions
performed) are aligned with the rules of the system. A policy
language in a pervasive environment can be enriched by

 Copyright is held by the author/owner(s).
 WWW 2005, May 10--14, 2005, Chiba, Japan.

supporting various kinds of normative notions [3,12]. Three basic
deontic logic notions that we focus on are:
• Right (R) refers to a permission (positive authorization) that

is given to the entity to execute a specified action on the
service in the particular context.

• Obligation (O) is a duty that the entity must perform in a
given context.

• Prohibition (P) is a negative authorization that does not
allow the entity to perform the action as requested in the
given context.

2.2 Policy Conflict Sources and Types
In the pervasive MHS system, we may assign different policy
specifications to each entity depending on the role that s/he has.
Assigning different policy specifications to each user in the
system is a way to limit and control the user’s behaviours.
However, this could also lead to a conflict as the conflict arises
due to some differences including:

(a) Policy space modality conflict: conflict occurs as the
space (i.e., can be the system space or room space) assigns
different specifications on what an entity can do with the service
i.e., one allows the user to start the service (i.e., a system) and
another prohibits the user from starting the service (i.e., a room)
or a room obligates to start a service and at the same time, the user
is obligated by the system to stop the service.

These differences lead to a potential or actual conflict that
needs to be resolved. In our definition, a potential conflict refers
to a conflict that has not happened yet at the time the system
detects that such a conflict can happen, as the context or condition
for the conflict to occur has not been met. The potential conflict
can be further classified into two different types: possible
potential conflict and definite potential conflict.

The possible potential conflict is a conflict where the
possibility of the occurrence is less than the definite potential
conflict. This conflict may still not happen even in the right user
contexts of location and time. For example, a system allows the
user to “start any service” but the room only allows the user to
“start media player service”. “Any” here means all services which
are available for the user in that context. It includes the media
player service and some other services in the context. The conflict
only occurs if the user starts any service other than the media
player service. The conflict will not occur if the user starts the
media player service. Hence, we categorize this conflict as a
potential conflict with the type possible. The definite potential
conflict, on the other hand, refers to a conflict that will definitely
occur if the user is in the right context. For example, a system
allows the user to “start media player service” but the room
prohibits the user from “starting this service”. Once the user is in
the right context, this definite conflict will become an actual
conflict, as one allows the user and the other prohibits the user.

b) Role conflict: it occurs due to the differences in the
privilege that the entity has. For example, one user (with higher
privilege) can execute more types of services at any time and any
place compared to other users (with lower privilege) who can only
execute certain number of services at certain place and time. In
our system, the level of privilege is determined based on the level
of positions or roles that the user has. As each entity has a
different level of privileges, a user with higher level of role may
override the execution of the shared service that has been started
earlier by a user with lower role. This then leads to a conflict.

c) Entities conflict: it occurs if two or more users have
different policy specifications or intentions of what to perform on
the service that is running on the same shared resource device. For

example, one user wants to start a music service but another user
wants to stop this music service which is currently running on the
same target machine.

3. Policy Conflict Detection
In this section, we briefly describe goals of conflict detection,
followed by several strategies used to detect conflicts in a
pervasive computing environment.

3.1 Goals of Conflict Detection
The primary goal of detecting a conflict is to investigate several
possible sources of conflicts and types that may occur within the
system. Knowing that there is a potential conflict would allow the
system to accommodate the conflict resolution earlier. Hence, by
the time it occurs, the system is ready with the resolution result.
There are also several sub-goals of conflict detection:
a. to group the conflicts based on its type i.e., a possible

potential conflict or a definite potential conflict (see section
2.2). This is useful to decide on when to resolve the conflict.

b. to analyse the probability of the conflict occurrence (i.e.,
normally a possible potential conflict has lower possibility of
occurrence compared to a definite potential conflict).

c. to investigate the best technique for conflict detection based
on the sources and types of the conflict.

d. to predict the number of occurrences of the conflicts; hence,
we can assign the best technique to detect and resolve this
particular conflict.

e. to predict the probability of potential conflicts which will
become actual conflicts. This is useful to decide when to
resolve the conflict. For example, if we can predict that the
potential conflict never happens, the conflict resolution for
this type of conflict may not be necessary.

3.2 Conflict detection strategy
It is imperative to make a clear distinction on when and where

to perform the conflict analysis (conflict detection and resolution),
as it can be computationally intensive, time and resources
consuming. By analyzing several possible sources of conflicts that
may happen in pervasive environments, we propose two different
techniques to detect a conflict.
1. Static conflict detection

Static conflict detection aims to detect all types of potential
conflicts (possible or definite) which clearly could cause conflicts
from the policy specification. This static conflict detection is
performed offline on the client side or on the server side.
Performing the static conflict detection on the client side is less
desirable as it slows down the conflict detection process. This is
due to some constraints i.e., limited resources, power and
processing speed on the mobile device. The only advantage is the
conflict detection result is there on the mobile client side as the
user needs it (hence, it does not have to be transferred to the client
device). On the other hand, performing static conflict detection on
the server side has more advantages compared to the client side
i.e., the server (normally a desktop PC) has larger memory size
and faster processing speed, and so, can detect the conflict faster.
The result can then be pushed onto the mobile client when done.

