
Policy based access control for an RDF store

Pavan Reddivari
University of Maryland,

Baltimore County
Baltimore MD USA

pavan2@csee.umbc.edu

Tim Finin
University of Maryland,

Baltimore County
Baltimore MD USA

finin@csee.umbc.edu

Anupam Joshi
University of Maryland,

Baltimore County
Baltimore MD USA

joshi@csee.umbc.edu

ABSTRACT

Resource Description Format (RDF) stores have formed an essen-
tial part of many semantic web applications. Current RDF store
systems have primarily focused on efficiently storing and query-
ing large numbers of triples. Little attention has been given to
how triples would be updated and maintained or how access to
store can be controlled. In this paper we describe the motivation
for an RDF store with complete maintenance capabilities and
access control. We propose a policy based access control model
providing control over the various actions possible on an RDF
store. Finally, we discuss on how the Hypertext Transport Proto-
col (HTTP) and its extensions can be used to provide communica-
tion with the store.

General Terms
Management, Experimentation, Security.

Keywords
RDF Store, Access control, Policies, HTTP

1. INTRODUCTION

The Semantic Web is leading us to a world of information shar-
ing, by enabling distributed knowledge aggregation and creation.
Thus many semantic web applications require management of
large amounts of semantic data and there have been ample num-
ber of RDF store implementations, which are capable of storing
large number of RDF triples. We believe that for RDF store to be
more functional and widely deployed in applications they ought
to provide a mechanism to specify restrictions on creation, modi-
fication and browsing of the knowledge. Current implementations
of RDF stores such as Redland and Kowari are mostly focused on
the aspect of scalability and very rarely address the issue of secu-
rity and access control.

In this paper we will map out a set of actions which are re-
quired to completely manage a store, and describe a model of
access control to permit or prohibit these actions. In this model,
agents make requests to perform actions against the RDF store
and the decision whether or not to carry out the requested action
is governed by an explicit policy

Policies are defined by a collection of policy rules governing
whether the action is permitted or prohibited. Examples of ac-
tions include inserting a set of triples into the store, deleting a
triple, and querying whether or not a triple is in the store. The
conditions on a policy rule are a Boolean combination of con-
straints on the agent requesting the action, the type of action re-

quested, the history of previous actions, the contents of the store,
and the possible effect on the store and its model.
Informal examples illustrating the range of policy rules we would
like to support include the following.

• Only agents assigned to an editor role are allowed to insert
or delete triples.

• An agent can only delete triples it previously inserted.

• An agent is only allowed to 'add properties' to classes it in-
troduced.

• No agent may see any values of a ‘social security number’
property.

• No agent may insert a triple that allows any agent to infer a
patient’s ‘HIV status’.

• An agent may modify any data about itself.

• An agent may not add an instance of a foaf:Person without
providing a foaf:name property and either a fof:mbox or
foaf:mbox_sha1sum property.

In the remainder of this paper we describe our preliminary design
for RAP, a simple RDF access policy framework. An initial pro-
totype, implemented using Jena [11], is under construction at the
time of this writing.

2. RDF Graph

In this section we review the RDF model [8,9,10] and identify a
set of primitive actions that can be performed on a RDF graph.
An RDF graph is composed of three types of node, a RDF URI
references node (N), a Blank node (B) and a RDF literal Node
(L). The edges (E) in the graph are directional and each edge also
is associated with a URI [1]. The triple in a RDF graph can be
described as (subject, predicate, object) ∈ (N ∪ B) × E × (N ∪
B ∪ L).

The basic primitive manipulations on this graph can be per-
formed by one of the following ways:

1. Add a triple (subject, predicate, object) to graph such that
both subject and object node did not previously exist in the
graph prior to this addition. This leads to addition of two
new nodes and an edge to the graph.

2. Add a triple (subject, predicate, object) to graph such that ei-
ther subject or object node did not exist in the graph prior to
this addition. This leads addition of one new node and an
edge to the graph.

3. Add a triple (subject, predicate, object) to graph such that
both subject and object node exist in the graph prior to this
addition. This leads addition of an edge to the graph.

