
Policy Management and Web Services
Tim Gleason

Oracle Corporation
224 Strawbridge

Moorestown, NJ 08054

tim.gleason@oracle.com

Kevin Minder
Oracle Corporation

224 Strawbridge
Moorestown, NJ 08054

kevin.minder@oracle.com

Greg Pavlik
Oracle Corporation

224 Strawbridge
Moorestown, NJ 08054

greg.pavlik@oracle.com

ABSTRACT
We maintain that the representation syntax of specific Web
services policies is secondary to the general problem of policy
management in the Web services space. We outline a broad view
of the policy space in middleware systems, discuss emerging
solutions for the Web services environment, and explain critical
aspects of policy management that are required for taking Service
Oriented Architectures (SOAs) to the next level.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability

General Terms
Management, Standardization, Languages.

Keywords
Web services, Policy Framework, Policy Management, Policy
Enforcement.

1. Background
The term ‘Policy’ in distributed systems typically refers to an
externally consumable statement of system constraints,
capabilities or requirements that effect the interaction between a
consumer and a service. In some cases, the policy may simply
impact the decision to make use of a service; in other cases, the
policy may place constraints on the interaction itself. An example
of the former is a privacy policy, which, if deemed unacceptable,
will cause the consumer to forgo use of a service altogether. An
example of the latter is a policy that dictates that the service be
used in the context of a transaction. In this case, interactions with
the service must somehow be scoped as part of a larger unit of
work.
Systems that are designed primarily with human users as principal
actors in the consumer role tend to advertise policies that revolve
around the decision to use a service. The archetypical example of
such a system is the Web. Policies for the Web tend to fall into
several classes
Policies designed to encourage use
Users may consider it desirable for a Web site to maintain strict
rules about how information about site users is managed. For
example, users are more likely to use a Web site if they have
confidence the site owner will not distribute personal information
and will guarantee an adequate level of protection for credit card
data.

Though formal syntax is not always used to express policies of
this nature, the Platform for Privacy Preferences (P3P)
specification [1] describes a policy language for expressing the
privacy rules adhered to by an organization in machine readable

and human interpretable form. These policies generally assume a
level of trust; in the Web environment, this is typically gained
through a combination of certification by an independent authority
and perhaps more commonly by reputation.
Policies designed to constrain access
Rules surrounding the access rights for a Web server are an
example of this kind of policy. Typically, authentication and
authorization procedures are integrated with the Web site’s human
user interface; in this case, the communication mechanism is
relatively ad hoc and presented via HTML or similar markup
languages.
Policies about availability
These are policies that declare under what terms a service is
available. This information is typically communicated in quality
of service agreements, as maintenance notices, or general
information about a Web site. Examples of this kind of policy are
notices of administrative practices requiring downtime for
maintenance or payment requirements for use. These policy
statements are important mechanisms for managing user
expectations; in some cases, users may decide not to use a site
based on conflicting availability requirements. Availability may
apply not only to network presence of the service, but also to
secondary business functions. For example, a Web site may be
available on a 24X7 basis but may not have order processing
available on weekends. Policies dealing with availability are also
typically expressed through markup and interpreted by users.

These policy categories are not mutually exclusive. For example,
a Web site may have policies that are intended to encourage the
use of a site by a restricted class of users. The salient feature of
Web policies is that they tend to be heavily oriented toward direct
consumption by human users, assuming that users will find the
policies and interpret them satisfactorily. In many cases, the
policies are expressed in written statements on Web sites. Policies
for Web sites tend to apply to the broad aspects of the site, rather
than individual resources. For example, a certain portion of a Web
site may require payment for use. More specialized services that
provide access to copyrighted digital assets often place constraints
on classes of resources (for example, you must pay .99 USD to
download a song from Apple’s popular iTunes Web site).

Distributed systems that focus on machine-to-machine
interoperability have traditionally provided policies reflecting
low-level constructs familiar to programmers that build such
systems. Taking CORBA [2] as a representative example, policies
are typically based on local configuration that is in turn tied to
specific object references exported into the user environment.
Policies for system level functions like security or transactions are
exposed as properties of the distributed object reference (CORBA
IOR). This allows programs to analyze remote services
dynamically to assure that appropriate quality of service semantics
are maintained when the service is invoked.