With static conflict detection, we also need to decide on types
of conflicts that we need to detect i.e., whether we only want to
detect conflicts which are clearly specified in the policy
specification (predicted potential conflict) or we want to detect
some other conflicts which are not conflicts yet from the policy
specification, but they could lead to conflicts if one or more
entities are in the space at the right contexts (unpredicted
potential conflicts). To include all unpredicted potential conflicts

will certainly speed up the performance in responding to the
user’s requests (as it has detected all possible conflicts). The only
drawback is it may use up a lot of system resources (i.e., memory
and processing speed), as it has to detect the conflict based on all
possible combinations of entities, contexts and services that the
system has. Moreover, some of the conflict detection results may
never be used as the entities may never be in a context as
predicted (hence, the conflict may never occur).

Another issue that needs to be taken into consideration is to
decide on how often the cached detection result needs to be
updated (i.e., if we cache the conflict detection result for future re-
use). The detection results may be outdated as perhaps, there are
more users registering with the system or some users have
modified their policy specifications. To address this issue, several
approaches can be incorporated: (a) frequently (i.e., every 5
minutes), (b) periodically (i.e., every Monday) (c) only when the
system detects that the user has modified the policy specification
or when there is a new user registered with the system.
2. Dynamic conflict detection
Unlike static conflict detection, dynamic conflict detection is
performed at run time by dynamically detecting all unpredicted
potential conflicts between a number of entities in the given
contexts. As dynamic conflict detection is performed some time at
run time, the system needs to decide on when to trigger this
detection module. We propose five different strategies on when to
dynamically detect a conflict.
a. Reactive model
As it is reactive, this dynamic conflict detection is only triggered
when there is an explicit request from users i.e., when the user
clicks on any action name (start, stop, pause, resume, or submit)
from a mobile device to request an action on the service. The
detection is done as soon as the system detects that there is a
request from the user. If there is a request, the system then collects
all the entities’ context information and reactively detects the
conflicts between those entities in the given context.

This technique is best in the situation with only a few requests
from an entity. It takes some time to detect conflicts if there are
many requests from the entities. In addition, the detection is only
limited to the current location, day, and time, which are related to
the requested action and only between the requested user against
all other users in the room (not all users in the system).
b. Proactive model

Proactive conflict detection tends to implicitly and
automatically detect the conflict by sensing the user’s current
context i.e., when the user moves in or out of the room. This
technique is best used in the situation where performance is
paramount. The proactive conflict detection detects all the
potential conflicts that may occur in the given context and may
cache the result for future re-use. The proactive technique is also
considered as pessimistic conflict detection. We are pessimistic
that there will be a conflict between those entities in the room, as
each entity may try to perform different actions for the same
shared service. Hence, the system proactively catches all potential
conflicts that may occur in the given context. In addition, this
technique is considered useful only if the participating entities
(i.e., users) are still in the same context where the conflict is
predicted to happen. If one of these entities has moved to a
different location, the predicted potential conflict may no longer
be an actual conflict (as this type of conflict only occurs if two or
more entities which have different specifications on the same
target service are still in the same space).

Moreover, there are two issues that need to be addressed in
order to increase the accuracy of dynamic conflict detection result:

• What happens if in the middle of process of detecting a
conflict, another user comes in? Will the system continue with the
detection process? If it continues, it then has to re-compute the
result after some time, as it is already outdated.
• What happens if the user has left the space and this user is
already in the conflict detection list result? Do we need to remove
him/her from the list? What happens if s/he comes back to the
space after some time? We need to know when to remove users
from the list. Also, there is a problem, if we keep all the results in
the memory, as the server may be overloaded with outdated
results and perhaps, there is no longer a conflict between users (as
one of the conflicted users is no longer in the space).
c. A combination of reactive and proactive models