4. Delete a triple (subject, predicate, object) from the graph.
This will lead to the predicate edge being removed from the
graph and the subject and object nodes may be removed or
not, depending on whether they are part of any other triple or
not.

In addition, we will introduce and make use of several compound
actions and indirect actions. Compound actions include the action
of updating or replacing one triple with another, the action of
inserting a set of triples, and the action of deleting a set of triples.
Indirect actions cover the introduction or removal of a triple in the
model through the addition or deletion of separate tripe into the
explicit store.

3. RDF store Actions

We need to identify the set of actions which are needed to main-
tain an RDF store. The access control policies will control per-
mission and prohibition to these actions. Maintaining RDF store
involves four basics actions: Adding, Deleting, Updating and
Searching for triples.

3.1 Additions to the store

These actions allow agents to add new information to the RDF
stores.

• insert(A, T): Agent A directly inserts triple T into the graph.
This action is used by the Agent to add minimal information
into the store, such as ‘foaf:Person is a subclass of
foaf:Mammal.

• insertModel(A, T): Agent A insertModels triple T If Agent
A performed Insert(A, T1) and the inserting of T1 enables
the store to infer that triple T is in the model. This action
leads to indirect addition of knowledge by the user, such as
after adding the triple foaf:Person is a subclass of
foaf:Mammal, addition of triple X Instance of foaf:Person
leads to indirect addition of X rdf:type foaf:Mammal. Con-
straints on this action are useful in preventing an agent from
adding information indirectly.

• insertSet(A, {Tc}): Agent A insertSets a set of triples {Tc}
if Agent A inserts all the triples in {Tc} into the store to-
gether. It is possible that Agent A is not allowed to add the
triples in set {Tc} individually. This action can be used to
ensure that the agent always inserts a set of triples which are
related, for instance an agent may not add an instance of a
foaf:Person without providing a foaf:name property and ei-
ther a fof:mbox or foaf:mbox_sha1sum property .

3.2 Deletions from the store

These actions allow Agents to delete information from the stores

• remove(A, T): Agent A directly removes triple T from the
graph. This Action would be used by the Agent to remove
minimal information from the store, such as ?X
emp:WorksFor of foaf:CompanyX.

• removeModel(A,T): Agent A removeModels triple T If
Agent A performs Remove(A,T1) and the store cannot in-
fer triple T after the removal of T1.

• removeSet(A, {Tc}): Agent A removeSets a set of triples
{Tc} If Agent A removes all the triples in {Tc} into the store
together. It is possible that agent A is not allowed to remove
the triples in set {Tc} individually. This action is useful
when you do not want the agent to remove something unless
it is removing something else too. For instance you might
want to enforce a policy that unless you are deleting the en-
tire employee record, the social security number property
can not be removed.

3.3 Updates to the store

The update action provides a mechanism to update particular
triples in an RDF store. While this could me modeled as a com-
bination of a delete and an insert, it is convenient to have an up-
date that acts as a single transaction.

• update(A, T1, T2): Agent A directly replaces the triple T1
with the T2.

The update action is useful in cases when you want the user to
have the modification rights without the deletion right as in the
case where you want your employees to be able to modify their
cell phone triple but not delete it.

3.4 Querying the store

Two actions are defined to describe an agent’s actions of querying
or searching an RDF store, covering both direct and indirect ac-
cess.

• see(A, T): Agent A sees triple T if it returned in the response
to one of A's queries to the store. This action will allow users
to browse the knowledge in the store.

• use(A, T): Agent A uses triple T if it is used by the store in
answering one of A's queries. This action is useful when you
want the user to be able to restrict what information is being
used to answer agent A’s query.

Both these actions are independent of each other, even though it
might appear that if Agent A can ‘see’ triple T, then Agent A can
‘use’ triple T but that is not the case. For example consider three
triples T1, T2 and T3. Let us assume that you can infer T3 only
by using T1 and T2. If Agent A can see T1 but cannot use it and
can use T2 but cannot see it, then Agent A will not be able to see
T3.

4. RDF Store Structure

An RDF store typically contains domain specific RDF schema
and RDF data. In the RAP framework, the RDF store is also used
to store the policy, represented in RDF, as well as other data and
meta-data needed for the policy rules.