These policies are in general different from the typical Web
policies in that:

1) Middleware policies are intended to be interpreted
and used by software systems rather than human
users.

2) For the most part, middleware policies deal with
defining the semantics of interactions with a
service. These policies are very different from the
kinds of policies that are defined for Web
resources.

3) These policies are very tightly bound to specific
service implementations. In the CORBA example,
policies are expressed to clients of the service
within each individual object reference. Typical
CORBA programs are based on the object oriented
design paradigm, which may encourage the use of
very fine-grained policies.

Web services policies combine elements found in both traditional
middleware for machine-to-machine interoperability and policies
associated with Web resources.

2. Web Services Policy
A general breakdown of the Web services policy space today
includes:
Policies that focus on enabling and exposing traditional
middleware system services like message delivery guarantees,
transaction semantics, and security requirements. The WS-Policy
Framework [3] specification proposed by Microsoft and IBM is
oriented heavily toward expressing this kind of policy. Its
emphasis on selection and logical operators – which we believe is
of limited utility in practice even for the case of system services –
make it a poor choice for other kinds of policies. As a general
rule, these policies will affect the message payload by the addition
of SOAP [4] headers specific to the policy selection that has been
made for a message exchange. For example, the use of a WS-
Reliability [5] functionality in a message exchange will include
SOAP headers that look something like the following:
<wsrm:Request
xmlns:wsrm="http://www.oasisopen.org/committees/ws
rm/schema/1.1/SOAP1.1"

xmlns:SOAP="http://schemas/xmlsoap.org/soap/envelo
pe/"

SOAP:mustUnderstand="1">

<wsrm:MessageIdgroupId="20041221-160154-
022.9@nobody.oracle.com"/>

<wsrm:ExpiryTime>2005-04-
16T09:48:34</wsrm:ExpiryTime>

<wsrm:ReplyPattern>

<wsrm:Value>Poll</wsrm:Value>

</wsrm:ReplyPattern>

<wsrm:AckRequested/>

<wsrm:DuplicateElimination/>

</wsrm:Request>

Information policies: in many cases these will be formalizations
of the kind of Web polices outlined above. Web services will
require structured mechanisms to express informational policies,
but complex policies will continue to be provided in forms
targeted for direct human consumption in the near term. We
believe that higher-level protocols will need to be developed to

allow clients to express their expectations about specific
informational policies. Informational policies typically impact the
decision to use a service rather than the specific content of a
message exchange. For example, a P3P document may express
policies about the maintenance of personal information that are
unacceptable to some users.
Service level agreements guaranteeing some combination of
commitments around the quality of the service itself and the
underlying business processes it represents. These policies are
often tailored to specific users or classes of users and may depend
on complex business rules. These policies are often applied by
leveraging specific information associated with the established
identity of the message sender.

Aside from the classes of policies we identify above, we assume
the following requirements for Web services policies:

1) More than one policy may be associated with a
service. We believe that multiple policies, often
representing very different kinds of policy
domains, will be in effect for a single service. For
example, a single service may include policies for
security, privacy, and business agreements.

2) A single policy may be associated with more than
one service. Large organizations expect to set
global policies and assure normal constraints and
rules for sets of services. End users seeking to
create a SOA are looking for mechanisms to
support policy normalization.

3) Policies associated with a service may change over
the lifetime of a service. For example, new polices
may be introduced after a service has been
deployed or existing policies may evolve over time

4) Policies need to vary independent of WSDL: new
policies should be managed and provisioned
independently of the basic business function and
message exchanges offered by a service
implementation.

At the current time, the Web services policy space is murky and
evolving. There are proprietary proposals that emphasize different
aspects of policy requirements, but tend to support one class of
policy types better than others. In addition, there is the general
problem of business rules and semantics. So called Semantic Web
services have garnered great interest in academic circles but have
not made in-roads in practice in the software industry.