A combination of these techniques is useful when we want
the system to act proactively in a certain situation i.e., in an
examination room, a seminar room and in a certain place, it acts
reactively i.e., in the individual room. This is mainly because, at a
public place, there are many users coming in and out of the place,
therefore, it is useful to employ a proactive conflict detection
technique here. At the individual room, usually, only the owner
with some other visitors that may not perform many activities,
hence, we detect the conflict reactively. A decision to choose
whether to perform a proactive or reactive behavior can be based
on: (i) the location i.e., proactive in public place and reactive in
the individual place (i.e., a user’s office). (ii) the day and time
i.e., on Monday at any place, proactively detects the conflict,
because, it may be a busy day and many students come to the
University or at the shopping centre, there may be a lot of visitors
visiting the mall, but, other days, we detect the conflict reactively.
(iii) the number of users in the location. For example, if the
system detects there are more than five users in the location, a
proactive behaviour is used. However, if there are less than five
users, the system then detects the conflict reactively.
d. Predictive model
 Predictive model detects the conflict based on the user’s
history file. By analyzing the user’s history file, the system can
predict the user’s movement and the person that the user is going
to meet. For example, from the history file, user A is always going
to room B and meeting user B on Wednesday at 12PM. Based on
this information, the system may want to compute the conflict
detection proactively between these users (user A and B) at room
B. This technique is considered useful only if the system
prediction is correct (i.e., the user always does the same activity as
listed in the history file). However, if the user’s movement and
activity are not anticipated by the system (i.e., the user is moving
to a different room and meeting different people), there will be a
delay in responding to the user’s request. This is due to the
conflict detection result which has been previously computed is
irrelevant to the user’s current context. Hence, the system will
need to re-detect the conflict based on the user’s current location,
day, time and people that s/he is meeting.

4. Policy Conflict Resolution
When there is a potential or actual conflict detected by a conflict
detection module, it becomes necessary to resolve the conflict.
Several aspects discussed in this section are the goals of the
conflict resolution, when and how to resolve conflicts, as well as
when to update the conflict resolution result.

4.1 Goals of Conflict Resolution
The primary purpose of conflict resolution is to resolve all types
of conflicts in minimum amount of time, and so, minimizes the
user wait time. Several sub-goals of conflict resolution are:

a. to investigate several techniques on how to resolve the
conflict based on its sources and types.

b. to decide when it is the best time to resolve the potential or
actual conflicts.

c. to monitor whether the conflict resolution result satisfies
both of the conflicted entities. If the conflict resolution result
does not satisfy the conflicted entities, we need to think of
the best solution that will benefit both of these entities i.e.,
allowing the conflicted entities to challenge the system and
resolving the conflict by taking into account the user’s
current situations.

d. to decide on how often the conflict resolution module needs
to be re-computed.

e. to analyse whether the conflict resolution result is useful
(i.e., the conflict resolution result will be used at run time, as
the predicted potential conflict becomes an actual conflict).

4.2 Techniques to resolve the conflict
We propose several conflict resolution techniques to handle
possible conflicts that may occur in pervasive systems. Some
additional resolution techniques or further refinements of each of
the following resolution techniques are required depending on the
target pervasive domain. This paper discusses only the major
conflict resolution techniques which can be used across pervasive
systems that employ and share the basic pervasive concepts as
discussed earlier in introduction. These resolution techniques are
(a) Role hierarchy overrides policy. The role hierarchy overrides
policy is used if the conflict occurs between users who have
different roles, in which a user with a higher role can override the
policy that belongs to the user with a lower level of role. (b)
Space holds precedence over visitor. This technique is used if a
conflict occurs between a user and a room. For example, the
system permits a user to start a service at room A, but room A
prohibits the user from starting this service. If there is a conflict,
the room (representing its owner) always wins, regardless of the
levels of role of the visitor. (c) Obligation holds precedence over
rights. This technique is used if a conflict occurs between an
obligation and the right. An obligation always wins over the right.
For example, a user is permitted by the system to start a media
player service, but a room obligates the user to stop this service.

4.3 When to resolve the conflict
We propose two strategies on when to resolve the conflict in
pervasive computing environments.
a. At the time when a conflict is detected
This is a pessimistic conflict resolution technique. We are
pessimistic that some or all detected potential conflicts will
become actual conflicts. Hence, the system resolves all conflicts
immediately as soon as the system detects them. Depending on the
conflict detection technique that the system employs, with this
technique, the conflict can be resolved offline (i.e., when users are
not in the space yet) or at run time. For example, if we employ a
static conflict detection technique, the conflict resolution of all
potential conflicts is done oflline, as soon as they are detected.
However, if the system employs a dynamic conflict detection (i.e.,
a reactive technique), the conflict resolution is only performed at
run time, as the conflict is only detected at run time.