The agents are also represented in RDF and are parts of the
domain specific knowledge. This representation of agents is used
in the policy specifications. The RDF store will also maintain
metadata about the triples in the store, like the creator of the triple

Figure 1: RDF Store

5. Policies

In the RAP framework, a policy is defined by a set of policy rules
that together specify if an agent’s specific requested action is
permitted or prohibited. Following Rei [3,4], a query about the
status of an agent’s specific action request might have any of four
outcomes: unknown, proven to be permitted, proven to be forbid-
den, and proven to be both permitted and forbidden.

Like Rei, RAP allows a policy to include meta-rules that can
be used to resolve the two problematic cases. The two kinds of
meta-rules that RAP allows are a default policy and a modality
preference. Together, these can be thought of as implicit policy
constraints.

The default policy, if specified, determines what happens in

the upper left quadrant of the decision matrix shown in Figure 2.
If default(permitted) is true then any actions not explicitly prohib-
ited are permitted. If default(prohibited) is true, than actions not
expressly permitted are prohibited. One of these two default set-
tings must be selected (typically default(prohibited)).

The modality preference specifies what to do when we are in
the lower right quadrant of the decision matrix. If pre-
fer(permitted) is true, then an action that can be proven to be both
permitted and prohibited is considered to be permitted. If pre-
fer(prohibited) is true, then prohibitions dominate permissions.
One of these two settings must be selected, typically the latter.

Explicit policy rules are used to permit or prohibit an agent
from performing a class of actions on the RDF store. The general
form of a policy rule is “Modality(Action(A,T)) :- Condition“
where Modality is one of permit or prohibit, Action names an
action, A identifies an agent and T identifies a triple. Condition is
a Boolean combination of simple constraints expressed as RDF
triples. The Triple (T) represented in the head of the policy has

the form (subject, predicate, object). Wild card character “?” can
be used in the triple pattern, a triple of the form (?, ?, ?) would
thus hold true for all the triples.

The Specification of the agent is defined by the agent repre-
sentation in the domain knowledge. This allows us to specify
policies using agent specific data.

The Condition for the policy can be specified either using the
metadata about the triples, the triple data itself, the Agent data or
by combing both Agent and triple data. Conditions can be com-
bined using Boolean AND (&), OR (|) operations.

Metadata specific conditions. The conditions in the policy can
be specified based on the metadata about the triples that the store
maintains. The kind of metadata to be collected is specific to the
store implementation.

permit(insert(A,(?,rdfs:type,C))) :- createdNode(A,C)
The above policy will allow Agents to create instances of

classes only if they had created those classes. The createdNode
(A, C) returns true if Agent A had created triple T which created
node C.

Triple specific conditions. The policies can also be specific to
the kind of triples being added.

prohibit(see(A,(?,emp:salary,?))
prohibit(see(A,(?,P,?))) :- rdfs:subProperty(P,emp:salary)

These policies will prohibit agents from seeing the value of the
emp:salary property, its sub properties or any equivalent property.
The rdfs:subProperty(P,emp:salary) returns True if predicate P is
defined to be an rdfs:subProperty of emp:salary.

Agent specific conditions. The attributes of the Agent could also
be used in the conditions of policy. The Agent’s representation
would be specific to the domain

permit(see(A,(?,emp:salary,?)):-
 existTriple(A,rdfs:type,emp:Auditor)

This policy will permit an Agent A to see anyone’s salary as long
as the Agent A is an auditor.

Agent and Triple specific conditions. The conditions in the pol-
icy could be tied to both the Agent attributes and the triple data
being acted upon.

permit(update(A,(P,emp:salary,?),(P,emp:salary,?)) :-
 existTriple(A,emp:Supervisor,P)

This policy will permit an Agent A to update salary of P as long
as A is the supervisor of P.

Custom Predicates. There are certain custom predicates which
might be helpful in writing access policies. Some of them have
already been discussed such as createdNode(A,C), rdfs:subProp-
erty(P,emp:salary). Another important predicate is schemaPredi-
cate(P) which would return true if P is a predicate used to define
RDF schema level information (e.g., rdfs:subClass, rdfs:domain,
etc).

prohibit((insert(A,(?,P,?))) :- schemaPredicate(P).
This policy will prevent Agent A form changing the schema of
the RDF store.