The first step for providing a policy management solution is to
achieve a standardized policy framework capable of meeting the
requirements we have outlined. Regrettably, the industry has not
yet been able to reach this critical milestone; in fact, no widely
accepted standard effort exists in this space at the time of this
writing. As a result, policies are often created in ad hoc ways and
communicated through mechanisms that are out of band with
respect to the Web services architecture and model. For example,
we know of organizations maintaining Word documents that are
passed via email describing how their Web services should be
used. We believe the following design goals should be
accommodated in a viable policy framework standard.

First, a policy framework should be able to support for different
domains and styles of policy expression. Services will be bounded
by a range of policy types, each critical in its own regard. A
framework for supporting policies for security, reliability and
transactions is necessary but insufficient. On the other hand, these

kinds of policies should be able to be expressed in a simple and
easy to process set of assertions. We believe that a useful policy
framework should provide containers for domain expressions that
may utilize their own syntax and express their semantic
requirements in a domain specific manner. The outline of a
framework that provides domain containers is described in [6].
Much of the either/or discussions about policies that utilize
Semantic Web capabilities versus assertion-based model may
miss the point: domains should be free to utilize the technologies
that appear best suited for the specific problem space

Second, informational policies are processed by service
consumers to determine if a service may be used. Since policies
may evolve independent of service interfaces, consumers should
be able to express their expectations about informational policies
that are believed to apply to a service. A SOAP header with a
mustUnderstand=”1” attribute could be used to convey
expectations about specific informational policies; services that
are not observing the policy expectation should return a fault
rather than process the SOAP message carrying unsatisfied
expectations.

Third, a policy document will be associated with a Web service.
The standard should ensure that policies are not required to be
included within WSDL documents or constructs so that the two
may evolve freely. To support this model, we advocate extensions
to WSDL indicating that a policy is enforced and how it may be
obtained.

3. Policy Management
The classes of polices and general requirements for policies in the
Web services environment, taken together, directly help to define
the scope of a Web services policy management solution.
Specifically, a Web services policy management solution needs to
manage:

1) Policy Lifecycle

This includes the definition, maintenance and
application of policies. The management of policies
throughout their lifecycle combines problems of
metadata management and organization as well as
content management versioning and control facilities.
Policies may be ad hoc or informal and should also be
supported within the system: another motivator for
dividing policy expressions into independent domains
Many Web services management products support a
policy repository capability that supplies some or all of
these features and some protocol to provision policies to
enforcement points. At the present point in time, these
functions are achieved by non-standard and proprietary
mechanisms.

2) Policy Discovery/Access
End users need to have access to policies to make
decision about whether to use and how to use a service.
Regardless of how policy lifecycles are controlled, a
policy management solution must allow for metadata
retrieval and policy organization. Most solutions will
provide an association of policies and services,
generally organized with some logical structure, perhaps
based on taxonomies. The UDDI specification [7]
provides interoperable rules for service registries, which
can also expose policies and associated resources. In
some cases, the Web services platform on which a
service is hosted will directly supply the policy in

response to a specific query using the HTTP protocol or
a specialized Web services protocol for metadata
retrieval. The WS-MetadataExchange specification [8]
is an example of the latter.

3) Enforcement of policies for individual and groups of
services.

One mechanism that is emerging in practice to handle
policy enforcement is gateway services that act as active
intermediaries in the SOAP processing model. The
gateways process SOAP messages and enforce policy
constraints or resolve system-level instructions before
the message is provided to the service implementation
for processing. For example, a gateway service may
manage authentication and authorization based on
policies defining the access control rules for a service or
group of services (policy normalization). We believe
that Web services intermediaries will prove to be
fundamental to Service Oriented Architecture (SOA)
deployments; we discuss this area in more detail below.