In addition, with this technique, we can further choose which
conflicts to resolve based on its type such as: (i) Resolve only a
definite potential conflict: The technique here resolves only a
definite potential conflict, as we are sure that it will become an
actual conflict once the entities are in the right contexts for the
conflict to happen and resolve the possible potential conflict only

when the contexts for the conflict to happen are met. This
technique does not anticipate all resolution results. Hence, it may
experience a delay in responding to the user’s request, especially
if the possible potential conflict happens to be an actual conflict at
run time. (ii) Resolve both possible and definite potential
conflicts. The system can also choose to resolve both types of
conflicts as soon as they are detected. These potential conflicts are
solved, though they have not happened yet to be actual conflicts.
This technique would minimize the user wait time, as it has
resolved all predicted conflicts prior to become actual conflicts.
However, if none of the predicted conflicts become actual
conflicts, it may waste the system resources.
b. At the time when the potential conflict becomes an actual

conflict (normally at run time)
This is an optimistic conflict resolution technique. We resolve the
potential conflicts just when they become actual conflicts. We do
not resolve these potential conflicts, just when we detect them, as
we are optimistic that the conflicts that we have detected may or
may not become actual conflicts. This is due to several factors
such as the user may not be in the context where the conflict is
detected to happen or the user does not execute the service in the
specific context (i.e., specific location, day and time) where a
conflict can arise (although, it is clearly a conflict from the policy
specification). For example, the user is allowed by the system to
start a media player service at any day, however, the room only
allows the user to start this service on Monday only. We are
optimistic that the conflict here will not happen, unless the user
starts the service on any other days (other than Monday).

4.4 How often to update the conflict
resolution result

It also would be good to cache the conflict resolution result
for future re-use. The question here again, we need to decide on
how often the cached result needs to be updated. One simple
solution is to update each time the conflict detection module is re-
computed (when the cached conflict detection result is updated).

5. Case Study
This section discusses in detail on how policy specification,
conflict detection and resolution strategies are used in pervasive
computing environments. One sample prototype that we have
developed is a campus based policy system within MHS.

5.1 MHS on Campus
As discussed earlier in introduction, our definition of a pervasive
computing environment consists of entities, spaces, services,
mobile devices, workstations and contexts. The details of each of
these concepts depend on the target pervasive system and its
environment. For example, an entity in a campus domain refers to
a student, a lecturer and a head of school, however, in a shopping
mall domain, it could mean something different i.e., a customer
and a seller. In this section, we mainly focus on the pervasive
concepts and policy specifications in a campus domain. We
describe each of these concepts as follows:
a. Entities. Entities here refer to mobile users which are always
on the move (move from one geographical space to another).
Three types of entities in our system are a student, a lecturer, and
a head of school. By default, our system imposes certain rights
(denoted by sRe), obligations (sOe) and prohibitions (sPe) to each
of these entities depending on the role that the entity has and the
physical space that the entity is visiting. In addition, each of the
entities in the system can also impose a certain obligation to the

system (eOs), created via a user policy application that we have.
In summary, each of the entities in the system will have:

sRei, sOei, sPei and eiOs
Note: i denotes a specific user i.e., user i.
b. Spaces. Spaces here can be a physical room that is
represented by a geographical location e.g., room B558. The room
entity has its own policy that can be used to restrict the visitors’
behaviors or actions on mobile services in the room. Generally,
the room’s policy is created by the owner of the room. The public
place in our system (e.g., tea room, corridor, or seminar room) is
owned by the system. Hence, the public policy is created by the
system (i.e., a developer/system administrator).
c. Services. A service refers to a software tool that is
enlisted as users need it and it helps users to accomplish the tasks
by downloading the service application or mobile code onto a
target machine (i.e., a mobile device or a desktop PC machine).
We have two types of services in our system: a shared resource
service e.g., Mobile VNC [10] and Mobile Media Player
applications [11], in which the service is downloaded onto a
shared desktop machine and it can be controlled and accessed by
all legitimate users from their mobile devices in that specific
location. A non-shared resource service, on the other hand, is a
service that is downloaded to and compiled in the user’s mobile
device (e.g., a Mobile Pocket Pad Service [9] and is only
accessible by that user).
d. Mobile Devices i.e., handheld devices which display service
interface and can execute service processes.
e. Workstations. It can be a normal desktop PC where services
can be executed (run) or a server that hosts all context-aware and
policy related components.
f. Contexts. Contexts are conditions that must be met before
a list of services can be displayed on the mobile device or before
the user’s request to perform an action is approved. In our work,
contexts consist of a user’s identity, location, day and time.

5.1.1 Architectural Design
Our policy software components handle the user’s request to

perform some actions on the service. The request can be start,
stop, pause and resume the service. This section provides a high
level architecture and description of these parts of our mobile
policy based framework (see Figure 1 below).