Delegation. As the Policies are represented in RDF and are
stored in RDF store, delegation of policies can be achieved by
creating Meta-polices, which are policies governing the policy
triples in the store.

? permitted

prohibited conflict

proven
permitted

proven
prohibited

no

no

yes

yes

? permitted

prohibited conflict

proven
permitted

proven
prohibited

no

no

yes

yes

Figure 2. In reasoning about an ac-
tion, four outcomes are possible. An
uncertain or conflicted outcome may
be resolved my meta-policy rules

RDF Store

Domain Specific Schema
and Instance

Policies

6. Architecture

We believe that the clients should be able to access the RDF store
like any other website on Web. To enable this we propose the use
of HTTP methods to access the RDF store.

Figure 3: Proposed Architecture

HTTP seemed the optimal choice because of its synergy with
current web and its wide acceptance.

We use the different HTTP Methods to access and modify
the RDF store, the body of these methods would contain the XML
serialized RDF.

The PUT Method is used for inserting the triples. All the tri-
ples that are to be inserted are sent in the body of the method. The
store treats all these triples as one set and if that is prohibited, it
then inserts each triple individually. All those triples which were
prohibited from inserting are returned in the response message.

The Delete Method is used for removing the triples. The
POST method would be used to query the store, the body of the
POST method will contain the SPARQL query.

7. Status and conclusions

We have described a policy based framework to provide access
and update control for an RDF store. Access and modifications
are governed by a policy expressed as a collection of policy rules.
Each rule defines a constraint on a class of actions that can de-
pend on the actor and the content of the triples involved. The
framework is currently being implemented using Jena [11].

8. REFERENCES

[1] Daniel Weitzner, Jim Hendler, Tim Berners-Lee, and
Dan Connolly, Creating a policy-aware web: Discre-
tionary, rule-based access for the World Wide Web. In
Elena Ferrari and Bhavani Thuraisingham, editors,
Web and Information Security,.

[2] Berners-Lee, T., Hendler, J., and Lassila, O. The Se-
mantic Web, Scientific American, May, 2001.

[3] Kagal, L., Paoucci, M., Srinivasan, N., Denker, G.,
Finin, T., and Sycara, K. (2004). Authorization and
Privacy for Semantic Web Services, IEEE Intelligent
Systems (Special Issue on Semantic Web Services),
July, 2004.

[4] Lalana Kagal (2004). A Policy-Based Approach to
Governing Autonomous Behavior in Distributed Envi-
ronments", Phd Thesis, Department of Computer Sci-
ence and Electrical Engineering, University of Mary-
land Baltimore County, September 2004.

[5] J.M. Bradshaw, et al., (2003). Representation and Rea-
soning for DAML-Based Policy and Domain Services
in KAoS and Nomads, Proceedings of the Conference
on Autonomous Agents and Multiagent Systems,
ACM Press, 2003.

[6] Claudio Gutierrez, Carlos Hurtado, and Alberto Men-
delzon. Formal aspects of querying RDF databases,
First VLDB Workshop on Semantic Web and Data-
bases, Berlin, Germany, September 7-8, 2003

[7] Berners-Lee, T., Fielding, R. and Frystyk, H. (1996).
“Hypertext Transfer Protocol” HTTP/1.0,” HTTP
Working Group, Feb. 1996.

[8] Ora Lassila and Ralph Swick, Working draft, W3C,
1998. Resource description framework (RDF) model
and syntax specification, Edit.

[9] Patrick Hayes, editor (2003). RDF Semantics, W3C
Working Draft, 23 January 2003.

[10] Dan Brickley, R.V. Guha. RDF Vocabulary Descrip-
tion Language 1.0: RDF Schema, W3C Working Draft
23 January 2003, Edit.

[11] McBride, B., Jena: a semantic Web toolkit, IEEE
Internet Computing, v6n6, pp. 55-59, November 2002.

Data/Policies
Access Protocol
(HTTP)

Policy
Engine RDF client RDF

Store