A policy management solution is foundational to a SOA: it
provides a global model for an organization to understand and
control the services within an organization. While application
servers provide hosting platforms for individual services, a policy
management solution provides visibility and control over a SOA
topology and its characteristics. From this perspective, policies for
organizations may be most effectively managed in centralized
repositories that allow for businesses to set global policies and
store information about how a service may be used. Individual
service deployments can extend and specialize policies based on
their specific requirements; this implies that well-defined rules
must be in place for how policy domain expressions may be
combined. Again, we believe this is largely a domain specific
problem. Managing and storing metadata about services is largely
a data management problem and amenable to storage in metadata
containers built on standard relational database solutions.
Somewhat more problematic is the enforcement of managed
policies, since services typically rest on a heterogeneous set of
application server technologies. We believe that the following
methods of policy enforcement are viable solutions for the Web
services environment: local agents and gateways.
Agents that reside at service endpoints.
Agents allow processing logic to be inserted directly at service
endpoints. This can occur via interception of the carrier protocol
stream or within application server specific extensibility points
specific to the Web services environment, such as JAX-RPC [8]
Handlers. In either case, agents need to receive current policy
definitions from the management repository.
Gateway-type active intermediaries.
Active intermediaries in the SOAP processing model can often be
used to spread the processing logic of ultimate message recipients
across multiple servers. A gateway can be configured to
transparently enforce policies that are expressed as properties of
the Web service. While the archetypical use case for Web services
gateways is enforcement of security policies, almost any policy
can be enforced or observed via a gateway architecture by
organizing a pipeline of policy enforcement steps required for the
service. Since these intermediaries may combine global and
service specific policies, composition rules should be well-
specified and isolated to overlapping domains.

Both enforcement mechanisms can be used to provide data about

policy enforcement to systems management consoles. This
combination of a well-factored policy framework, policy
provisioning, access, and enforcement mechanisms, and
monitoring capabilities provide a compelling solution for the Web
services environment.

One area that requires special care is the provisioning of policies
between centralized repositories and enforcement points: it is
important that policies are applied consistently, particularly in
replica-based cluster environments. This can be a significant
challenge in agent-based systems and is an area that is rife for
interoperability research proposals and ultimately standardization.

4. Conclusion
A complete Policy framework needs to accommodate the
requirements for different classes of policies and the solution
architecture that is emerging for the management of policies. We
do not believe that current proposals meet the full range of
requirements that exist for a complete Web services policy
solution. In particular, current proposals are not tailored to the
emerging requirements, organization and deployment topologies
of Web services networks and policy management solutions that
are required for a coherent SOA deployment.

5. Acknowledgements
Special thanks to Ashok Malhotra and Jon Maron for their
insightful comments. Thanks also to the Oblix CoreSV product
team for sharpening our understanding of Web services
management in commercial practice.

6. References
[1] Cranor, Lorrie et al. The Platform for Privacy Preferences 1.0

Specification. (April 2002) http://www.w3.org/TR/P3P/

[2] Common Object Request Broker Architecture: Core
Specification. (March 2004)
http://www.omg.org/docs/formal/04-03-01.pdf

[3] Bajaj, Siddharth et al. Web Services Policy Framework.
(September 2004)
ftp://www6.software.ibm.com/software/developer/library/ws
-policy.pdf

[4] Gugdin, Martin et al. SOAP Version 1.2 Part 1: Messaging
Framework. (June 2003) http://www.w3.org/TR/soap12-
part1

[5] Iwasa, Kazunori. WS-Reliability 1.1. (August 2004)
http://docs.oasis-open.org/wsrm/2004/06/WS-Reliability-
CD1.086.pdf

[6] Ashok Malhotra and Umit Yalcinalp. Position Paper for
W3C Constraints and Capabilities Workshop. (August 2004)
http://www.w3.org/2004/08/ws-cc/amuy-20040903

[7] Ballinger, Keith et al. Web Services Metadata Exchange
(September 2004)
ftp://www6.software.ibm.com/software/developer/library/W
S-MetadataExchange.pdf

[8] Chinnici, Roberto and Hadley, Marc. Java API for XML
based RPC (JAX-RPC) 2.0. (June 2004)
http://jcp.org/aboutJava/communityprocess/edr/jsr224