Figure 1: High Level Architecture of MHS Policy Framework

The details of each of our context-aware software components
have been discussed in [9]. We now describe each of our policy
software components: (a) Mobile client query manager (on the
mobile client side). It handles the request from the user and sends
this request to the policy manager. (b) Policy manager (on the
server side). Policy manager manages the interaction between the
mobile client and the server, in which the mobile client sends a
request to the policy manager and the policy manager computes
the request and returns the result back to the client. The result is
either allowing or disallowing the mobile user to perform the

action. (c) Policy interpreter (on the server side). The policy
interpreter component specifies a set of rights, prohibitions and
obligations which are useful for the user in the particular contexts.
(d) Policy conflict detection module. The policy conflict
detection detects lists of potential or actual conflicts that may
occur between entities in the system. (e) Policy conflict
resolution module. The policy conflict resolution module handles
conflicts between entities in the system.

5.1.2 Prototype Implementation Details
We present our prototype implementation where we have

implemented some of the conflict detection and resolution
techniques discussed in previous sections. Our MHS system
consists of users with mobile devices who are always on the
move, a web service that determines the user’s current location,
and policy software components which handle a user’s request to
perform an action on a particular service.

As for conflict detection, our system employs a combination
of static and dynamic conflict detections. Static conflict detection
is performed offline on the server side and statically checks the
entity’s policy specification to detect the policy space modality
conflicts (i.e., between a policy specification from a system to the
user and from a room to the user). The policy space modality
conflict may occur here, as the system may permit the user to
“start the service”, but the room prohibits the user.

We also cache this static conflict detection result for future re-
use. When the system detects there is a new user added or there is
a user modified his/her policy, our static conflict detection module
then updates the cached result. Our dynamic conflict detection
further detects the conflict at run time (i.e., a conflict between
users). We only detect conflicts between users at run time, as in
pervasive systems, the user is always on the move and the
movement is unpredictable; hence, we do not know where the
user is going to and whom s/he is meeting. Therefore, it would be
good to detect this type of conflict dynamically at run time (just
when the users are already in the space).

Before further checking for conflicts between users, dynamic
conflict detection first detects the type of the service that a user
would like to perform. If it is a shared resource service, then the
dynamic conflict detection needs to check whether there is a
conflict between one user’s policy against another user’s policy.
Checking between users’ policies are required for shared services
only, as the service is running on the shared machine that allows
any legitimate user to control the execution of the service from
his/her mobile device. If it is a non-shared resource service, the
dynamic conflict detection does not need to further check the
conflict between users as the non-shared resource service does not
involve other users (only between a user and the room). As we
have already detected the conflict between a user and a room
statically, the dynamic conflict detection for the non-shared
service then just reads from the cached detection file.

Once the checking on the type of the service is done, the
dynamic conflict detection then needs to read and process the
cached result to find out whether the user is permitted by the
system to perform the specified action. If so, then it checks
whether the user is permitted to perform the action by the room. If
the user is permitted, the system then continues to perform
dynamic checking whether there is a conflict between users if the
specified action is performed. We use a combination of static and
dynamic conflict detections in order to speed up the conflict
analysis and processing time. Hence, it will reduce the user wait
time. Employing only a single conflict detection strategy i.e., only
a static or dynamic conflict detection would slow down the system

performance. In addition, our system also resolves all potential
conflicts as soon as they are detected. Resolving the conflict only
when it becomes an actual conflict will result in delay in
responding to the user’s request.

It would be preferably to detect and resolve the conflict
statically (offline). However, due to undiscovered all potential
conflicts at this time, as some of the conflicts may only occur if a
number of entities are in the contexts, run time conflict detection
and resolution are also necessary. However, there is still a
challenge here in deciding on what types of conflicts should be
handled statically or dynamically when considering the aspects of
system resources and performance. For example, detecting and
resolving all conflicts statically can certainly improve the system
performance (as the system has anticipated all potential conflicts
with their resolution results). However, detecting and resolving all
conflicts statically also has a drawback, in which, it may use up a
lot of system resources and may waste the resources, especially if
the predicted conflicts never become actual conflicts (the
detection and resolution results are never used). This area is still
an ongoing work that needs to be further explored in the future.

5.1.3 Performance Results
 The framework has given promising results in obtaining a list
of policies which are useful to the user, detecting and resolving
the conflict both offline and at run time. The evaluation starts
from the Web service call to get a user’s policy up to resolving the
conflict and deciding whether the user is permitted to perform the
action on the specified service. The evaluation aspects of our
system are described in Figure 2 below.

Figure 2: Evaluation aspects

 In our evaluation and testing, results were collected for five
times of requesting the system to execute the same action with the
same service name at the same contexts i.e., a mobile user
requests to start a media player service with a particular song
name on Saturday, between 12-2PM at B558 room. We measure
each of the evaluation aspects above for five times of policy
execution, assuming the number of policies in the location are the
same throughout the execution i.e., two policies exist in the
location – a user’s policy and a room’s policy. There is also one
conflict found between a user and a room, in which a room does
not allow a user to perform such a service on Saturday, between
12-2PM at B558 room.

The evaluation results are illustrated in Figure 3 below. These
figures were obtained on an iPAQ emulator that is running on the
laptop using wireless Wifi network for internet connection. From
Figure 3, we can see that the time required to call the Web
service: send a query from a client to policy manager, retrieve
context information, retrieve relevant and parse policy document,
read from the cached results and send back result to the mobile

client manager decreases for the 2nd, 3rd, 4th, and 5th times of web
service calling. The first call of the Web service takes longer time,
as the system needs to compile and download the local host Web
service proxy object to the device.

Figure 3: Experimental results

The proxy object allows the Web service to be treated like other
.NET classes. The 2nd and subsequent calls to the web service will
have much shorter times as it reuses the service proxy object
already on the local mobile device. The amount of time required
to perform static conflict detection and resolution at compile time
is 3.18s (=1.17+0.48+1.05+0.48). Here, the static conflict
detection component first detects whether the system gives a user
permission to execute the service. If the system permits the user,
we then continue checking with the room’s policy (i.e., whether
the room permits the user to execute the service). Here is the
formula to detect and resolve the conflict statically.
Tstatic conflict analysis(s) =
Tdetect a conflict statically + Tcache the conflict detection result + Tproactively resolve the

conflict + Tcache the conflict resolution result
If there is a permission given by the room, we continue

checking it against other users’ policies or a room’s obligation
(conflict detection at run time). Here, it takes 0.78s to detect a
conflict at run time. We found one conflict between a user and a
room’s obligation. The dynamic conflict detection module here
only checks the conflict against a room’s obligation, as we only
have one user in the location. Checking against a room’s
obligation is necessary because the room also imposes a certain
duty to the user. Hence, we want to ensure that there is no conflict
between the user’s action and the room’s obligation.

This static and dynamic conflict detection results are also
cached on the server for future re-use. The second and subsequent
policy execution of the same action, service and contexts will just
read from the cached file (assuming there is no user moving in or
out of a place). Therefore, the dynamic conflict detection time for
subsequent policy executions here is zero. Having static conflict
detection would help to minimize the user wait time by detecting
all potential conflicts between a user and room offline. Detecting
such conflict at run time would consume lots of time. Hence, it is
recommended to detect it statically, although some of the conflict
detection results may not be useful as some of the users may not
be in the context as predicted.

As we employ a proactive conflict resolution strategy
(resolving conflicts as soon as the system detects them) for both
static and dynamic conflict detection, the system takes shorter
time to resolve some other detected dynamic conflicts at run time.
It takes 0.33s to resolve the dynamic conflict for the first time a
service is called. Our system also caches the dynamic conflict
resolution result on the mobile device. Hence, the second and
subsequent requests of the conflict resolution for the same conflict
that has the same action name, target service and contexts would
just read from the cached file. In addition, the time it takes to

cache the results (i.e., conflict detection and resolution results) at
run time is 0.38s (for the first time requesting the service). As
there is no conflict occurring for subsequent requests, there is no
result that needs to be cached (0s time to cache results for
subsequent requests). Finally, we present a formula to calculate
the time required to request to perform an action on a shared or
non-shared resource service till the system responds back to the
user. This formula is illustrated as follows:
Tuser wait time(s) =
Tsend a query from a mobile client to a policy manager + Tretrieve context information +
Tretrieve and parse relevant policy documents + Tread conflict results from a cached file (both

detection and resolution) + Tdetect a conflict dynamically (if any) + Tresolve a conflict

dynamically (if any) + Tcache results (if any) + Tsend back result to the mobile client manager
 Based on the formula above, we can conclude that the worst-
case scenario for the user wait time is the first time of requesting
the service, which takes 10.61s (= 0.68 + 3.5 + 2.38 + 1.88+ 0.78
+ 0.33 + 0.38 + 0.68). The 3.5s is the total time to retrieve context
information. It takes 3s to get a user’s current location using
Ekahau location tracking system via a Web service call and 0.5s
to retrieve a user identity, current day, and time. The 3s Ekahau
delay can be eliminated, if we assume the user is still in the same
location (for the first and subsequent requests), and so, the system
does not need to re-detect the user’s current location.

The best case scenario i.e., the minimum time delay to get a
response back from the policy manager is in any execution which
is not the first. In such a case, the delay time is 6.26s (=0.55 +2.5
+ 1.28 +1.38 + 0 + 0 + 0 + 0.55) – assuming the location context
for subsequent requests are still the same. The delay time to detect
subsequent requests decrease to 6.26s, because, the Web service
calls in subsequent requests, re-use the local proxy object, which
has been downloaded and compiled previously and also the
subsequent requests do not require to perform dynamic conflict
detection and resolution (only read from the cached file) as the
conflict is the same as in the first run.

6. Discussion
We observe that each of the proposed conflict detection and
resolution techniques has its own advantages and disadvantages,
such as: 1) Static conflict detection: it accommodates all potential
conflicts that may happen in the future (hence, it will speed up the
performance in responding to the user’s requests), is simple to
develop and relatively easy to maintain. However, this technique
only suits if the number of entities in the system is not too many
and policy specification and number of entities in the system are
relatively static. More entities mean more policy specifications
which mean more policies to compare. Allowing entities to
modify his/her policy specification at run time or having a new
user registered, requires the system to update the static conflict
detection result which has been previously computed. Hence, it
will use up a lot of resources and may be quite tedious, as it has to
re-detect the conflict between all entities in the system. Moreover,
some of the conflict detection results may never be used as the
entities may never be in the context as they are predicted - hence,
the predicted potential conflict never becomes an actual conflict.

2) Reactive based Dynamic Conflict Detection: this technique
takes shorter time to detect all potential conflicts in the given
context as it only checks the conflict between the requester and
number of users in the room. It is also simple to develop and
maintain and suits any situation (i.e., static/dynamic policy
specifications or entities) as the conflict detection is triggered
reactively i.e., when there is a request from a user to perform an
action on the service. The main drawbacks of this technique are
long delays in detecting and resolving the conflict between

entities, as the system only starts to detect and resolve the conflict
when there is a request from the user. Moreover, detecting the
conflict based on the user’s request may not be a good idea as one
user may request (click on the action name) more than once in a
minute i.e., user A clicks on the start button twice and user B
clicks on the stop button three times, hence, the system needs to
execute the conflict detection for five times.

3) Proactive based Dynamic Conflict Detection: this technique
accommodates all potential conflicts in the given context (hence,
reduces the user wait time), use less system resources (memory
and CPU processing) compared to the static conflict detection
technique, as it only detects conflicts between entities which are
in the same context (not all entities in the system). It is also
considered easy to develop and suits for any situation with static
or dynamic policy specifications or entities. However, the system
maintenance can be challenging, as we need to know the best time
to update the conflict detection result (when to proactively detect
a conflict) i.e., when the system detects that there is a new user
moves in or out of the space, frequently every 5 seconds, or when
the system detects there are more than certain number of users in
the space such as more than two users in the room.

4) A combination of Reactive and Proactive based Dynamic
Conflict Detection: this is an ideal technique among all other
conflict detection techniques. It accommodates all potential
conflicts in the given space by using a combination of reactive
and proactive techniques. It can be proactive in some situations
and reactive in others, and so, can further reduce the system
resources (memory and CPU processing). It also suits in any
situation (with static or dynamic policy specification, entities,
services and contexts). This technique is also easy to implement.
The only issue here is we need to decide when and under which
situation a proactive or reactive behaviour should be performed.

5) Predictive based Dynamic Conflict Detection: this
technique is much more complex to develop and maintain and
does not accommodate the user’s unpredictability.

In addition, we found that the potential conflicts which are
detected at run time by using a reactive technique have higher
possibility to become actual conflicts compared to other
techniques (i.e., a proactive or predictive technique). This is
mainly because in reactive technique, the detection is only
performed when there is a request from a user and the detection is
looking for conflicts only for the current day, time and location
(hence, if there is a conflict found, the contexts for the conflict to
occur must have been met). On the other hand, a proactive
technique proactively detects all potential conflicts between users
although the contexts for the conflict to occur have not been met.

Moreover, for conflict resolution, the best technique is to have
a proactive conflict resolution strategy that immediately resolves
the conflicts as soon as the system detects them. This technique
anticipates all potential conflicts that may happen between entities
in the future. Hence, it improves the system performance and
certainly minimizes the user wait time. However, some of the
conflict resolution results may not be useful as some of the
detected potential conflicts may never happen at run time.

7. Related Work
This section provides a brief overview about the research work
that has been done to date that also concentrates on exploring
different strategies used to detect and resolve conflicts in policy
systems. Some earlier policy work in pervasive systems are Rei
[3], Spatial Policies [4] and Policy for Agent Mobility work [8].
In addition, only few work done to date explores different
strategies of policy conflict detection and resolution. A notable

project is a work done in [5,6,7] that explores different techniques
used for conflict detection and resolution in enterprise and
management policy based systems. Our conflict detection and
resolution techniques to some extent have similar philosophy to
this project. The only difference is the target environment, we
focus on pervasive systems which have services, entities, contexts,
mobile devices, workstations and spaces.

As our system is designed for pervasive computing
environments, in which users are always on the move and often
require immediate response from the system of their requests, the
sources and types of conflicts found in our system are also
different from the one in [5,6,7]. This then leads to some
differences in designing and implementing the conflict detection
and resolution techniques. For example, we have conflicts on
permissions, obligations and prohibitions between mobile users,
as well as between a mobile user and the space. In contrast to
[5,6,7], they do not take into account the mobility of users and the
notions of services, and so, the conflicts found in the system are
mostly between non-mobile users who are trying to access system
or a user’s resources information. In addition, our pervasive
system tends to focus more on the system performance that aims
to deliver the service, detecting and resolving conflicts in
minimum amount of time.

8. Conclusions and Future Work
This paper has presented a design, model and architecture of a

policy based framework in pervasive environments. We have
proposed several techniques or strategies for conflict detection
and resolution. We also have implemented and tested our policy
system with some of conflict detection and resolution strategies
on the mobile emulator that runs on an 802.11b wireless network.
While implementing some of the conflict detection and resolution
strategies, we discovered that each of the proposed strategies both
for conflict detection and resolution offers some advantages and
disadvantages. The suitability of each strategy is dependent on the
system situations (i.e., number of entities, physical rooms,
contexts, types of services and target services that the system
employs), the system goals (i.e., it aims for high performance, so
requires a comprehensive and more complex conflict detection
(i.e., a predictive model) and resolution modules), and types of
conflicts that the system attempts to detect or resolve (i.e., we tend
to detect all policy space modality conflicts statically).

Moreover, we have experienced that using a combination of
static and dynamic conflict detection helps to improve the system
performance (minimize users wait time), rather than only using a
single detection technique (i.e., static only or dynamic only). We
also found that resolving all potential conflicts (possible or
definite conflicts), as soon as they are detected, would certainly
reduce the delay in responding to the user’s request, and so
improve system performance.

A number of aspects of future work that need to be further
analysed, explored and developed are: a) Continue working on
proactive and predictive conflict detection strategies. b) Allowing
users to modify their policy specifications dynamically at run
time. c) Apply our policy concepts (i.e., designs, conflict and
detection and resolution strategies) in different pervasive
environments or domains i.e., a museum gallery, shopping mall,
airport. d) Monitor the probability of potential conflict occurrence

e) study the nature and complexity of each conflict found in
pervasive systems, also finding out how much of memory, CPU
cycles required to detect and resolve conflicts both statically and
at run time.

9. References
[1] Weiser, M., “The Computer for the 21st Century”,

Scientific American, 9 1991.
[2] Chen, G. and Kotz, D. (2000), “A Survey of Context-

Aware Mobile Computing Research”, Dartmouth
Computer Science, Technical Report TR2000-381.

[3] Kagal, L., Finin, T. and Joshi, A., “A Policy Language
for a Pervasive Computing Environment, Proc. of
IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, Italy, June 2003.

[4] Scott, D., Beresford, A. and Mycroft, A., “Spatial
Policies for Sentient Mobile Applications”, Proc. of
IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, Italy, June 2003.

[5] Dunlop, N., Indulska, J. and Raymond, K., “Dynamic
Policy Model for Large Evolving Enterprises”, Proc.
5th IEEE Enterprise Distributed Object Computing
Conference, Seattle, Sept 2001.

[6] Dunlop, N., Indulska, J. and Raymond, K., “Dynamic
Conflict Detection in Policy-Based Management
Systems”, Proc. 6th IEEE Enterprise Distributed
Object Computing Conference, Lausanne, Sept 2002

[7] Dunlop, N., Indulska, J. and Raymond, K., “Methods
for Conflict Resolution in Policy-Based Management
Systems”, Proc. 7th IEEE International Enterprise
Distributed Object Computing Conference, Brisbane,
Sept 2003, pp 98-109.

[8] Montanari, R., Lupu, E. and Stefanelli, C., “Policy-
based dynamic reconfiguration of mobile-code
applications”, IEEE Magazine, July 2004.

[9] Syukur, E., Cooney, D., Loke, S.W. and Stanski, P.,
“Hanging Services: An Investigation of Context-
Sensitivity and Mobile Code for Localised Services”,
Proc. of the IEEE International Conference on Mobile
Data Management, USA, Jan 2004, pp.62-73.

[10] Syukur, E., Loke, S.W. and Stanski, P., “The Mobile
Hanging Services Framework for Context-Aware
Applications: the Case of Context Aware VNC”, Proc.
WIS Workshop, Portugal, April 2004.

[11] Syukur, E., Loke, S.W. and Stanski, P., “A Policy
based framework for Context Aware Ubiquitous
Services”, Proc. of the Embedded Ubiquitous
Computing Conference, Japan, August 2004, LNCS,
vol. 3207, Springer-Verlag, pp.346-355, 2004.

[12] Mally, E. “The Basic Laws of Ought: Elements of the
Logic of Willing”, 1926.

